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§ 1. Introduction 

A Riemann surface is symmetric if it admits an anti-conformal 
involution. The basic question which we discuss in this paper is whether 
compact Riemann surfaces of genus g > t which admit large groups of 
automorphisms are symmetric. As is weU-known, the automorphism 
group of a compact Riemann surface of genus g > 1 is finite and bounded 
above by 84(g- 1). Macbeath ([t21 13]) has found infinitely many g for 
which this bound is attained. We show that all the surfaces found by 
Macbeath's methods are indeed symmetric. However, we do exhibit an 
example of a non-symmetric Riemann surface of genus g = ! 7 which does 
admit 84(g- 1) automorphisms. 

We also study Riemann surfaces admitting automorphisms of large 
order. The order of an automorphism of a Riemann surface of genus g is 
bounded above by 4g + 2 and this bound is attained for every g [8]. We 
show that all Riemann surfaces admitting automorphisms of order 
greater that 2g + 2 are symmetric. 

There is a close link between our work and the theory of irreflexible 
regular maps on surfaces. (See § 8 for definitions.) There is a connection 
between the groups of regular maps and large groups of automorphisms 
of compact Riemann surfaces. Indeed, every group of automorphisms 
ofa Riemann surface of genus g of order greater than 24(g - 1) is also the 
group of some regular map and conversely, every group of a regular 
map can be thought of as the group of automorphisms of a Riemann 
surface. The irreflexible regular maps turn out to be rather exceptional. 
(In fact, it was suggested in early editions of [3] that they did not exist 
for surfaces of genus O > 1). We show in the above correspondence 
that large groups of automorphisms of non-symmetric surfaces will give 
rise to irreflexible regular maps, but that the converse of this fact is not 
always true. Thus, for example, groups of automorphisms of order 
greater than 24(g- 1) of a compact non-symmetric Riemann surface 
of genus g are more exceptional than irreflexible regular maps. 

There is another interpretation of symmetric Riemann surfaces which 
is of interest. Every compact Riemann surface can be obtained as the 
Riemann surface of an algebraic curve f(z, w) = 0. A Riemann surface 
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is symmetric if an only if it can be obtained as the Riemann surface of a 
real curve [10, p. 69]. The automorphisms of the surface correspond to 
birational self-transformations of the curve. Thus, for example, we can 
say that a curve of genus g admitting a birational self-transformation 
of order greater than 2g + 2 is birationally equivalent to a real curve. 

I would like to thank Dr. Gareth Jones for patiently listening to all 
my questions concerning finite group theory and, above all, for answering 
them. 

By a surface in this paper we shall mean a compact surface of genus 
greater than one. 

§ 2. Preliminaries on NEC Groups 

Let A a denote the group of all conformal and anti-conformal homeo- 
morphisms of the upper-half plane U and let ~ +  denote the subgroup 
of index 2 in L/' consisting of the conformal homeomorphisms. By a 
non-Euclidean crystallographic (NEC) group we shall mean a discrete 
subgroup F of L/' for which U/F is compact. If F C A a+ then F is called a 
Fuchsian group. (We are departing from the usual terminology in that 
we are requiring U/F to be compact.) If F c~ (~CP - Ae +) 0:0 then we shall 
call F a proper NEC group. Every compact Riemann surface of genus 
g > 1 can be represented as U/K where K is a Fuchsian group acting 
without fixed points on U. This occurs if and only if K is torsion-free. 
In this case the group A(S) of automorphisms (i.e. conformal self- 
homeomorphisms) of S is isomorphic to N+(K)/K where N+(K) is the 
normalizer of K in A" + ; the group EA(S) of conformal and anticonformal 
homeomorphisms of S is isomorphic to N(K)/K, where N(K) is the 
normalizer of K in L~'. N(K) is an NEC group so that any group of con- 
formal and anti-conformal homeomorphisms of S is of the form F/K 
where F is an NEC group and K <  F. For  an arbitrary NEC group F let 
#(F) denote the non-Euclidean measure of a fundamental region for F. 
Then #(K) 

IF/KI= #(r----) (2.1) 

Associated to any Fuchsian group F we can assign a signature of the 
form (gt;ml . . . . .  mr). This means that U/F has genus gl and that the 
projection from U to U/F is branched at r points on U/F, the orders of 
branching being mt . . . . .  mr. In this case 

#(F) = 21r (2gx -- 2 + ~' (1 - - ~ ) )  1 " (2.2) 

If K is torsion free then its signature will be (g; - ) .  Such a group is 
called a surface group. 
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If F is an NEC group we let R(F) denote the set of isomorphisms 
r : F ~ ~a with the property that r(F) is discrete and U/r(F) is compact. 
rl, r2 e R(F) are called equivalent if for all ), e F, rl(y) = gr2(v) g-  1 for 
some g ~ .~. The quotient space is denoted by T(F), the Teichmfiller 
space of F. It is homeomorphic to a cell of dimension d(F). If F is a 
Fuchsian group with signature (g; mt . . . . .  m,) then d(F) = 6g - 6 + 2r. 
Note that d(F) = 0 if and only if F is a triangle group. I.e. g = 0 and r = 3. 
(There is no Fuchsian group with g = l, r = 0.) I fK  is a surface group then 
T(K) can be identified with the TeichmiJller space of the Riemann surface 
U/K. 

Every monomorphism ~ : F ~ F z ,  between NEC groups induces 
an embedding a* : T(F2)~ T(FI). The points in the image of this embed- 
ding correspond to groups isomorphic to /'t which are contained in 
groups isomorphic to F2. If K is a surface group and K<~ F then the 
points in the image of the induced embedding of T(F) in T(K) will 
correspond to surfaces admitting a group of conformal and anti-con- 
formal homeomorphisms isomorphic to F/K ([8, 15]). 

§ 3. Basic Lemmas 

Let (G, S) be a Riemann surface transformation (RST) group. This 
means that G is a group of automorphisms of the Riemann surface S. 
If S = U/K, G = F/K (K a surface group, F a Fuchsian group) then we call 
(F, U) its universal covering transformation (UCT) group. The aim of this 
paragraph is to prove Theorem 1 which tells us that in our context, 
we are only interested in RST groups (G, S) whose UCT group is (F, U) 
where F is a triangle group. 

Our first lemma is a slightly extended version of a well-known result 
([10], p. 71, [5]). For any proper NEC group F we will let F + = Fc~L~ '+. 
F + is of index 2 in F and is called the canonical Fuchsian group ofF.  

3.1. Lemma. Let F be a proper NEC group. Then d(F) = ½d(F+). 

Proof. Let K be a surface group normal in F. d(F +) is equal to the 
dimension of the real linear space Q of F+/K-invariant quadratic 
differentials on U/K. d(F) is equal to the dimension of the real linear 
space Q1 of F/K-invariant quadratic differentials on U/K. (See [11].) 

Let t e F / K - F + / K .  As F+/K has index two in F/K, f eQ1 if and 
only if f e  Q and 

f (tz) d(tz) 2 = f (z) dz z . 

Let Q2 denote the subspace of Q consisting of those F+/K-invariant 
quadratic differentials obeying 

f (tz) d(tz) 2 = - f (z) dz 2 . 
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If f (z )  dz 2 ~ Q then f = f l  + f2 where 

f l  = ½{f(z) dz 2 + f ( t z )  d(tz) 2) ~ Q:, 

f2 = ½(f (z) dz 2 - f ( t z )  d(tz) 2) ~ Q2 . 
Thus 

Q=Ql@Q~. 

The map f ~  i f  is an isomorphism of Q1 onto Q2 and so 

d(r) = dimQt = ½dimQ = ½d(F+). 

It follows that d(F)<d(F +) except when d (F+)=0 ;  i.e. when F + 
is a triangle group. 

3.2. Lemma. Let F be a Fuchsian group which is not a triangle group. 
Then there exists a Fuchsian group A isomorphic to F such that A is not 
contained in any proper NEC group. 

Proof. First a few remarks about maximal Fuchsian groups. A 
Fuchsian group F, is called maximal if/ '1 is not a proper subgroup of 
another Fuchsian group. If Max F 1 denotes the subset of T(F:) consisting 
of the maximal groups then it is known that MaxF:  is usually an open 
everywhere dense subset of T(F:). However there are some exceptional 
signatures. In these cases there always exists a Fuchsian group F2 such 
that every group isomorphic to F1 is contained in a group isomorphic 
to F 2. (See [7, 18].) The reason for this is as follows. If F 1 _~ F 2 and 
d(F:l<d(F1) then the group isomorphic to F l contained in groups 
isomorphic to F 2 form a small subset of T(F1). If d(Fl)= d(F2) we obtain 
the exceptional signatures. Let A be an NEC group such that d + is 
isomorphic to F. As d(A)<d(F) (by 3.1), it follows that the groups 
isomorphic to F which are canonical Fuchsian groups of NEC groups 
form a "small" set in T(F). (In fact, at most a countable union of sub- 
manifolds of smaller dimension.) If every group isomorphic to F is 
contained in a proper NEC group isomorphic to A: and F is not a 
canonical Fuchsian group, then F_~ d~ ,  and so we have one of the 
exceptional signatures. Now d(F) = d(A ~) and so d(A l) < d(F). We can 
therefore deduce the existence of a group A with the required properties. 

Theorem 1. Let (G, S) be a R S T  group and let (F, U) be its UCT group. 
I f  F is not a triangle group then there exists a RS T group ( G I, $1) where G1 
is isomorphic to G and S 1 is a non-symmetric Riemann surface homeomor- 
phic to S. 

Proof. Let S = U/K where K is a normal surface subgroup of F. 
By Lemma 3.2 we can find a Fuchsian group A isomorphic to F with the 
property that A is not contained in a proper NEC group. A then con- 
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rains a normal surface subgroup Kt  such that $1 = U1/K1, G1 = A/K1 
will have the required properties. (For if $1 is symmetric N(K1)  will be a 
proper NEC group containing A.) 

§ 4. Triangle Groups 

From Theorem I we see that in order to be able to discuss symmetry 
properties of Riemann surfaces derivable from knowledge of their 
automorphism group, we have to turn our attention to RST groups 
(G, S) whose UCT groups are (F, U), where F is a triangle group. We will 
denote the signature (0; l, m, n) by (l, m, n) and by F(I, m, n) we will mean 
a triangle group with signature (l, in, n). It has the presentation 

{x, y tx~=  y" = (xy)" = 1} (4.1) 

1 1 1 
and as F(l, m, n) is Fuchsian ~- + --m + ---n < 1. 

This group can be constructed as follows. Consider a non-Euclidean 
triangle with angles nil, rt/m, n/n. Let F*[l, m, n] be the NEC group 
generated by the three reflections a, b, c in the sides of this triangle. Then 
(F*[l, m, hi) + is a triangle group with signature (l, m, n). l i t  is well-known 
that all triangle groups with a given signature are conjugate in ~-indeed, 
this is what we mean by saying that d(F)= 0, for triangle groups F.] 
Thus the triangle group F(l, m, n) is the canonical Fuchsian group of a 
triangle group of the form F* [l, m, n]. 

F* [I, m, n] will have the presentation 

{a, b, cla 2 = b 2 = c 2 = (ab) z= (be)" = (ac)" = 1} (4.2) 

and the canonical Fuchsian group is generated by x = ab, y = be. 
From a study of the classification of NEC groups [14] we see that 

there is one other type of NEC group whose canonical Fuchsian is 
a triangle group. This group has the presentation 

{c, x lc 2 = x "  = ( c x c x -  l), = 1}. (4.3) 

(In Macbeath's notation [14] it has NEC signature (0, +,  [m] {(n)}.) Here, 
c is a reflection and x is elliptic. The canonical Fuchsian group is a 
triangle group with signature (m, m, n). It is generated by x - t  and exc. 
Thus ira triangle group has two equal periods it is the canonical Fuchsian 
group of two non-isomorphic proper NEC groups. 

Let (G, S) be a RST group with UCT group (F, U) where F is a 
triangle group. Then there exists an epimorphism 0 : F ~ G whose kernel 
is a surface group. Such a homomorphism is called a surface-kernel 
homomorphism and it is characterized by the fact that it preserves the 
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orders of elements of finite order in F. In this case, (where F is a triangle 
group) we shall call G an L-automorphism group. We will be interested 
in § 8 in the case where one of the periods of F is 2. Then we shall call G 
a K-automorphism group. The case which has received most study is 
when the periods of F are 2, 3 and 7. In this case G will be called an 
H-automorphism group. We shall sometimes talk about  H-groups, by 
which we mean a group G which acts as an H-group on some Riemann 
surface. (With a similar remark about  K-groups and L-groups.) H-groups 
are usually called Hurwitz groups in the literature. From (1.1), (t.2) we 
deduce the following. Let (G, S) be a RST group and let S have genus g. 
Then 

(i) If IGI > 12(g - l) then G is an L-automorphism group. 

(ii) If ]Gf > 24(g - 1) then G is a K-automorphism group. 

(iii) G is an H-automorphism group if and only if tGI = 84(g - 1). 

Thus these groups are, in some sense, "large" groups of automor-  
phisms. The following lemma gives us an easy method of deciding 
whether a surface admitting an L-automorphism group is symmetric. 

4.1. Lemma. Let (G, S) be a R S T  group and (F, U) its UCT group 
where F is a triangle group. Let S -- U/K, K a surface group, and 0 : F 

F/K = G the canonical homomorphism. Let F* be a proper NEC group 
with (F*) + = F. Suppose G* is a group which contains G with index 2 and 
O* : F* ~ G* is an epimorphism with O*[F = O. Then S is symmetric. 

Proof. F* contains a reflection c and F * - - F  + cF. O*(c) is not the 
identity otherwise G =  G* and so O*(c) is an involution. As O*[F=O, 
ker0* ____ K. Moreover,  ifg ~ ker 0", g ¢ K then g = ct where t ~ F. Therefore 
O*(c) = O*(t- t) ~ G and again G = G*. Hence g e K and so ker0* = K. 
Thus K<~ F* and O*(c) is a symmetry of S. 

§ 5. L-Groups 

Theorem 2. Let G be an L-group of  automorphisms of  a Riemann 
surface S generated by X ,  Y obeying 

X t = y m  = ( X  y ) n  = I 

(i.e. there is an epimorphism from F(l, m, n), with presentation 4.1 to G, 
defined by x ~ X,  y--* Y and S is the quotient of  the kernel). Then S is 
symmetric if and only i f  there is an automorphism c t : G ~ G  obeying 
either 

(i) ~(X) = X -  1, or(Y) = Y -  1 or 

(ii) ct(X) = Y-  1, ct(Y) = X -  ' 

(Note that ~t has period 2.) 
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Proof. Suppose that an automorphism ~ exists obeying (i). Assume 
that it is an outer automorphism. Then there exists a Z2-extension G* 
of G and an element Te  G* obeying T 2 = I, T X T -  1 = X - t ,  T Y T -  1 = y - 

i.e. 
T 2 ----- (X T) z = (T y)2 __- X t = ym = ( X  Y)" = I .  

Then there is an epimorphism 

~b : F*[/, m, n ] ~ G *  
defined by 

q~(a) = X T ,  q~(b) = T, ~(c) = T Y  
and 

,k((F* [/, m, n]) +) = G .  

By Lemma 4.1, S is symmetric. 
If~ is an outer automorphism obeying (ii) then there is a Z2-extension 

G* of G and an element T e  G* which satisfies 

T 2 = I ,  T X T  - l =  y - ~  

Let F* be an NEC group with presentation (4.3). Then there exists an 
epimorphism 

dp : F*-~ G* 
defined by 

¢(c) = T, 4'(x) = X 
and 

</,((r) +) = ~ .  

By Lemma 4.1, S is symmetric. 
If ~ is an inner automorphism then the element T above lies in G. 

Let G* = Z 2 × G where Z z = { V I V z = 1}. 
Then G * = ( ( V , W ) , ( 1 ,  W ) ; W E G ) a n d  G can be identified with 

((I, W); W e  G). 
Suppose that ~ obeys (i). Then if we let 

T, = (V, T), X 1 = (I, X), Y, = (I, Y) 
then 

T} = (X a TI): = (7"i ]11) 2 = X t = ym = (X Y)" = I 

(T I @ G), and we have reduced this case to the preceeding case. If ~ is an 
inner automorphism obeying (ii) then we proceed similarly. 

Converse. As S is symmetric, G is contained in G* with index 2 and 
there is a proper NEC group F* and an epimorphism O*:F*~G* 
such that U/kerO* = S. From (2.1), (2.2), F* contains F(/, m, n) with index 2 
and hence (F*) + =F(l,m, n). F* thus has presentation (4.2) or (4.3). 
If it has presentation (4.2) then O*(b) induces the required automorphism 
by conjugation and if it has presentation (4.3), O*(c) does. 

Corollary. I f  S admits an abelian L-automorphism group then S is 
symmetric. 
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Proof. Mapping every element of an abelian group to its inverse 
gives us an automorphism of the group. 

Tlu~rem 3. I f  S admits an L-automorphism group isomorphic to 
PSL(2, q) then S is symmetric. 

Proof. The following statement follows immediately from [12-1, 
Theorem 3. Let (X, Y), (X l , Y1), be two sets of generators for G = PSL(2, q) 
obeying t rX = trX1, tr Y= t r Y l , t r X Y =  trXl Yr Then there exists an 
extension (J of G and an element U e (~ such that UX U- t = X 1, 
U Y U - I = Y r  As t r X = t r X - ~ , t r Y = t r Y - ~ , t r X Y = t r X - t Y  -1, our 
theorem follows from Theorem 2. 

Note. For each g there is a Riemann surface of genus g admitting 
8(g + 1) automorphisms and for infinitely many g this is the largest 
group acting on a surface of genus g (Maclachlan [16], Accola [1,1 ). In 
the former paper the following presentation for these groups of order 
8(g + 1) is given 

{X, YIX* = Y2~+ I) =(X  y)2 =(X-1  y)2 = i } .  

As the map X ~ X -  t, y_., y - 1, extends to an automorphism of the group 
the corresponding surfaces are symmetric. 

§ 6. Riemann Surfaces Admitting Automorphisms of Large Order 

In this paragraph we show that Riemann surfaces that admit automor- 
phisms of high order are symmetric. Before we do this we discuss some 
results of Harvey [8,1 on cyclic automorphism groups. As we have seen, 
a necessary and sumcient condition for the cyclic group Z,  to be a group 
of automorphisms of a surface of genus g, is that there exists a surface- 
kernel homomorphism ~b:F~Z,  for some Fuchsian group F. Let F 
have signature (h; m 1 . . . .  , mr). Then we have 

Theorem (Harvey [8,1). Let M = I.c.m{ml . . . . .  mr}. Then there exists 
a surface-kernel homomorphism ~b : F ~ Z~ ff and only if the following 
conditions are satisfied. 

(i) l.c.m{ml,...,ff~ . . . . .  mr}=M for all /, where rh i denotes the 
omission of m~. 

(ii) If 2IM then the number of periods divisible by the maximum 
power of 2 dividing M is even. 

(iii) M IN and if h = 0, M = N. 
(iv) r# : l  andi fh=O,r>3 .  
From this result Harvey deduced a result of Wiman that the largest 

order of a cyclic group of automorphisms of a Riemann surface of genus 
g is 4g + 2, and that this bound is attained for every g. (F in this case has 
signature (2, 2g + 1,4g + 2).) 
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T h e o r e m  4. Let S be a non-symmetric Riemann surface of genus g 
which admits an automorphism of order N > 2g. Then g is even and 
N = 2 g + 2 .  

From this theorem the following corollaries are immediate. 

Corollary 1. Let S be a Riemann surface of genus g which admits 
an automorphism of order N > 2g + 2. Then S is symmetric. 

Corollary 2. Let S be a Riemann surface of odd genus g If S admits 
an automorphism of order N > 29 then S is symmetric. 

Proof. Let S = U/K (K a surface group), be a non-symmetric Riemann 
surface of genus g which admits Zr,., N > 29, as an automorphism group. 
If the UCT group of (ZN, S) is (F, U), then by the corollary to Theorem 2 
F is not a triangle group. We now find all signatures of Fuchsian groups 
F, which do not define triangle groups, obey the conditions of Harvey's 
theorem and for which ]F/KI > 20. 

By (2.1), (2.2), we obtain #(F) < 2n and hence by (2.2) 

- < 1 .  ( 5 . t )  
i 

Hence h > 1 and if h = 1, r = 1. By (iii), (iv) (of Harvey's theorem) 
h = 0, M = N. Thus we want to find all signatures which obey (5.1) and 
the conditions of Harvey's theorem. It is easy to see that no signatures 
with h = 0, r > 5 can occur so our problem reduces to finding all signatures 
(0; ml,  m2, m3, m4) which obey the conditions of Harvey's theorem and 

4 1 
- - > l .  

i= t mi 

Write the signature (0; rex, m 2, m3, m4) as (ml,m 2, m 3, m4). Then an 
arithmetical calculation gives us all possibilities. These are 

A. (3,3,3,3) 

B. (3,3,4,4) 

C. (3,3,5,5) 

D. (2,5,5,6) 

E. (2,3,3,6) 

F. (2,3,4,12) 

G. (2,3,5,30) 

H. (2, 2, m, m) 
(m even) 

I. (2, 2, m, m) 
(m odd) 

giving 

giving 

glvmg 

glwng 

glvmg 

glvmg 

giving 

giving 

giving 

g = 2 ,  N = 3 ,  

9 = 6 ,  N = 1 2 ,  

g = 8, N = 15, 

9 = t 5 ,  N = 3 0 ,  

9 = 3 ,  N = 6 ,  

9 = 6 ,  N = 1 2 ,  

g = 15, N = 30, 
m 

9 = - 2  - ,  N = m ,  

g = m - - l ,  N = 2 m .  
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I. gives the only example when N > 29. In this case N = 2g + 2 and g 
is even. 

Note. Theorem 1 implies that the bounds given in the corollaries 
are sharp. For every even g there is a non-symmetric Riemann surface of 
genus g admitting an automorphism of order 2g + 2 and for every odd g 
there is a non-symmetric Riemann surface of genus g admitting an 
automorphism of order 2g. 

§ 7. H-Groups 

We now discuss symmetry properties of Riemann surfaces admitting 
H-automorphism groups. That is, Riemann surfaces of genus g admitting 
8 4 ( g - l )  automorphisms. In [13], Macbeath found an infinite number 
of H-groups of the form PSL(2, q). By Theorem 3, all the corresponding 
surfaces are symmetric. In [12], he described a method of obtaining an 
infinite number of H-groups from a given one. It is as follows. Let S = U/K, 
K a surface group, admit an H-automorphism group. Then K<~ F(2, 3, 7). 
Let K 1 be a characteristic subgroup of finite index in K. (An infinite 
number of these exist.) Then Kl<~F(2,3,7) and so U/K admits an 
H-automorphism group. If U/K is symmetric then K ~  F*[2, 3, 7] and 
hence K t ~  F*[2, 3, 7]. Therefore U/K 1 is symmetric. Thus all Riemann 
surfaces found by Macbeath's methods are symmetric. 

The first four values of g for which there exist surfaces admitting 
84(9-  I) automorphisms are as follows. 

Genus Group 

3 PSL(2, 7) 
7 PSL(2, 8) 

14 PSL(2, 13) 

17 A non-split extension of Z 3 by PSL (2, 7) of order 1344. 

The first three values of g correspond to symmetric surfaces. The group 
of order 1344 was discovered by Sinkov [19]. 

Theorem 5. Riemann surfaces of genus 17 admitting 1344 automor- 
phisms are not symmetric. 

Proof. Let H be an H-group of order 1344. Then there are epimor- 
phisms 0 : F(2, 3, 7)--* H, ~b : H ~ PSL(2, 7). The kernel of ~b is a normal 
subgroup N of H isomorphic to Z2 s. As H/N is simple; it follows that N 
is the unique normal subgroup of H isomorphic to Z~. (If N1 is another 
one then INl N] < 64 and so N1N 4: H. Thus N1N = N = NI .) Hence N 
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is characteristic in H. Let S be a Riemann surface of genus 17 admitting H 
as automorphism group. Suppose that S was symmetric. Then as 
F*[2, 3, 7] is the unique proper NEC group containing F(2, 3, 7), there 
sould have to be a group H* containing H with index 2 and an epimor- 
phism 0 : F* [2, 3, 7] ~ H* such that 0* l F(2, 3, 7) = 0. As N-~ H* there 
exists a homomorphism ~p : H* ~ Aut N ~ GL(3, 2) ~ PSL(2, 7), ~p being 
induced by conjugation. (That is, ~o(h)=e where c~(n)=hnh-1.) As 
ker~ IH = N, w(H) = AutN and thus tp is onto. 

We now have an epimorphism 

Z: F*[2, 3, 73 - ,  PSL(2, 7) 
defined by 

Z = ~p0*. 

As all normal subgroups of index greater than two in F*[2, 3, 7] 
are surface groups and hence torsion free, it follows that ;( maps finite 
subgroups of F*[2, 3, 7] isomorphically into PSL(2, 7). Thus PSL(2, 7) 
contains a dihedral group of order t4. This is seen to be a contradiction 
as follows. Z7 is a Sylow subgroup of PSL(2, 7). By the Sylow theorems 
there are 8 ZT's and they are all conjugate. The normalizer of a Z 7 then 
has order 168/8 = 21. Thus PSL(2, 7) cannot contain a dihedral subgroup 
of order 14. 

g = 17 gives us the least value of g for which there exists a non-real 
curve admitting 84(g-1)  birational self-transformations. An infinite 
family of non-symmetric Riemann surfaces admitting H-groups does 
in fact exist. The corresponding H-groups are the Ree groups G~(q) of 
order q3(q3+ l ) (q -1 ) ,  where q =  3 p, p a prime greater than 3. The 
corresponding values of g are rather large; the smallest being greater 
than 330 . The non-symmetry of the surfaces follows from Theorem 2. 
For we can find epimorphisms from F(2, 3, 7) to these Ree groups with 
the property that the image of the element of order 3 is not mapped to 
its inverse under any automorphism of the group (Sah [17], pp. 30-3t). 

§ 8. Regular Maps on Surfaces 

(See [3].) Let S be a compact orientable (topological) surface. A 
map on S is a partitioning of S into simply-connected non-overlapping 
regions called faces by means of line segments called edges. The inter- 
section of the edges are called vertices. An automorphism of a map is a 
partitioning of its elements that preserve incidence. If amongst the 
automorphisms there is a element R that cyclically permutes the 
edges surrounding a face of the map and another element S which 
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cyclically permutes the edges meeting at a vertex of this face, then the 
map is called regular. Then the same number, say p, of vertices, surround 
each face and the same number, say q, of edges meet at each vertex. The 
map is said to be of type {p, q}. The group G generated by R and S is 
called the group of the map. R and S obey 

R p = S q = (RS) 2 = I .  (8.1) 

If there is an automorphism R 1 which interchanges two vertices of a 
face but leaves the two bordering faces fixed then we say that the regular 
map is reflexible. R 1 ~ G but G is a subgroup of index 2 in a group G* 
generated by R1, R2 = R1 R, R3 = RzS  satisfying 

2 2 R 1 = R 2 = R~ = (R 1 R2) p = (R z R3) a = (R 1 R3) 2 = I .  (8.2) 

Now suppose that we have a finite group G generated by R and S 
obeying (8.1). Then there exists a regular map of type {p, q} whose group 
is G. This map is constructed as follows. Let K be the kernel of the 
canonical homomorphism from F(2, p, q) to G. U has a (2, p, q) tesselation 
defined on it. If we project from U to U/K then this tesselation will project 
to the required map on U/K. The map is reflexible if and only if K <  F* 
[2,p,q];  i.e. if G <  G* with index 2 where G* has generators R1, R z, R3 
obeying (8.2). We sum up in 

8.1. Lemma. Let G act as a K-automorphism group of a Riemann 
surface S, G being a surface-kernel homomorphic image of  F(2,p, q). 
Then there exists a regular map of  type {p, q} on the topological surface 
underlying S. I f  this map is reflexible then S is a symmetric Riemann 
surface. Conversely, if G is the group of a map of  type {p, q} on a surface S, 
then G is a K-automorphism group of  a Riemann surface homeomorphic to S. 

In the converse the symmetry of the Riemann surface need not imply 
the reflexibility of the map. From the above discussion it follows that if G 
admits an outer automorphism 0t obeying condition (i) of Theorem 2, 
then the map is reflexible. If ct obeys condition (ii) of Theorem 2 and not 
condition (i) then the map is irreflexible but the corresponding surface is 
symmetric. However if p 4: q then the symmetry of the Riemann surface 
does imply the reflexibility of the map. 

Irreflexible maps of genus g > 1 seem rather exceptional. Garbe [6] 
has shown that for 2 < g < 7 irreflexible maps do not exist. This yields 

Theorem 6. Let S be a Riemann surface of  genus g, 2 < g < 7. I f  S 
admits a K-automorphism group (and a for t ior i  if S admits more than 
2 4 ( 0 -  1) automorphisms) then S is symmetric. 
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We now discuss the known example of an irreflexible map on a 
surface of genus 7. This is Edmonds map of type {7,7} described in [2]. 
We will show that the corresponding Riemann surface is symmetric 
(and also give an algebraic proof of the irreflexibility). First of all we will 
find the group of the map, which from now on will be denoted by G. 
G is a homomorphic image of F(2, 7, 7) and as the kernel is a surface group 
of genus 7, it has order 56. 

8.2. Lemma. G-"-Aff(1, 8), the one dimensional affine group over a 
feld with 8 elements. 

Proof. Aft(l, 8) is the subgroup of PSL(2, 8) consists of matrices of 
the form 

a _ l ,  a, bsGF(8),  a~O.  

If a = 1, V(a, b) has order 2, otherwise V(a, b) has order 7. It is then 
easy to see that there is an epimorphism from (2, 7, 7) to Aft(l, 8). 

Now we show that G must be Aft(l, 8). First of all, G is non-abelian, 
being an image of F(2, 7, 7). If G contains a normal subgroup of order 7 
then there would be an epimorphism from F(2, 7, 7) to a group of order 8 
which is impossible. Sylow's theorem now implies that there are 8 ZT's 
and a normal subgroup N of order 8. Suppose, if possible, that G con- 
tains an element W of order 4. Let V e G have order 7. Then V i W V-i  
(i = 0, 1 . . . .  ,5) have order 4 and hence at least two of them must be equal. 
We now see that an element of order 7 commutes with W and G contains 
a cyclic subgroup of order 28. It is easy to see that this is impossible for a 
group of order 56 containing 8 ZT's. Thus N - ' - Z  2 × Z 2 × Z 2. Now 
suppose that G 1 and G2 are two groups of order 56 containing a group 
isomorphic to N as a normal subgroup. Consider the Holomorph of N, 
HolN. 

HolN is a split extension of N by AutN and has order 1344. (It is 
not the same group as in Theorem 5.) There are embeddings of G1 and G2 
in HolN. We can write G~ = S~ N, G: = S2N respectively. Sx and S 2 are 
Sylow subgroups af HolN and therefore are conjugate; i.e. there exists 
X ~ HolN such that XS1 X -  ~ = $2. We now have 

X G 1 X  -1 = X S 1 N X  -1 = X S I X - I  N = S 2 N = G 2  

and thus G1 and G 2 are  isomorphic. This proves that Aft(i, 8) is the 
unique group of order 56 with the required properties. 

As the map we are considering turns out to be irreflexible the corre- 
sponding subgroup of F(2, 7, 7) is not normal in F* [2, 7, 7] but has one 
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other conjugate subgroup. As part of the next theorem we will show 
that there are exactly 2 subgroups of F(2, 7, 7) corresponding to the 
map and so the map is essentially unique. 

Theorem 7. (i) Corresponding to the maps of type {7, 7} on a surface 
of genus 7 these correspond exactly 2 subgroups of F(2, 7, 7). 

(ii) These subgroups are conjugate in ~ +  and hence correspond to 
a unique Riemann surface. This Riemann surface is symmetric whilst the 
map is irreflexible. 

Proof. (i) We will first of all show that there are only two possible 
kernels for a homomorphism from F(2, 7, 7) onto G. Consider the set of 
all pairs of elements (X, Y) in G x G which generate G and obey X 2 = y7 
= (X y)7 = 1. Call two such pairs (X1, Y1), (X2, Y2) equivalent if there is 
an automorphism ct : G--* G such ~(X1) = X2, ct(Y1) = Y2. Then the number 
of kernels is equal to the number of equivalence classes. Any pair is 
equivalent to a pair (X, Y) where X = V(1, 1), Y = V(a, 0) under an inner 
automorphism. There are also three automorphisms induced by the 
automorphisms of the Galois group of GF(8) over GF(2). As there 
are 6 possible values of a, there are 2 equivalence classes and hence 2 
kernels K1, K 2. 

(ii) It can easily be seen that F(2, 7, 7)<~ F(2, 4, 7) with index 2 by 
considering the homomorphism from F(2, 4, 7) onto Z 2. We will show 
that Kt  is not normal in F(2, 4, 7). Hence it must have another conjugate 
subgroup in F(2, 4, 7) and this must be K 2. Then K~, K 2 being conjugate 
it £ a+ must represent the same Riemann surface. 

To show that K I ~  F(2, 4, 7) we will first show that the only Z2-exten- 
sion of G is G x Z2. 

Suppose that G admits an outer automorphism z, z2= 1. Let 
G* = {G, r}. As N is characteristic in G, N<~ G* and there is a homomor- 
phism 0:G*~GL(3,2)- ' - -PSL(2,7) .  Suppose O(z) has order 2. Then 
G*/N is isomorphic to a subgroup of order t4 in PSL(2, 7) which is 
impossible. (See end of proof of Theorem 5.) Thus O(z)= 1 and so r 
centralizes N. Therefore 

(N, z) " " Z  2 × Z2 x Z z × Z 2 ~-~ M 

say. M<~ G*, G*/M-"-Z 7 and G* = MS 1 where S 1 ~ Z  7. M is a 4-dimen- 
sional space over GF(2) and N is a 3-dimensional subspace. $1 acts as a 
group of linear transformations of M and N in an invariant subspace. 
Maschke's theorem [4] now implies that there exists an Sl-invariant 
complement, i.e. 

M = N ~ P  
where IPI = 2. 



Symmetries of Riemann Surfaces with Large Automorphism Group 31 

We now have P = Z(G*) and so 

G* = G x P-"-G x Z 2 ,  

proving our  claim. 
There is no h o m o m o r p h i s m  from F(2, 4, 7) onto  G (as all elements of 

order 2 lie in N) and  hence to ZE x G. Thus  KI~0 F(2, 4, 7) and  as shown 
above this means that K1 and K z are conjugate in F(2, 4, 7). 

Thus there is a un ique  R iemann  surface S of genus 7 admit t ing  G 
as an  au tomorph i sm group. By Theorem 5, a Riemann  surface of genus 7 
admit t ing  PSL(2, 8) as au tomorph i sm group is symmetric (see § 7), and  
as G C PSL(2, 8), S is symmetric. [A simple proof can also be obta ined  
from Theorem 2 by construct ing an au tomorph i sm obeying (ii) of that  
theorem.]  

The irreflexibility of Edmonds  map  also follows from these ideas 
as there is no  ep imorphism from F* [2, 7, 7] onto  G x Z 2. If there was 
one, then we could generate G by 3 involut ions  which is impossible as 
all the involu t ions  lie in N. 
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