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§ 1. Introduetion

Various concepts of order convergence can be defined in a lattice or a
lattice-ordered algebra. Cf. [1], {2, Chap. IV, §8], [3, §3 and § 7], [4], [67,
(81, 19, § 2.1}, [10, § 3], [11], [12, § 5 and note on p. 314], [15, Definition 4.1].
In lattice-groups (briefly I-groups) and Boolean algebras each such concept
induces, by means of the operations “—’’ and 4’ respectively, a correspond-
ing concept of fundamentality (i.e. of Cauchy nets). A pseudo-uniform structure
is thus introduced and our main object in this paper is the completion of
commutative l-groups (in a lesser degree of Boolean algebras) relative to order-
fundamental nets or sequences in particular.

Stimulation for this research grew out of some discussions with D. A, Karpros
{to whom the author expresses his sincere thanks) and the study of some publi-
cations in the subject, mainly [3] and [8]. H. Léwic in [8] introduces what he
calls “intrinsic convergence” for ordinary sequences in an arbitrary Boolean
ring B and proves that the pertinent completion by the Cantor process re-
quires w, steps (w,; is the least uncountable ordinal) and that the resulting
ring B(w,) is the minimal Boolean ¢-ring over B, preserving all existing joing
and meets (Thm. 143). C. J. EvErRETT in [3] employed an essentially different
(and stronger) concept of sequence convergence (called o-convergence) in
commutative I-groups and investigated the completion problem again. He
first studied the outcome of the Cantor method, but did not noticetworemarkable
features of this notion of convergence: First, that sequence completion is
effected in one step and second, that the resulting extension @ is topologically
invariant, relative to sequences, over the original commutative l-group @
(Le.ifx, € G,z € G, then z,— z relative to G if and only if z, > z relative to G').
We establish both these statements in the present paper (§ 4) and thus disprove
two conjectures of EVERETT. Actually we prove somewhat sharper theorems
and show that they are valid for a class of convergences of the kind defined in
§ 7 of [3]. Possibly these results generalize to non-commutative l-groups, by
means of the technique used in [4], but we have not worked it out.

* This research was supported by the Royal Greek Research Foundation.
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The same results apply to Boolean algebras for this class of convergences
and we formulate our exposition in § 2, § 3 and § 4 so as to reveal this analogy.
Our proofs are elementary and simplify many of Everett’s proofs.

The extension ¢’ mentioned earlier is not in general a g-extension, even if ¢
is Archimedean. The same situation prevails with Boolean algebras. We give
a necessary and sufficient condition for &’ to be a ¢-extension; this condition
is satisfied in the simply ordered Archimedean case. If @ is lattice-ordered and
Archimedean, we can get its minimal ¢g-extension (in w, steps) by employing
another concept of convergence, which we call here natural convergence: This
is the one defined e.g. in {10, (3.1}]; in the case of Boolean algebras (but not
Boolean rings in generall) it is equivalent to Lowig’s intrinsic convergence.
Natural convergence in arbitrary commutative I-groups is investigated
in § 6. The sequential completion requires w, steps and gives rise to a topo-
logically invariant (relative to all nets) extension G(w,). We show that (for
ordinary sequences) natural convergence in G is the restriction to ¢ of o-
eonvergence in G{w;). If G is Archimedean, then G/{w,) is the minimal ¢-exten-
sion of G. The completion G* of ¢ relative to all naturally fundamental nets
was determined by B. BanascrEwskz [1].

A pet which is convergent under either o-convergence or natural con-
vergence is necessarily eventually bounded. In § 7 we investigate a concept of
convergence (which we call L-convergence) weaker than natural convergence
and allowing for convergent nets which are not eventually bounded. This is a
generalization of “individual convergence”, introduced by H. Naxawo [11]
for sequences in a g-vector-lattice. We also touch npon a still weaker concept
of convergence, which, however, we leave for future investigation. §8 is
devoted to the completion of a commutative l-group relative to L-convergence.

With respect to this convergence the analogy between Boolean rings and
commutative I-groups is not complete, especially in the non-Archimedean case.
For example, Lowic has shown that in the case of Boolean rings an extension
preserving joins and meets is necessarily topologically invariant. In the case
of commutative l-groups we have to impose certain restrictions, mainly as
regards Archimedity (cf. Thm. 6.4 for natural convergence and Thm. 7.5 for
L-convergence). Further, a Boolean ring which is saturated (complete relative
to joins and meets) is topologically complete relative to Lowig’s intrinsic
convergence, whereas a conditionally saturated I-group may fail to be com-
plete relative to L-convergence.

We remark that all constructions concerning commutative I-groups can be
applied to vector lattices as well. It is not difficult to see how scalar multiplica-
tion can be extended in each case.

Most of the content of § 2§ 6 is a condensation of results contained in the
author’s doctoral dissertation, accepted by the University of Athens and
published in the Greek-language section of the Bulletin of the Greek Math.
Society [14], where more detailed developments and proofs are to be found.

Notation and terminolegy. Let L be a lattice. A (directed) net in L is &
family (x;);cy of elements of L, whose index domain I is directed by a partial
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ordering = (i.e. a reflexive and transitive relation) satisfying the Moore-Smith
condition. We use either of the notations (¢;);cr, (#;) or ;, ¢ ¢ I and adopt the
terminology of KerrEY [7, Chap. 2]. The partial ordering of L will also be
denoted by z. The corresponding strict orderings will be denoted by >. A
net (x;) in L is increasing (resp. decreasing), if ¢ = § implies z; = #; (resp.
x; = x;); notation: (x;1);¢7 or ()t (resp. (wd);eg or ().

If 4 is a subset of L, the supremum (or join or Lu.b.) of 4 in L, if it exists,
will be denoted by aé/;") a or sup® 4. Dually the infimum (meet, g.1.b.) will be

denoted by afﬁ\ff) @ or inf® 4, The eorresponding notation for a family (x,);¢;
in L will be: ié/;f’) @, or sup® {z; : 1 € I} and dually ié\I‘L) x; or inf® {x;: ¢ € I}.
24 @2 means that (x;) is an increasing net and z = i\elém z;. Dually 4Pz,

A sublattice L, of L is said to be reqular in L {equivalently L is said to be
reqular over Lg), if A C Ly, xy=sup®™4 imply z, = sup® 4, and dually.
L, is o-regular in L (squivalently L is o-regular over L), if the above condition
is satisfied for countable subsets 4 ¢ L.

L is saturated?) (resp. o-saturated), if every subset of L (resp. every non-void
countable subset of L) has a supremum and an infimum in L. L is condi-
tionally saturated (resp. conditionally o-saturated), if every non-void bounded
subset of L (resp. every non-void countable bounded subset of L) has a
supremum and an infimum in L. The MacNeille saturation of L is the satura-
tion I of L by cuts [4, B]; (one of the two sets may be void). The MacNeille
conditional saturation L of L consists of the “non-void” cuts ([4, B] with
A9, BD).

Set-theoretical unions and intersections will be denoted by U and N
respectively. B denotes the real line and M the Il-group of all bounded real
functions on [0, 1]. V is the set of natural numbers 1, 2, . . . and J the ordered
group of all integers. Subscripts, superscripts and references are omitted
whenever no confusion is likely.

§ 2. Convergence. Preliminaries
Let L be a lattice.

2.1. Definition.?} A net (2;);¢71in L o-converges to x ¢ L relative to L (denoted:

o-l_iérlﬁm X = x), if there are an increasing net (a,);c; and a decreasing net
(2

(b:)icr in L (with the same index domain I as (%;);c;) such that a; < z; < b,
for every ¢ € I, a 40z and b,y Dz,
In a conditionally saturated lattice this takes the well-known form:
_/\ V_x,r:-:‘V /\_x,=x.
i€l rai i€l r2d
A slight weakening of Definition 2.1 gives:

1} We do not use the term ‘“‘complete” to avoid confusion with the notion of topological
completeness which will be used later.

) Cf. [18, Def. 4.1, p. 110] for the case of sequences. See also [2, p. 60, 3rd line]
which deals with a saturated lattice.

G*
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2.2, Definition. (z,);c s T-converges to x relative to L(denoted z-hm@)x = m)

if there is an index i; € I such that the net (x,),c;,, where I, = {z E 1:12 4},
o-converges to z.

For bounded nets o- and 7-convergence are equivalent. Hence they are
equivalent for sequences.

2.3. Definition. (x,);e5 converges naturally to x relative to L (denoted

vhgx@)x, = x) if there are two nets (a,),cr, (bs)scs (not necessarily with
%

the same index domain as (x,);¢), with a4z, bsix and such that, given y ¢ I
and 6 € 4, the relation a, < x; = b, is eventually true relative to (,);¢ .

An element a € L is a subelement (resp. superelement) of (2;);c7in L ifa < a;
(resp. @ = x;) eventually; cf. [8, Defs. 1 and 2]. Let V be the set of all sub-
elements and U the set of all superelements of (z,);c ;in L. One can easily prove:

2.4. Proposition. Definition 2.3 is equivalent to each of the following assertions:

(i) Same as Def. 2.3 with the requirement that I' = A.

(il) There are two sets A, Bwith W= A C V, 9+ B C U and such that A is
(Moore-Smith ) directed upwards, B is directed downwards and supd4 =inf B = .

(iii) Same as (ii) without the requirement that A and B be directed.

iv) V==0,U=+0and supV = infU = a.

A number of authors have used one or the other of these versions.
See e.g. [10, 3.1, p. 15], [9, 2.1, p. 113], [8, Thms. 24, 19 and 22].

2.5. Theorem. Let L be a laftice, L the MacNeille saturation and L the
MacNeille conditional saturation of L. Further, let (x;) be a net in L and x € L.
Then the following assertions are equivalent:

(i) plimP g, =z
(i) olimBPyg, =z
(iii) v-limPg, = z.
Proof. (i) implies (ii). Defining &; = /\(")x b; = \/(E)x we have @; <

<2, < b, forevery s € I. If v is an arbitrary subelement and » an arbitrary
superelement of (z;) in L, then v < @, < b; < u in L eventually. We easily
deduce that g+ Px, b 1D .

That (ii) implies (iii) is easy to _prove.

{iii) nnphes (1) Let (4,);» 4, (b, Jiz i, (zOEI yin L be such that 4; < x, < b,
for all i = ig, dADa, 5,48z, For each d, the set A; = {a ¢ L:a < 4;} is non-
void by the definition of L and 4, = sup@)A We define 4 = U A,, then

x= Vg, = V(z’ supD A, = sup® 4 and since ACL, x¢L:x= sup(L)A

i1
Clearly every element of A is a subelement of (x;). Dually we define a set
B ¢ L consisting of superelements of (z;) and such that inf® B =z By
Prop. 2.4 ((iii)), »-lim®P z, = 2. The proof is complete.
Thus in the case of a lattice L natural convergence in L is the restriction to L
of 0-convergence in L. Natural convergence in the latter form was proposed by
G. BrrgaOFF {2, p. 60].
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We turn now to the particular cases that will interest us in the following
pages, namely commutative l-groups and Boolean algebras. The fundamental
properties of these structures are assumed known; the reader is referred e.g.
to [2, Chap. X, XIV, XV]. The absolute value in an l.group is defined by
|z] = x V —x. Free use will be made of the inequalities xVa—~yVal <
Ele—y, wha—yhal < |wx—y|l and e+ ¥yl £ || + |y]. The first two
are valid in any l-group; the third if and only if the l-group is commutative.
“Positive’” will mean = 0, “strictly positive”: >0.

We shall later need a few facts about the Everett extension of a commutative
l-group. If G is such an l-group and G is the MacNeille conditional saturation
of @ and if for any two elements £ = sup@ 4, § = sup@® 4’ (4, 4' < Q) of G
we define £ + § = sup® (4 + A4'), then @ is made into a commutative semi-
group (cf. [3, § 5], [1, p. 54]; for the case of Archimedean lgroups see [2,
Thm. 17, p. 229]). Every element & of Ghas the form £ = sup®4 = int® B,
where 9+ A4 C G, 0= BCG. .

2.6. Proposition. ([3, Thm. 6].) The element & = sup®P 4 = inf® B has an
inverse in the semigroup G, if and only if inf9{b —a:b¢c B,ac A} =0.

Following BanascurwskI [1] we denote by G* the set of all elements of G
which have an inverse in . G* is a commutative l-group, regular over G.
Further, G* = G (equivalently G* is conditionally saturated), if and only if &
is Archimedean ({3, Thm. 7]). We shall call G* the Hverett extension of G.

The operations +, —, V, A and |z] in an l-group, as well as the operations
V, A, & (= complement of ), + (symmetric difference) and — in a Boolean
algebra are continuous relative to each of the three concepts of convergence
introduced above. This follows without difficulty from the infinite distributive
laws. o-limz; = x is equivalent to o-im[r; — 2| =0 in an l-group and to
o-lim(z; + x) = 0in a Boolean algebra. Similarly with z- and natural convergence.

Let G be a commutative I-group and B a Boolean algebra.

2.7. Definition. The net (x,);e; in G is o-fundamental, tv-fundamental or
naturally fundamental, if and only if the net x; — #;, (3,7) ¢ I X I o-converges,
7-converges or converges naturally to 0, respectively. Here I x I is directed
by the Cartesian (coordinatewise) ordering.

2.7a. Definition. Same as 2.7, with Bin place of Gand z; 4 z;in place of z;— ;

Let now F be an l-subgroup of & and 4 a Boolean subalgebra of B. Moti-
vated by classical uniform convergence in the space of real functions we
introduce the following definition:

2.8. Definition®). A net (z);er in G F-o-converges to xz¢@ (denoted

Fohglx, = x), if there is a decreasing net (;);¢; in F such that ;¥ 0 and
1
[, — 2| < u;in @ for all ¢ € I. A net (x;);¢y is F-o-fundamental if
F.0- lim (v;—x,)=0
(L) eIxI
2.8a. Definition. Same as 2.8, with B in place of @&, 4 in place of F and
x; + x, x; + x; in place of |¥; — x| and |x; — ;| respectively.

%) Cf. [3,§ 7]
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If @ is the l-group of all real functions on R and F the l-subgroup of all
constant functions, then F.z-convergence (which is defined in an obvious way)
is equivalent to classical uniform convergence.

For all concepts of fundamentality introduced hitherto it is true that if
(#;)ier and (y;);¢; are fundamental, then so are x; + y;, (i,7) €I x J and
generally all their combinations by means of the algebraic operations of § or B.
Note also that limits are unique in the convergences of Defs. 2.1, 2.2 and 2.3.
This is not always true of 2.8 and 2.8a:

2.9. Proposition. F-o-limits of nels (resp. of sequences) are unique in @,
if and only if F is regular (resp. o-regular) in G.

2.9a. Proposition. A-o-limits of nels (resp. of sequences) are unique in B,
if and only if A is regular (resp. o-regular) in B.

In fact, if "0 and O < a2, a €@, then Folimz, =a and
F-o-limz; = 0 at the same time.

We now restrict our study to sequence F-o-convergence and A-o-con-
vergence. In view of Prop. 2.9 and 2.9a we assume that F and A are g-regular
in G and B respectively. It is easily proved that a sequence (x,} in G is F-o-
fundamental, if and only if there is a sequence (u,) in F such that #,/0 and
#y — @, 1,] = u, for all » and r%). Similarly with 4-o-fundamentality, where
&, + @, ., appears in place of |, — @, ,|. If F-o-limz, = z, then 0-lim@ xz,==x
(i.e. G-0-limz, = z) and similarly with fundamentality. If o-lim®x, = x and
{x,) is F-o-fundamental, then F-o-limz, = x. The analogues in B are also true.

Two sequences (z,), (y,) in @ are F-o-congruent, if F-o-lim (x, — y,) = 0.
We denote: (z,,) ~ (¥,). Analogously with B and A4 ; here - takes the place of —.

The key to most of the results of the next two sections is the following
fundamental lemma:

2.10. Lemma. A sequence (x,) in G is F-o-fundamental, if and only if there
are two sequences (a,), (b,) tn G such that (a,) is increasing, (b,) ts decreasing,
G, < x, < b, for all n € N and F-0-im (b, — a,) == 0. In this case (a,) and (b,)
are also F-o-fundamental and F-o-congruent with (x,).

Analogously with B and A.

Proof. Suppose |z; — #;.,] = u 4@ 0 in @ for all 7 and r. Then x; — u; <
Sz, sz, +u;foralls < m,ie fori=1,2, ..., n We define

n n
a, = i\=/‘1 (T, — u), b, = iQI (o + u,) .

Clearlyz, — u, < a, < z, < b, = %, + U,, whichimpliesb, — a, =< (x,+u,)—
— (2, —u,) = 2u,, i.6. F.0.lim (b, — a,) = 0. The rest of the proof is obvious.
In the case of a Boolean algebra z; + z;,,=< u,; impliesz;—u; Sz, <2;Vu,

k3 %
fori=1,2,...,n We define a, = i-l/l (@; — %), b, = i—i\l {z; V u;); then

b,—a, = (@, V up) — (2, — %) = Uy,

4} Compare the definition of o-regular sequencein [3, § 3and § 7] and {2, p. 232, Ex. 1],
where a weak version of our lemma 2.10 appears, under a severe and invalidating assump-
tion.
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Thus an F-o-fundamental sequence is of the same nature as an F-o-con-
vergent sequence, except that it may lack a limit. Roughly speaking a funda-
mental sequence is essentially equivalent to a nest of intervals.

Two o-regular I-subgroups F, F' of @ are said to be topologically equivalent
in @, if F-0-im #, = ximplies F'-0-lim 2, = x in G (for sequences) and conversely.
Analogously with 4, 4" in B.

2.11. Proposition. F, F' are topologically equivalent in G, if and only if:
Uy v O in F implies the existence of (v,) in F' with u, < v, for oll n and v, | 0,
and conversely. I'n such o case sequence F-o-fundamentality and F'-o-fundamentality
are equivalent. Analogously with A, A' in B.

2.12. Definition. G is F-o-complete, if every F-o-fundamental sequence in ¢
is F-o-convergent in @. If G is G-o-complete, we say that it is o-complete.
Analogously with 5 and 4.

The following lemma is a sharpening of Lemma 3 in [3]:

2.13. Lemma. If (z,) in G is F-o-fundamental, then so is the sequence
2y, %y V o, 4y V 2y V &g, . . . and its dual. Similarly with B and A.

Proof. It |z, — 2y, ] £ w, 4BV0 and gy, = 2y, Va,V---Va, then
Yo — yﬂ-}-f} = {(xlv“'vmn)vxn_' @V Vo)Vt Ve Vo) =
E = @V V) S ey — & VooV 2., — 7] £ u, The
proof for Boolean algebras is similar.

§ 3. Closure

Assume again that G is a commutative I-group, F a g-regular l-subgroup of G,
B a Boolean algebra and 4 a o-regular Boolean subalgebra of B. We begin
with some definitions concerning G and F; the analogues for B and 4 run
in a parallel and obvious way.

A subset K of G is F-o-closedin G,ifz, ¢ K,n=1,2,...and F-0-lim z, = 2
( ¢ @) imply z € K. The F-o-closure of a set L in G is the least F-o-closed set
containing L. This defines a genuine closure operator which in turn defines
a topology, but we shall not go into this topology now. The first F-o-limit
extension of L in G is defined by:

[L] = {z € G: there is a sequence (x,) in L with F-o-lim z, = «}. In general
{L] is not F-o-closed.

Let w, be the least uncountable ordinal. For each & £ w, we define the
F.o-limit extension of G of order &, denoted by L(£), inductively as follows:
L(1y=[L]; if & has a predecessor § — 1, then L{{) = [L¢&—- 1) if E <oy
is a limit ordinal, then L(£) = [”ge L(v;)]. Finally () =, U, L(£). Using the
fact that every sequence of ordinals less than w, is bounded from above by an
ordinal less than w,, we easily prove that if L is any subset of @, then the F-o-
closure of L in G is L(w,). Similarly with B.

We can also define alternate upward and downward F.o-limit extensions.
L* = {z ¢ @: there is an increasing sequence (z,) in L such that F-o-limzx, =x};

Ly is defined dually. Inductively Lé = ( U, (L7y L,,))l, L= (nu (LU L),

<§
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It can be shown that if ¢ is F-o-complete and L is a sublattice of G, then
L8O Ly € L(EY € LA+t N\ Ly for every & < ,. Inparticular L{w,) = L*:=L,, .
Similarly with B. The proof follows classical lines (cf. [5, Kap. IV]). It seems
however that stronger hypotheses are required to prove the equality
L&) =L+ L.y, which is valid in the cases of real functions and subsets
of the real line. See [5, Thm. 34.2.6 as sharpened on p. 402, and Thm. 33.2.9].
Prop. 3.1 and 3.1a below, which are proved in [14], give a sufficient con-
dition.

A vpartially ordered set P is said to satisfy condition X, if it satisfies the
following condition and its dual:

If for each natural number ¢ (x;;).c v is an increasing sequence in P such

oo x>
that y, = ky(f ) ;, exists, if the sequence (9,);c x is decreasing and if : L\(IP Yy,
o] o>
=, i\(lp ) . i/(lp ) x;, exists, then the set
D = {d ¢ P: there is a choice-function k(.) on N with values in N and such
that d < @, 4 for all ¢ ¢ N}

is non-void and i~/—\(1p) k\_/(lp) x;, = sup®) D,
This is a weakening of the concept of “x,-regularity” introduced by
K. MarTaEs [9].

3.1. Proposition. If G is sequentially v-complete®) and a direct union (cardinal

product) G = X G of commutative l-groups, each of which satisfies condition X,
€T
if moreover F = @ and L is a sublatiice of G, then L(£) = L+ L, , for every

€ < w,.
3.1a. Proposition. If B is a Boolean o-algebra satisfying condition ZX'),
tf A= Band if L is a sublaitice of B, then L(&)= Lf+1 N Lg,, for all & < w,.
We turn now to a particular case of importance. In the sequel H always
denotes an l-subgroup of @ (not necessarily o-regular in G) and C a Boolean
subalgebra of B.
3.2, Proposition, If H 2 F, then H(1) = H* = H, and H is regular in H(1).
Proof. The first half is an immediate consequence of Lemma 2.10 (applied
to H and F}. To prove the second half assume S C H, inf# 8 = 0 and a ¢ H(1),

a < sforall s ¢ S. Since a ¢ H, there is a sequence (a,,) in H with a = n\i(f) .
Then a,, < sforalln ¢ Nand all s € §, hencea, < 0,a £ 0.
3.2a. Proposition. If C 2 4, then C(1) == C* = C, and C is regular in C(1).
3.3. Lemma. If H 2 F and if (x,) is a decreasing sequence in H (1), then
there is a decreasing sequence (y,) in H with x, < v, for all n and such that (x,)
and (y,) have the same lower bounds in G. If, moreover, (x,) is F-o-fundamental,
then (y,) can be chosen fo be F-o-congruent with (x,), hence F-o-fundamental.

5) See Definition 6.7 below.
8) If B = X B, where each B satisfies condition Z, then B too satisfies condition 2

el
(a Boolean algebra is bounded).
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Proof. By 3.2, for each x, € H(1) = H, there is a decreasing sequence
(b, )icxy in H with F-olimb, =z, say b, ;— &, = u, ; ¥ 0. Define
?

Yo="by,n Nbg o A=<+ Ab, , for every n. Clearly y, ¢ H, (y,) is decreasing and
X, < Y, since x, £ x, < by, forallk =1,2,...,n If a < y, for all », then
a < by, for all k,n with £ < n; hence a < {L\(G) by, n = @ for every k. This
shows that (z,) and (y,) have the same lower bounds in G.

Assume now that (z,) is F-o-fundamental, say z,— x,,, < v, {& 0.
Then Yn — Zp = bl,n A bz,n AR bn,n — Xy = [bl,n_‘ Zn] A [bz,n — @] A
Noweo N b, — @] = [(by,n — @) + (B — Tu)] A [(bg,n — Zg) + (X5 — 2,)] A
AR [(bn,n - xn) + (xn - xn)] = [ul,n -+ vl] A [uz.n -+ Ua] AR
A [u’n,n +v,]= u:

It is easily verified that u¥ @& 0.

3.3a. Lemma. Same as 3.3. with B, A, C in place of G, F, H respectively.

The proof follows the lines of 3.3. Thus for the 4-o-fundamentality of (y,)
one shows 4, + Ypp =< (U, V ) A (U, VU A -2 A (2, V 2,) = uff {0,

3.4, Theorem. If H 2 F and if H is o-reqgular (resp. regular) in G, then
H (1) too is o-regular (resp. regular} in G and topologically equivalent to H in G.

Proof. Assume H is g-regular in @ and z, E MO, z, ¢ H(1). Let (y,) be the
sequence in H, the existence of which is asserted by Lemma 3.3. Then (x,)
and (y,) have the same lower bounds in @, hence in H (1) also. This implies
Y YED0 and since y, € H : y, 0. By the o-regularity of H in G y,{@0.
From this and the relation 0 < x, < y, we conclude x,}®0. Thus H (1) is
g-regular in G.

Assume now that H is regular in G and let /\H @ 25 =0 (5 € H(1)). Each

Ty = /\(G) bdn’ where bén € H. Then Xy = /\H @ b‘, /\H @) /\H @ ba = 0, 6/\nH(1) bén
=0, /\( )bé =0, /\(G) bs, = 0. We easﬂy conclude /\(G) x5 = 0.
That H and H (1) are topologically equivalent follows from 3.3 and 2.11.

3.4a. Theorem. If C 2 A and C is o-regular (resp. regular) in B, then C (1)
too is g-regular (resp. regular) in B and topologically equivalent to C in B.

3.5. Theorem. If H 2 F, then H (1) is F-o-closed in Q.

Proof. Tt is sufficient to show that H(1) = H (2). If « ¢ H(2), then, by Pro-
position 3.2, there is a decreasing F-o-fundamental sequence (z,) in H (1) such

that z = n/=\(1G) %,. By Lemma 3.3 there is another such sequence (y,) in H,
hence x ¢ H; = H(1).
3.5a. Theorem. If C 2 A4, then C(1) is A-o-closed in B.

Ifhowever H 2 F,then H (1)isin general not F-o-closed and the H (£),0 < & <
£ w; may be pairwise distinct. Similarly if C 2 4. Examples are given below.

§ 4. Completion

@ is again a commutative I-group, F a g-regular l-subgroup of G, B a Boolean
algebra and A a o-regular Boolean subalgebra of B.
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Let &5 be the commutative {-group of all F-o-fundamental sequences in G;
(the operations are defined thus: (z,) + () = (x, + ¥.), — @) = (—=,),
() V () = (x, V 9,)). G is represented in &p by the constant sequences and
is regular in Gp.

Let Gy be the quotient l-group of &y modulo the l-ideal of all F-o-null
sequences, i.e. the l-group of all classes into which ®z is partitioned by the
congruence relation ~ (F-o-congruence). The clags to which a sequence (z,)

belongs is denoted by [(x,)]; we further set T = [(z, z, . . .)]. By Lemma 2.10
each class [(x,)] can be represented in both the forms [(#,)] and [(b,)] where (a,,)
is increasing and (b,) decreasing. It is not difficult to see that [(z,)] = [(#,)]
in Gy, if and only if @, < d, in G for all n, where (a,) is an increasing sequence
in {(=,)] and (d,) a decreasing sequence in [(y,)]. Using this fact one can easily
prove that G'r is a regular extension of (; the embedding of G in Gy is given by
Gz~ T ¢ Gyp").

An exactly similar construction we can make with B to get an extension By.
The analogous assertions are true in this case too.

4.1. Proposition. If (z,) is an F-o-fundamental sequence in G, then F-o-lim T,
= [(,)] in G7).

Proof.Let (a,), (b,) be the two sequences of Lemma 2.10. Clearly @, < %, < b,;

we have only to prove that Vg, = AR b, = [(x,)].

Let {(y,)] be an upper bound of @,, n =1, 2, .. .; (y;) can be chosen to be
decreasing. Then y; = a; for all ¢, hence [(y;})] = [(a,)] = [(x;)]. The dual is
established similarly. This shows that 0-lim'®” F, = [(z;,)] and since (,)
is F-o-fundamental we conclude F-o-lim Z, = [(z;)].

4.1a. Proposition. Same as 4.1, with B in place of G and A in place of F.

Gp is therefore the F-o-closure of @ in Gy and hence, by Thms. 3.4 and 3.4a:

4.2, Theorem. G and Gy are topologically equivalent in Q. B and B, are
topologically equivalent in B .

In the particular case F = f we see that (g as an extension of ¢ is “topolog-
jcally invariant” over @, i.e. the restriction (relativization) to G of sequence
o-convergence in Gy is equivalent to sequence o-convergence in @. This dis-
proves a conjecture of C.J. EvERETT, who expressed the view that ‘“‘some
condition akin to regularity (a concept introduced by Kaxrtorovrrcm [14],
which has nothing to do with the term as used in the present paper) seems lack-
ing” for this to be true (see [3, p. 114]). He gave a sufficient condition [3, Thm.5].

4.3. Theorem. Gy is F-o-complete. B, is A-o-complete.

Proof. Let (X,) be an F-o-fundamental sequence in G5 and (Y,) a decreas-
ing sequence F-o-congruent with it (Lemma 2.10). By Lemma 3.3 there is a
decreasing F-o-fundamental sequence (y,) in G which satisfies Y, = y, for
all » and has the same lower bounds with (Y,) in G. It is easily verified that

[{y)] = n/=\(1‘;1’) Y, hence [(#,)]= 0-lim©@PY, = 0lim®) X, . Since (X,) is
F.o-fundamental [{y;)] = F-0-lim X,,. Similarly with B.
7) Of. [3, § 4, Thm. 4].
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In virtue of Theorems 3.4 and 3.4a the preceding result can be sharpened:

4.4. Theorem. If F’ is the F-o-closure of ¥ in Gy, then Gp is F'-0-complete.
If A’ is the A-o-closure of A in B, then B, is A’-o-complete.

In fact F and F’ are topologically equivalent in G by Thms. 3.4. and 3.5.
In particular if F' = @, then F’ = G, hence:

4.5. Corollary. Gy is o-complete. Bg is o-complete.

The first half disproves the opinion of C. J. EVERETT that “it is not possible
to complete G by the Cantor process in a single step except in special instances”
[3, § 4]. The diagonality of @, a condition which Everett imposes on ¢ in order
to secure completion in one step, is unnecessary. In the general case he aceepts
as a solution to the completion problem the extension G* mentioned in § 2,
which is however much ‘“larger” than Gy B. BawascmEwskr [1, Satz 14]
has essentially shown that G* is the completion of G relative to natural
convergence of nets in general. We shall return to this point later (see Thm. 6.8
below). Theorem 4.4 shows that the apparent successive extensions in [3, § 7]
actually terminate with the first step.

4.6. Theorem. If a commutative l-group E is an extension of G which is
o-reqular over F and F-o-complete, then Gy is isomorphic with the F-o-closure of G
in E, under an isomorphism that maps each element of G onto itself. Analogously
with B.

Thus Gy is the minimal F-0-complete extension of G. If G is simply (linearly)
ordered, then so is Gg.

One might suspect that f @ is Archimedean, then Gy is conditionally
o-saturated. If @ is simply ordered this is true, since @ is then a subgroup of R
([2, Chap. XIV, Thm. 15]). In the general case it is not:

4.7. Proposition. A4 necessary and sufficient condition that Gy be conditionally
o-saturated is the following: If (x,) is an increasing bounded sequence in G,
then there is a decreasing sequence (y,) in Quith x, < y, for all nand (y,— 2,)1@ 0.

Roughly: If [4, B] is a cut in G which can be approached from below
by an ordinary sequence, then it can also be approached from above by an
ordinary sequence. It is easily seen that the condition is equivalent to its dual.

4.7 a. Proposition, A necessary and sufficient condition that Bg be a Boolean
a-algebra is the following: If (x,) ¢ an increasing sequence in B, then there is a
decreasing sequence (y,) in B with z, < y, for all n and (y, — z,) 1B 0.

We shall now give examples that do not satisfy these conditions. We
begin with a Boolean algebra: Let S be an uncountable set, B the Boolean algebra
{4 € 8: either 4 or A®=8— 4 is finite} and (x,) a sequence of pairwise
distinct elements of S. Define X, = {%;, 2,, . . ., 2,}. Then (X,) is increasing
but does not satisfy the above condition.

For examples of commutative [-groups define:

@ (resp. @)= {f:f is a bounded real function on D = [0, 1] X [0, 1]
such that there is a continuous function f* on D with f(z, y)
= f*(x, y) for all but a finite (resp. countable) number of
points (x, y) € D}.
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The MacNeille conditional saturation of both G and G is the I-group G of
all bounded functions on D. Define § ¢ G by §(», y) = 0if x = O and 1 if & == 0.

Also f(x,y)=nz if 0< < 1n and 1if I/n<az < 1. Then § = %\_ftfwﬂ
{f, € G) but it is not difficult to prove that there is no sequence (b,) in G or ¢
with § = n/@ k.

Defining ¢, (v, y) == nxel "% < ¢ on D we see that ¢, ¢ G, lim ¢, (x, y) = 0,
hence G-o-lim ¢, = 0; however it is not true that G-o-lim ¢, = 0. Thus the
restriction to G of the o-convergence in G is in general weaker (more convergent
sequences) than the o-convergence in @; in other words (Thm. 2.5) natural

convergence in @ is weaker than o-convergence. The derived topologies are
also non-equivalent.

§ 5. Relativized eonvergence

The last mentioned example shows the possibility of defining new concepts
of sequence convergence in a commutative I-group ¢ or a Boolean algebra B
by considering the restriction (relativization) to them of the o-convergence of a
{not necessarily ¢-regular) extension. In the next section we shall describe
natural convergence of sequences as a convergence of this kind.

Let E be a commutative l-group which is an extension of ¢. In introducing
E-o-convergence in ¢ we can assume without loss of generality that Z is o-
complete. For if it is not we can extend it to Eg, which is o-complete (Corollary
4.5) and introduces the same sequence convergence and fundamentality in &
(Thm. 4.2). We can then complete G by taking successive F-o-limit extensions
G(&), 0 < & < o, until we arrive at G(w,) which is E-o-closed in E hence E-o-
complete. We can also proceed by the Cantor method, construct the first
extension G{1}, embed it in & and repeat v, times. The resulting completions
are isomorphic. Similar considerations apply to Boolean algebras.

If @ is the l-group of all continuous real functions on {0,1] and £ =M
(the l-group of all bounded functions on [0, 1]), then the corresponding ex-
tensions G(&), 0 = & £ w, constitute the well-known Baire classes of bounded
functions (cf. [5, Kap. IV], [13, Kap. XV1]). In the case of Boolean algebras
we get the Borel classes if we consider the Boolean algebra B of all finite
unions of (open, closed or half-open) subintervals of [0, 1] and the extension
algebra D' consisting of all subsets of [0, 1] (cf. [5, Kap. IV], {8, p. 1190]).

§ 6. Natural convergence

In the case of Boolean algebras (but not Boolean rings in general) natural
convergence, as we defined it, is equivalent to the intrinsic convergence, defined
and studied extensively in the case of sequences by H. Lowic in [8]. In the
present section we shall study natural convergence in commutative I-groups.
Since most of the results more or less have their parallels in Boolean algebras
we shall not make detailed references to [8]. We assume that G is a commuta-
tive l-group.
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A directed net (x;) in G is eventually bounded from above (vesp. from below)
tn @, if it has at least one superelement (resp. subelement) in G. It is eventually
bounded, if it has both a superelement and a subelement. For ordinary sequences
“bounded” and “eventually bounded’ are equivalent.

6.1. Proposition. A net (x;) in G is naturally fundamental, if and only if
it 18 eventually bounded in G and

e8] nf@{u—v:uclU and vcV}=0,

where U is the set of superelements and V the set of subelements of (z,) in G.
Proof. If p-lim |2, — ;| = 0 and W is the set of superelements of |z; — x|,
4,

(¢,7) € I x I in @, then inf® W = 0 and for each w ¢ W there is j(w) € I such
that |z, — z; )] < w for all ¢ = j(w), le. @y — W = &; < 5 + w for all
it = j(w). Hence wjy — weV, 2y +wcU for every we W; obviously
nf @ {(z; ) + W) — (X5 — w):w € W} = inf@{2w:w ¢ W} =0, which im-
plies (1). )

The converse is an immediate consequence of the fact that each u — v
(u € U, v € V) is a superelement of (|z; — ;]).

1t follows that in an Archimedean I-group an increasing net is naturally
fundamental if and only if it is bounded from above, and dually.

6.2. Proposition. If E is a regular extension of G8), (x;) @ net in G and x € G,
then v-lim@® x, = x implies viimBE g, = x.

Proof. If U is the set of superelements and V the set of subelements of
(x;) in @, then = = inf@ U implies » = inf®) U and dually. Apply now Prop.2.4
().

6.3. Lemma. If a € G, (2,);c 1 13 a net in G which is eventually bounded from
above and if U is the set of superelements of (x;) in @G, then assertion (i) below
tmplies (ii). If moreover @ is Archimedean, then (ii) also implies (i).

() i!iw) (x; N a)=a forevery ic¢l.

() e <u forall wecU.

The dual lemma is also true.

Proof. If (i) is true and u ¢ U, then there is an i, € I such that x; < u for
all § = 4y, hence x; A e < u for all § = ¢; and finally a—av (; A\ a) < u.

Conversely, assume that G is Archimedean and that (ii) is satisfied. Fix
¢ € I. Obviously z; Aa < a for all j = 4. Let b be any upper bound of
(z; A @);»;. We shall prove:

(A fucU,thenu+b—acU.

In fact let  be in U and k an index such that x; < u for all j = %. Assume
moreover that k = ¢. Then for every j = & we have: x;,=x; Aa + @; —
— 2 ANeZb+0V(i;—a)<b+0V(u—~a)=>b+u—a by (i) Hence
u+b—acU.

Now choose u, ¢ U. Applying (A) repeatedly we deduce:

8) Here and in the sequel ‘‘regular extension” in such a context means ‘‘commutative
l-group which is a regular extension.”
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(B) wo+nb—a)cU forevery neN
hence by (ii)a < uy + n(b — a),i.e.n{a — b) < u,— a.Since G is Archimedean
a—b=<0,a < b It follows that @ = j\éi (z; N\ a).

Note that the assumption that ¢f is Archimedean is essential for the impli-
cation (ii) = (i). In fact let M be the l-group of all bounded real functions on
{0, 1. Define o, () = n2x(l — 2?)*, 2 €[0,1], n=1,2,... . (The sequence
(0,) will be used freely in the sequel without explicit reference to its definition
here.) The sequence (0,,) is not bounded from abovein M (ifx, = 1/ Vn + 1,then
]i}‘no',, (%,) = +o0). Let J be the ordered group of all integers and define

G =J oM (lexicographic or ordinal product; see [2, p.9]). An element
(k, f) € G is a superelement of the sequence (0, 0,,), » = 1,2, ... if and only if
k= 1. Hence any element a = (m, g) with m =< O satisfies condition (ii) of
the lemma, but for (i) to be satisfied it is necessary and sufficient that & be < (0, 0).

6.4. Theorem. If G is Archimedean, E ts a regular extension of G, (x;) is a
net in G which is eventually bounded in G and x ¢ G, then v-lIim@ x; = x and
y-limE z; = x are equivalent.

Proof. In view of Prop. 6.2 we need only show that »-lim® x, = x implies
p-lim® z; = z. Let U be the set of superelements and V the set of subelements
of (z;) in G. We shall prove « = inf® U and dually. Every u € U is a super-
element of (x;) in ¥ also, hence x < u for allu € U. If @ € G is any lower bound
of U, then by Lemma 6.3 jg(ia) (x; A a) = a for every ¢, which implies
j;/f) (@; A a) = a for every i.

Let U’ be the set of superelements of (x;) in E. The last assertion implies,
by 6.3 again, that @ < u’ for all w’ € U’, i.e. ¢ < inf® U’ = . This establishes
z=inf@® U.

The requirement that (x;) be eventually bounded in @ is essential. Let £
be the l-group RI®11 of all real functions on [0, 1] and G = M; then
»-lim®) g,, = 0, although (o) is unbounded in M. The Archimedity of @ is also
essential: take @ =J oM and E = J o RI[%1] and consider the sequence
0,0,),m=1,2,....

Recall that G* denotes the Everett extension of G.

6.5. Proposition. If (x,) is a net in G and z € G, then v-lim@ z; = z if and
only if y-lim® g, = z.

Proof. Suppose v-lim%z, = . Every superelement u* of (x;) in G* is of
the form u* = inf®) U (u*), U (u*) ¢ G, where obviously the elements of
U (u*) are superelements of (z;) in G. Setting U = g U (w*) we have inf®) U =g,
hence inf@DU = x.

Theorems 6.6 and 6.8 below were proved by BANascHEWSKI [1, Sitze 13, 14].

6.6. Theorem. (BANASCHEWSKI). Bvery naturally fundamental net in G
converges naturally in G*.

This follows from Prop. 6.1, since V, U determine (they do not constitute)
a cut in @ which by Prop. 2.6 belongs to G* and is obviously the natural limit
of (z,) in G*.
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6.7. Definition. A commutative l-group E is said to be y-complete (resp.
sequentially v-complete}, if every naturally fundamental net (resp. sequence)
in ¥ converges naturally in Z.

6.8. Theorem. (BANASCHEWSEL). G is v-complete, if and only if G = G*.

Proof. H G is v-complete and [4, Blis a cutin G with inf®{b—a:5¢ B,
a € A} = 0, then 4, considered as an increasing “net””, is naturally fundamental
{(by Prop. 6.1), hence converges naturally in @. Its limit [4, B] in G* must
therefore belong to G. Thus G* ¢ ¢/, G* = (. The converse follows from
Thm. 6.6.

6.9. Theorem. If E is a v-complete reqular extension of G, then E contains
a regular l-subgroup isomorphic with G*, under an isomorphism which maps
each element of G onto itself.

Proof. If z* is an element of G*, there is a net (x;) in G, naturally funda-
mental relative to @ and such that »-lim“a; = . Since, by Prop. 6.2, the
net (x;) is naturally fundamental relative to Z also, there is y* € E such that
y-lim® g, = y*. The mapping G* 3 x* > y* ¢ B is the desired isomorphism,

To show that G* (more precisely its image) is regular in ¥ assume ié\;a')x;" =0.
For each 7¢I there is a set 4,< @ such that z¥ =inf¥Y4, Thus
0= i/E\I(G"ixﬁ(G’)A,- = Inf{f" 4 = inf® 4, where 4 = ileJI A4;. Then 0 = inf#® 4
which implies 0 = i/e\I(E) a}.

Thus if ¢ is an arbitrary commutative l-group, its minimal y-completion
is G*. We return now to ordinary sequences to determine the sequential
v-completion of G. In the proof of the next theorem we use the fact that if
{%,) is a naturally fundamental sequence, then so are x;, 2, V g, 2, V 3 V 2y, . ..
and its dual. The easy proof follows the lines of 2.13.

6.10. Proposition. If G is sequentially v-complete, then a sequence (x,) is
naturally fundamental in G if and only if it is o-convergent.

Proof. If (z,) is naturally fundamental in @, then so is 2, #,V «,,,
Xy V Ty 1V Tpig - .- and its dual, for each n; hence y, = i;/f) z;and z, = ; é\;@xi
exist for each n=1,2,... . If » is any superelement and v any subelement
of (z,) in G, then v < 2, £ 2, < ¥y, < u eventually; therefore g, — 2,10,
which shows that (y,), (z,) are G-o-fundamental (hence naturally fundamental),
G-o-congruent and define a limit « in & which is the o-limit of (z,).

6.11. Corollary. A sequence (x,) in a commutative l-group G is naturally
fundamental relative to G if and only if it is o-convergent in G*.

This follows from 6.5.

6.12. Corollary. For ordinary sequences natural convergence and funda-
mentality in G is the restriction to G of o-convergence and o-fundamentality in G*.

To complete G relative to naturally fundamental sequences we proceed
as in § 5 and construct G(w,) in G*. This is sequentially »-complete, topolog-
ically invariant and regular over & as well as regular in G*. This is seen from
the following propositions:

6.13. Proposition. If H is an l-subgroup of G* containing G, then G is
regular in H and H is regulor in G*,
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6.14. Proposition. If H is an l-subgroup of G* containing G and if x; € G,
z € G, then ylim@z, =z, vlimB g, =2 and »-Em% s, =z are equivalent.

They follow from the fact that H* = G* and from Prop. 6.5. Now 6.14
and 6.10 imply:

6.15. Corollary. A4 sequence {x,) in G is naturally fundamental relative to Q,
¢f and only if it is o-convergent in G {w,).

6.16. Theorem. If E is a sequentially v-complete regular extension of G, then
G(w,) is tsomorphic with a regular I-subgroup of E, containing G, under an
isomorphism that maps each element of G onto dtself.

Proof. Gisregularin E* and by Thm. 6.9 G* too can be regularly embedded
in E*. Then G(w,), being regular in G*, is regular in E* also. However G(w,)
is contained in ¥, since ¥ is sequentially »-complete, and is therefore regular
in B.

A direct proof is given in [14]. Thus G(w,) is the minimal sequential
v-completion of G. The importance of sequential completion relative to natural
convergence is seen from the following:

6.17. Theorem. An l-group is conditionally o-saturated, if and only if it is
Archimedean and sequentially v-complete (in either case it is commutative).

Proof. Assume G is conditionally o-saturated. Then it is Archimedean
(see [2, Chap. XIV, Thm. 17]), hence G* = G. If (x,) is a naturally fundamental
sequence in G, then there is & ¢ G with

oo o0
f= AO V& g o VB AG 5
ne=1 izn ° n=1 izn °

Since @ is conditionally o-saturated and regular in @, we infer that & ¢ G
and

o0 [=v)
F= AND VI g o VO A g
n=1 izn ° n=1 i=2n °

Hence G-o-limz, = £, y-lim@ g, = &£,
Conversely assume @ is Archimedean and sequentially »-complete and let

fe ]
{z,) be an increasing bounded sequence in @, say x, < 5. Then § = ﬂ\i‘f)xﬂ

exists in G and G-o-limz, = §. By 6.11 (z,) is naturally fundamental in G,

hence naturally convergent in @, say »-lim@®x, = 2. But then G-o-limz, = z,
o o

hence x = §, i.e. v = n\i‘f‘)mn x = ”!1"7):6,,.

6.18. Corollary. If G'is Archimedean, then G(w,) is the minimal conditionally
o-saturated regular extension of G.

Before closing this section we remark that one can develop a theory
analogous to that of join-extensions introduced by Ldwrae for Boolean rings [8].
It is immediately seen that in the case of l-groups a join-extension is neces-
sarily a “meet-and-join” extension and the parallel of Lowig’s Theorem 66 [8]
is trivial (compare loc. cit. Thm. 67). However we must be content with
accepting G* as a satisfactory “saturation” of @. In fact G* “fills” as many
“gaps” in G as we can hope to fill. If G is not Archimedean, the remaining
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gaps are of a deeper nature and are due to the non-Archimedity of G. They can
only be filled at the cost of reducing the extension algebra to a semigroup.
1f, for instance, {4, B] is a cut in @ not belonging to G*, i.e. not satisfying

bEB/’\;‘gi1 (b— a) =0, then there is z, ¢ @ with 0 <y < b— a for all b € B,

a ¢ A. This implies that for every a ¢ 4 a + 2, = b for all b ¢ B, hence
a + x4 € A, since [4, B] is a cut. If F is any extension of G to a commutative
l-group and B’ ={b' ¢ B :b" is an upper bound of A}, A'={a' ¢ E:a is a
lower bound of B'}, then 4 C A4, BC B but z, < b —a’ for all ¥’ ¢ B,
a cd'. {a+ 2z, ¢ A implies ¢ + z, < & for all ¥’ ¢ B’, hence a £ ' — =, for
all acd, ¥ —a,¢ B, a < b —zy 2p<b —a’). In particular sup®4
cannot exist.

§ 7. L-convergence

Every o-fundamental or naturally fundamental net in a commutative
l-group is eventually bounded ; sequences in particular are bounded. However
the sequence of funections {(o,) in M considered earlier converges to 0 in M
relative to pointwise convergence, without being bounded. It is therefore
natural to have convergent or fundamental nets which are not eventually
bounded. The purpose of the present section is to study a weakening of natural
convergence allowing for such nets.

In [11] H. Nagaxo introduced the following definition of convergence in a
conditionally g-saturated vector lattice (see also {12, § 5 and note on p. 314}}:
A sequence (z,) is said to be individually convergent to #, if for every pair of
elements a, b o-lim(a V x,) A b = {a V z) A b. The next definition is a modifica-
tion of this and coincides with it in the particular case of Narano. Compare
also [8].

Let @ be a commutative I-group.

7.1, Definition. A net (x;) in @ L-converges to x ¢ G relative to G (denoted
I{?P(G) x; = @), if for each pair of elements a*, b* in G y-Hm® (a* V x;) A b*
= {a* V x) \ b*,

Obviously for an eventually bounded net (r,) Limx; = = and »-limz; = =
are equivalent. If a net (x;) L-converges to x, then every subnet of (2;) L-con-
verges to x.

7.2. Proposition. Lim® x, = x if and only if for every b= 0 in G
y-lim@® o, — 2| A b = 0.

Proof. Suppose Limz; =z, ie. ylim(a*V ;) A b* = (a* V ) A b* for
every a*, b*, and let b be any positive element. Choosing a* =z, b* = b + z
we see that »lim(z V 2;) A {& + b) = « from which we infer

1) plim[0V (z;, — 2)]Ab=0.

Next, choosing a* = x — b, b* == 2 we have ».lim[(x — b) V ;] A z = «, hence
y-lim (— [(# — B) V ;] A 2) = —z, therefore

{2) plimQV {®g—z)]Ab=0.
Math. Ann. 165 7
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(1) and (2) now imply:
v-im{[0V (z; — 2)]A B}V {{0V (® — 2,)] A b} =0
plim{OV (@, — 2)V (@ —2)]Ab=0
v-lim fo; — x| A &= 0.
The converse follows from the fact that
Ho* Vo) Ab* — (a* V) Ab¥| < o, — o] A (b* — a* A bY).

7.3. Lemma. In an l-group, if z, y and b are = 0, then
T+ Ab==axzAb+yAD.

7.4. Theorem. If Liex}zx,- =z and Lglyj =y in G, then Liél}l(—— z;) = —uz,
t 7 %
(i,?_I)JéII%J (#+y)=2+1y, (i,;'[)AéIII;J (2 V ;) = o V y and dually.

This follows from 7.2 and 7.3. For instance
[z Vy;—aVyl S mVy—aVyl+zVy—aVy <o —a] + g, -y,
hence |, Vy,—axVyl Ab< |, — 2| ANb+ Jy;— y] A b

Compare the next theorem (and its proof) with [8, Thm. 50, p. 1158].

7.5. Theorem. If G is Archimedean, E is a reqular extension of G, (x;) is a
net in G and x € Q, then Lim® x; = x implies Lim® x; = x. If, moreover, E too
s Archimedean, then Lim® z, = x and Lim® x; = x are equivalent.

Proof. By 7.2 it is sufficient to prove the theorem for z; 2 0, z = 0. If
Lim® g, = 0, then y-lim®x, A b= 0for all b = 0, b ¢ E; in particular this is
true for b ¢ 4. Since the net (z; A b} is bounded in @, this implies by 6.4
plim@x, Ab=0forallb = 0,5 <@, ie. LimPz, =0,

Conversely, assume F is Archimedean and Lim® g, == z. Let b’ be any
positive element of Z. To show that »-lim® ax; A b’ = 0 we need only show
inf® U’ = 0, where U’ is the set of superelements of (x; A b') in E.

Let z ¢ E besuch thatz < «' forallu’ € U’. Thenz = ¥’ and by Lemma 6.3:

3) 7 = iggf) (, AW Az)= 1_\g/gg) (x; A 2) for every 4.
Now let a be any positive element of G. From (3) we get
4) zha= i;/i(E) ((x; Aa) ANz A a) forevery i,.

However »-lim®z; A a = 0 implies »-lim® gz, A ¢ = 0, by Thm. 6.4, and this
combined with (4) and Lemma 6.3 shows that z A a < 0.

Since this is true for every positive element a of G we have in particular
zAz; < 0for all . By (3) z = 0, which establishes the equality nf® U’ = 0.

The hypotheses concerning Archimedity are essential in the above theorem.
Thus if G=M, BE=J M we have Lim@g, =0 but not Lim®(0,q,)
=(0,0) ¥ @=J oM, BE=JoRI%, then Lim®(0,0q,) - (0,0) but not
Lim® (0, g,) = (0, 0). The difficulties with these two examples are eliminated
if we employ another concept of convergence: limx; =z, if = is the only
element satisfying z = i\g/i, (2, A &) = i/g\i,. (x; V x) for every t,. This is weaker
than L-convergence and coincides with it in an Archimedean l-group. The
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analogue of 7.4 is true for this concept of convergence too. Proofs of these facts
and others concerning this convergence will be incorporated in another paper.

It follows from the above considerations that L-convergence is most
natural in an Archimedean Il-group. However we shall state theorems and
make constructions for the general case, whenever possible.

7.6. Proposition. If (x,) is a net in G and x € G, then Lim® z, = z if and
only if Lim® g, = x.

Proof. Suppose Lim@x; = and let b* be any positive element of
G*. Then there is b ¢ G with b* < b. Now »-lim® |o; — 2| A b =0 implies
»-lim@ |, — 2| A b = 0, hence »-Lm@" |z, — 2] A b* = 0.

Conversely, if »-im®|x; — 2| A b* = 0 for every positive b* ¢ G*, then
in particular »-lim‘“"|z; — 2| A b= 0 for every positive b ¢ G, and hence
y-im® o, — 2] A b= 0 (Prop. 6.5).

7.7. Theorem. If G is the direct union (cartesian product) G = X G of

€7
commutative l-groups (G%)ep and if x, € G, x € G, then Lim@®a; = x if and
k2

only if Liim(g’) xf = a7 for every v ¢ T' (here y* denotes the T-th coordinate of the

element y ¢ Q).

This follows without difficulty from the fact that for each b = 0, b ¢ @
the net (|z; — 2| A b)is boundedin G. Infactif u is a superelement of (jx;— x|Ab)
in @, then for each v ¢ T u* is a superelement of (|a§ — %] A &) in G* and
conversely if s is a superelement of (Ja;* — 2™| A b™) in G™, then there is a
superelement u of (|#; — 2| A b) in G such that s = ™ (choose u* = &* for all
T % 7p).

The analogous proposition for natural convergence is true for ordinary
sequences (which can be proved to be bounded) but fails to generalize to nets.
(If T'is infinite, a net (z;) in G may have no superelement, even though »-lim©" 2%
= o7 for every 7 ¢ T'.)

The significance of the above theorem isillustrated in the following examples:
Consider M and RI%11. In RI%!] L-convergence (but not natural convergence)
is equivalent to pointwise convergence; however, for ordinary sequences
L-convergence, natural convergence and pointwise convergence coincide.
In M L-convergence is again pointwise convergence (by 7.5) but natural con-
vergence is not even for sequences equivalent to it. Observe that both M and
RI1%1] are conditionally saturated.

§ 8. Completion

A net (x);c7 in G is said to be L-fundamental relative to @, if

Lim® (x, — z,) = 0.
(AR EIxI (@ — =)

8.1. Definition. A commutative l-group @ is said to be L-complete (resp.
sequentially L-complete), if every L-fundamental net (resp. sequence) is L-
convergent in @,

In the case of a Boolean ring B the Boolean ring B of all normal ideals of B
is the minimal regular extension of B to a saturated Boolean ring

7%
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(cf. [8, Thm. 68]). At the same time B can be easily shown to be the minimal
regular extension of B to a Boolean ring which is complete relative to Lowig’s
intrinsic convergence (applied to nets in general).

However the situation with commutative I-groups is different. The l-group M
is conditionally saturated but not sequentially L-complete. Thus L-completion
goes beyond order saturation; this reveals the importance of obtaining the
L-completion of an arbitrary commutative I-group.

One can construct a sequential L-completion of G by the Cantor process
in w, steps, following the lines of [8]. There are points in {8] where Léwia
shifts things from B to B to facilitate proofs (see for instance the proof that
if (x,) is fundamental in B, then limz, = [(x;)] in the “first fundamental ex-
tension” of B [8, Thm. 133]) but it is possible to give direct, although more
elaborate, proofs. We shall not, however, follow this line. Instead, we shall
obtain an L-completion G of @; a sequential L-completion (isomorphic with
the one obtained by the Cantor method) can then be constructed by limit
extensions within @.

Our method of L-completion applied to the l.group of all bounded real
functions on a set X yields (to within isomorphism) the I-group of all real
functions on X. Taking M as our prototype we observe that every positive
real function on [0, 1] (i.e. every positive element of RI%11) can be approached
in the sense of L-convergence by an increasing L-fundamental net (in fact
sequence) of positive elements of M. As with the classical Cantor process, the
idea is to represent positive elements & of the sought after extension & by such
nets in . We shall then have & = V(G) z;. Obviously # can be represented by

many such nets. To avoid the trouble of taking equivalence classes we choose
the net of all positive » ¢ G with # =< &. The property x < % can easily be charac-
terized in terms of G and (x;): * < & = V(G)x if and only if # = x A &

= V(G) (@ A z,) = \E/I(G) (x A ;). We thus arnve at the definition of normal

pymmzd below (8.3).

Taking into account Prop. 7.6, as well as the fact that L-convergence is
weaker than natural convergence, we assume, without loss of generality,
that @ = G*, i.e. that @ is v-complete. The assumption is not essential but
greatly facilitates proofs. We repeat that the most interesting case is that of
an Archimedean I-group G.

Two nets (%)ze I and (y,);e; are said to be L-congruent in G, if

G I)Jg}l(? (x - yj) =
eI
8.2. Proposition. A4 net (2,),¢c7 in G is L-fundamental, if and only if there is

a net {y;);e 5 L-congruent with it.

In fact if say |o; — y| A b < u for all ¢ = 4y, j = jo, then |x, — 2| A =
< lei— gy | A+ gy, — 2| ANb = 2uforall 4, &' = 4.

Let P=G+={xc@:x = 0}. If 8 is a subset of P which is directed up-
wards, then the identity mapping of § onto § makes § into an increasing net.
This net is L-fundamental in @ if and only if for each b ¢ P thereisaset U C P
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satisfying: (i) inf® U = 0 and (ii) for every « ¢ U there is an s, ¢ § such that
(s—8g) A b = u for all s = sy, s €8. In this case we shall say that the set §
s L-fundamental.

8.3, Definition. A non-void subset § of P is said to be a pyramid, if it is
directed upwards and L-fundamental. A normal pyramid is a pyramid S which
contains every element x ¢ P satisfying @ = séféa’ (® A 8). If 8§ is any pyramid

- . (O
we define S “{xEP’x~s¥s (A 8)}.

A normal pyramid § is an ideal in P in the sense that x ¢ 8, y € § imply
zxVyeéSand 0 <y, ye8 imply x ¢ 8. 8§ is the least normal pyramid
containing § and is L.congruent with S.

8.4, Proposition. If S and T are pyramids, then so are the sets {s + t:s ¢ 8,
teT}, {sVi:se8, tcTand {sNt:s¢8,teT}h If S and T are normal
pyramids, then {s N t:s €8, t ¢ T} too is a normal pyramid and coincides with
the set-theoretic intersection S N T'.

Proof. Put Q@ = {s + t:5€8,t ¢ T} Let

(s—sgyNb<u forall s=s,8¢8
(t—tdANb= v forall t = ,teT,

and set gy =8+ 4, If g€ Q, say ¢ =5, + , and ¢ = q,, choose 8, ¢ 8, £, ¢ T
such that s, 55,8 and ;= 8,84, Then (¢ — @) A0S [(8p+85)— (sp+ £} ] ADS
S (S8 ANb+ (tg—t) AD =< u+ v Thus @ is L-fundamental. Similarly
with the rest sets.

8.5. Proposition. Two normal pyramids 8 and T are identical if and only
if they are L-congruent.

Proof. Assume S, T are L-congruent and let 2 ¢ S. Suppose s —f] Az < u
foralls = s, s € Sand allt = 4, t € T. We can assume s, = «; then for every
tztfya—axAt=lzAsg— 2z Al Aax < jsp— ] Az £ u. We easily conclude
. E/\T —2At)=0 ie x= teVT {x A1), hence x € T'. Conversely x ¢ T implies
zel.

8.6. Definition. Let P be the set of all normal pyramids in P. If 8, T ¢ P
we define:

(1)

S+ T={s+t:8¢8,tcT}—
SVIT={sVi:sc8,tecT}
SAT=8nT={sNt:sc8,tcT}
8T ifandonlyif SCT.

8.7. Proposition. P is a commutative semigroup under +, with the pyramid
{0} as zero element. The cancellation law holds in P and

2) S+ T ={0} implies S={0} and T ={0}.

Proof of the cancellation law. £ 8 + T =8+ T, ie. {s+ ¢:5¢8, tcT}
={s+t:8¢8, ¢ ¢TI}, then {s+1t:5¢8,tcT}and {s+¢':s¢8, ¢ ¢}
are L-congruent; say [A— A Ab<uforall A=s+1 2= Ag==8,+{, and all
N=s+1t = Ag=28y+ 18y, Then for all t = ¢, tc 7T and all ¢ = £, € 1"
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wehave: [t — I'| A b= |[(soVsg+8)— (3 Vsg+ ) Ab<= u,sinces,Vsy+i=
= 8 + tpand sy V sp + ' = sy + #5. Weinfer that 7 and 7" are L-congruent and,
by 8.5, T = T".

8.8. Proposition. S < T in P, if and only if thereis Q ¢ Psuchthat S + Q=T.
This @ is unique.

Proof. Suppose S < T. For each ¢t ¢ T the net (¢t A 8),¢5 is L-fundamen-
tal; being bounded it is naturally fundamental and since G is y-complete
d, = s\e/éq) (¢ A ) exists. Then
(3) sé\S (d,—tANsg)=0, ie. s\e/s(t/\ §—d)=0 forall teT.

If ¢,t ¢ T, then plimf{As=d, and »limé,As=d, hence

8 $
vlimly As— £, A s| = |dy — d,|. However |t; A s — t, A s| < |t — 8| for all s,
which implies:
4) |dt; - dt.] s [tl — by .

In particular if 4 = ¢,, then i, —t, = dy — d,, ie. £, —d, =t,—d,.
Since 7' is directed upwards we infer from this that the set A = {t — d,: ¢t ¢ T'}
is also directed upwards. 4 is L-fundamental too, for by (4):

(6 — @p) — (b — dp)| S |ty — ta| + |y, — dp,| = 2[t; — 44| .

Thus 4 is a pyramid and @ = A~ is a normal pyramid. It remains to be
shown that S + @ = 7.

Assume t, € T. To show £, € § + @ it is sufficient, by 8.6, to show:
ty= 86&/\“9 o A s+ )]

If =1, A(s+gq) for all s, ¢ then in particular ¢ = t, A (s + t,— d)
for all s¢8, hence p = 0A(s—d)+t,=0A (g As—d)+ ¢, Taking
supremum over 8 € 8, we infer from (3) that ¢ = 0 A 0 + £, = t;, which estab-
lishes (5). Thus 77 ¢ S + Q.

Conversely, if s, € 8, ¢, € @, then

80+qo=80+té/1,qo/\(t‘dt)=té/1, [So + go A (¢ — dy)]

(8)

(6)
=té/1' [(so + q0) A (80 + £ — d))] .
Butsy+t—d,=s8,Vi+sgAt—d, < s,Vit(sincetAsy—d, < 0by (3))
and s, Vit €T (since S C T). T being an ideal in P, we infer s, + ¢t — d, € T
for all ¢ T and (6) shows that s, -+ q":z'é/r [(so+go) At'], ie. sy + qpeT.

Thus {s+q:8¢8, qe¢@Q}<CT, hence S+ Q={s+q:8¢8, ge@}-¢T.

That 8 + @ = T implies § < 7T is obvious and uniqueness of ¢ follows from
the cancellation law.

Summing up the consequences of 8.8: If 8, T ¢ P, then SV T is the least
common “multiple’” and 8 A T the greatest common ,,divisor” of § and T
in P relative to the operation +. At the same time SV T and S A T are
respectively the join and meet of 8, T' relative to the partial ordering <.

For each x ¢ P the set {y ¢ P:y < z} is a normal pyramid in P, which we
denote by &.
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8.9. Proposition. If S is a pyramid, then S— = s\ééﬁ) § = sup® {§:5 ¢ 8.

8.10. Proposition. The mapping P> x— & ¢ P is an embedding of P in P
which preserves swms, differences, the ordering relation and all existing joins
and meels.

We now extend the semigroup P to a commutative I-group @ by considering
formal differences § — 7 of elements of P. Cf. [2, Chap. X1V, § 3, pp. 217—218].
The set of positive elements of G is P with the original ordering, join operation
and meet operation. Prop. 8.10 implies:

8.11. Theorem. G is a commutative l-group which is a regular extension of G.

If § is a normal pyramid we shall sometimes find it helpful to distinguish
between S as a subset of P and S as an element of P. Elements of P will be
denoted by boldface letters 8, 7T, ..., while §, T, ... will be retained for the
corresponding sets. The elements %, 7, ... will be identified with =, y,....

8.12. Lemma. If 0 < 8 < « where x € Q, then § is an element of G (more
precisely there is y € G such that 8 = {s ¢ G': s < y}).

Proof. The pyramid § is L-fundamental and bounded in @. It is therefore
naturally fundamental, hence naturally convergent in @.

8.13. Proposition. If (x;) is eventually bounded in G and z € G, then
v lim® z; = x if and only if vlim Pz, = .

Proof. Suppose |x; — x| < ¢ for all i=4, (c€@). Suppose further
plim® 2z, — z and set A = {8: § is a superelement of (jz; — z|) in & such that
8 < ¢}. Then ¥ € ¢ by Lemma 8.12 and inf® Y = 0,

8.14. Theorem. If (z;) is a net in G and z € G, then Lim@x,; = x if and
only if Lim@x,; = z.

Proof. Suppose Lim@z; = z. We shall show that for every § = 0 in @

vHm® fz;, — 2/ AS§=0. Fix 8 and define A={8S—s+ucH:s¢S and
u is a superelement of (z; — x| A s); in G}.

Then inf® 9 = 0, since X < § — s + u for all s and all u (X € @) implies
X £ 8 — s for all s, hence X £ 0 by 8.9. Moreover every element of 2 is a
superelement of (|v;— #| A 8) in &, since given s and u |z;— x| A S
le;—2| A (s + 8—8) < |jo;—x| As+lo,—a| AS~s) = |o;—2] ANs+8—s
% + 8 — s eventually. Thus »-im® |z, — 2| A 8 = 0.

Conversely, suppose Lim® ¢, = 2. Then for every positive § in G
plim® |z, — | AS=0; in particular »-lim@|z, — 2] Ab=0 for every
positive b € G. By Prop. 8.13 v-lim@® {x; — x| A b = 0 and the proof is complete.

We are now in a position to prove that every L-fundamental net in &
is L-convergent in G.

8.156. Lemma. If (S,},g 1 18 an increasing net in P which is L-fundamental
relative to G, then V( )8, ewists.

Proof. We shall show that R = i%'I 8; is a pyramid and that B is the re-

quired supremum.
Since (8;) is L-fundamental - hm(G) IS; — 8;/ AB =0 for every B¢ P,

in particular for every b ¢ P. Fix b and for each superelement A ¢ P of

At
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([S; — 8;] A b);,; choose i(A) € I so that |S; — 8,/ A b < A for all 4,5 = 2(A).
Define
2 ={2(A + 8;(» — ) : Aisa superelement of (|S; — 8;| A d),,; and s € 8;(5)} -
Clearly inf® X' = 0. We shall prove that every element of 2’ is a superelement
of |s— 8| Ab, s, 8¢ Rt. In fact let 2(A + 8,4 — 8,) ¢ £. Then for every
8 ¢ B with s = s, there is an index i(s) = ¢(A) such that s € Sy (S;, ¢€1
is increasing), or equivalently s < S,(,; hence [s— g Nb=(s—s ) A D =
SEi0—%AE Bip —Si) Ao+ Biy — s AB = A+ 8 — s

We infer »- im® |s— ¢'| A b= 0.By Prop.8.13»- lim®@ Rls—sINE=0
(8,8)ERXR (8,8YERXR

and thus R4 is L-fundamental relative to G. Defining § = B~ = (igz Si)*

= V@& & yith g v@
we see, by 8.9, that § 8¥R § = z¥l 82:‘5‘ s = z¥I S,

8.16. Corollary. & s v-complete and G = G.

8.17. Lemma. In a »-complete commutative l-group, if (x,) is an L-funda-
mental net of positive elements and V is the set of positive subelements of (x;)
then (xz,) and V + are L-congruent. (This lemma is actually true in every com-
mutative I-group.)

Proof. For each i ¢ I the net (x; A z,)c7 is bounded and L-fundamental,
hence naturally fundamental, therefore naturally convergent, say:

(7 v-h'in N, =y,; .

Now v-li;n s Aay— ;Ao =ly;—y;| and since |z Aw,—a; Az < o — 2
for all k& we infer

(8) 19—yl < o — 2

Let V,; = {v: vis a positive subelement of (x; A z,),}. It is easy to prove that
® r-y
(10) yi=sapV, (by (7).

Assertion. Every v ¢ V is frequently in (V,);¢1, i.e. for every ¢ € I there is
p = isuch that v ¢ V.

In fact let v ¢ V and ¢ € I. Then v € V; for some j € I by (9), i.e. there is
k(v) € I such that v < x; A x; for all k = k(v), hence v < z,, for all k = k(v).
Choosing p = 4, k(v) we have v < x;, for all k£ = p, hence v £ x, A x;, for all
kzpieveV,

‘We now proceed to show that
(11) i |ze—v| =

Fix b = 0. Let A be the set of superelements of (|»; — ;] A b),,; and for
each @ € A choose (a) such that

(12) |#; — 2 Ab<a forall ¢,§= i(a).
Then, by (8):
(13) ly;— ysl ANb<a forall 4,j=i(a).
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Recall that y;() = sup V;(» by (10) and define 2= {3a + y;(y—v:ac4d

and v € V;(,}. Obviously inf Q = a{E\A vegsm (Ba + ¥;(» — v) = 0. We shall show

that every element of 2 is a superelement of (ja; — v| A b),,,. More precisely:
H3a+ yp— v, €2, thenforalli Z i(@)and allv = v, (v € ¥)
(14) [g;— o] ADE Ba+ Yy~ Vg -

Let ¢ = i¢{a) and v = v,. By the Assertion proved earlier there is some
p=isuchthat v € Vy,ie. v < y,. Then
lei—ol S o=yl + Wil + - v S - vl + -l + - =

S o= gl + Y — Yol + 190 — Yo + Vi@ — o
since vy € V;(,. Applying Lemma 7.3 and using (12), (13) we infer:
(15) o, — | Ab S [~ gyl A+ a+at yiam— 0.

However |x;— y;| A b= V'H};ﬂliﬂi ~x; Ny f Ab by (7) and since
|, — @ ANyl Nb= o Ay — 2 ANy A b = |2, — 2] A b < a eventually (for
k= i(a), we have |, — y, | Ab < a and (15) yields (14), which in turn
implies (11). The proof is complete.

8.18. Proposition. Every L-fundamental net (x;) in G is L-convergent in G.

Proof. It is sufficient to prove the theorem for nets of positive elements,
for if (z;) is an arbitrary L-fundamental net then the nets (z}t) = (2; V 0) and
(27) = (—2;V 0) are L-fundamental (|z;" — z"| < |2,— 2;]) and Lim® 2z} —

~ . 1
— Lim® 27 = Lim® ¢,.
K] 1

If (z;) is an L-fundamental net of positive elements in @ and V is the set
of its positive subelements, then V 4 is L-fundamental relative to @, by
Proposition 8.2 and the preceding lemma. Hence V is a pyramid. § = V-is a
normal pyramid and § = sup@®V = Lérlt}(a)v = Lga(é)x,- by the lemma again.

v t

8.19. Theorem. G is L-complete.

In fact every L-fundamental net in & is L-convergent in @ = G.

8.20. Lemma. If G is conditionally saturated, T is a pyramid in P and A

a subset of T which is directed wpwards, then 4 too is a pyramid.
Proof. For each ¢t ¢ T define d; = a\e/f) {t A a} < t. By the regularity of ¢

inGd,= a‘%/f) (¢ A @). The net {d,),cp is directed upwards and L-fundamental,
since |d, —dy| < |ty — ;). Hence B={d,:t¢T} is a pyramid; setting
8 = B~ we have
§= V@g = v® V@ prgy= V& VO gy = VB g,
terT el acd - acd teT ach

since @ ¢ A C T implies @ = té/z('a) (t A\ a). Thus A4+ is L-convergent in &,
hence L-fundamental in &. By Thm. 8.14 it is L-fundamental in @ too.

8.21, Theorem. If G is conditionally saturated, then so is G.

Proof. If §;4 < T in @ for all i ¢ I, then the set 4 = 'ilEJI 8; is obviously

directed upwards and 4 < 7. By the preceding lemma A4 is & pyramid;

setting S = A~ we have §=sup!® 4 i\e/t ‘\és‘ s i\éll 8;
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The construction of & was made under the assumption that G is v-complete.
If G is not y-complete we define G = a*. Combining Prop. 7.6 and Thm. 8.14
we see that the latter theorem is valid without the tacit assumption ¢ = G*.
Theorem 8.21 now reads: If @ is Archimedean, then @ is conditionally saturated.
Every positive element of G is a join of positive elements of G. It follows that
every element of & is the Limit of some net in G. Hence:

8.22. Proposition. G is dense in G relative to L-convergence of nets.

8.23. Corollary. @ is L-complete, if and only if G = G.

Thus & can serve as a “minimal” L-complete extension of @, in the sense
that it is generated by G with respect to L-convergence. In this connection
notice that in the next theorem the assumption of Archimedity is essential
(consider G = M, B = J o M).

8.24. Theorem. If G is Archimedean and E is an L-complete Archimedean
and regular extension of G, then G is isomorphic with a regular l-subgroup of E
containing @, under an isomorphism that maps each element of G onto itself.

Proof. G* can be regularly embedded in by Thm. 6.9. If § is a normal
pyramid in G*, then S+ is L-fundamental in E, by Thm. 7.5, hence 8\'E/A;E)!s;

exists. Mapping 8~ s\e/.éE)s and then identifying 8 with its image in E we get
S= B\e/éE)s. This embedding can obviously be extended to non-positive elements
of G -

Now let i/E\;G) 8;=0and e< 8, for all ¢ ¢l (e < E). Choosing an i,¢ I
we have:

- - By VB
(16) e=eAB;, =el se\éi“ 8 36\{9@, (ehs).

Howevere As < §; Asforall i ¢ I and by 8.12 8, A 5 € G*, Sinceié\l‘a)(s,- A 8)
= ié\l(’a.) (8; A s) =0 and G* is regular in £ we infer e A s = 0 for every s € §;,
and by (16) e < 0.

8.25. Theorem. A4 sequence {(x,) in G ts L-fundamental in G, if and only if
it 1s o-convergent in G.

In fact in G an L-fundamental sequence is bounded (if (x,) is L-fundamental,

gois &y, @ Vg, o, V 2, V 24, . . . hence n\gf)x,, exists) and therefore naturally

fundamental; the theorem then follows from 6.10. Thus sequence L-con-
vergence in @ is the restriction to @ of sequence o-convergence in & and we can
construct a sequential L-completion of @ by repeated extensions in ¥ (see § 5);
we arrive at a commutative I-group G [w,] which is regular over G as well as
regular in G. It is also topologically invariant over G':

8.26. Proposition. If H is an l-subgroup of @ containing G, then G is regular
in H and H is regular in G. For (x,) and 2 in G Lim@ g, = z, Lim@ g, = &
and Lim® g, = x are equivalent.

Proof. Suppose 8, 0,8, ¢ HIf0=<T < 8,foralli ¢ I (T ¢ G andift ¢ T,
then ¢ < 8, for all ¢ ¢ I. Since ¢ € ¢ < H we infer ¢ = 0. Thus 7 = {0}, S,y@0.
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That Lim(® x, = » implies Lim® z, = z and Lim® z; = z implies Lim @,
= x is proved much ag the first half of Thm. 8.14.

8.27. Theorem. If G is Archimedean and E is a reqular extension of G which
18 also Archimedean and sequentially L-complete, then G [w,] is isomorphic with
the E-o-closure of Q in E which is regulor in E, under an isomorphism that maps
each element of G onto itself.

The embeddability of G'{w,] in E is a consequence of Thm. 7.5. The
regularity of G[w,] in E is proved by the same argument that served to es-
tablish Thm. 6.16.

8.28. Theorem. If G is the l-group of all bounded real functions onm some
set X, then Q[w,] and G are isomorphic with the l-group of all real functions on X.
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