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§ 1. Introduction 

Various concepts of order convergence can be defined in a lattice or a 
lattice-ordered algebra. Cf. [1], [2, Chap. IV, § 8], [3, § 3 and § 7], [4], [6T, 
[8], [9, § 2.1], [10, § 3], [11], [12, § 5 and note on p. 314], [15, Definition 4.1]. 
In lattice-groups (briefly /-groups) and Boolean algebras each such concept 
induces, by means of the operations " - "  and ".~" respectively, a correspond- 
ing concept of fundamentality (i.e. of Cauehy nets). A pseudo-uniform structure 
is thus introduced and our main object in this paper is the completion of 
commutative/-groups (in a lesser degree of Boolean algebras) relative to order- 
fundamental nets or sequences in particular. 

Stimulation for this research grew out of some discussions with D. A. KxrPos 
(to whom the author expresses his sincere thanks) and the study of some publi- 
cations in the subject, mainly [3] and [8]. I t .  LSwm in [8] introduces what he 
calls "intrinsic convergence" for ordinary sequences in an arbitrary Boolean 
ring B and proves that  the pertinent completion by the Cantor process re- 
quires ~o I steps (w I is the least uncountable ordinal) and that  the resulting 
ring B(e)l) is the minimal Boolean a-ring over B, preserving all existing joins 
and meets (Thin. 143). C. J. EVERETT in [3] employed an essentially different 
(and stronger) concept of sequence convergence (called o-convergence) in 
commutative /-groups and investigated the completion problem again. He 
first studied the outcome of the Cantor method,but did not notice two remarkable 
features of this notion of convergence: First, that  sequence completion is 
effected in one step and second, that  the resulting extension G' is topologically 
invariant, relative to sequences, over the original commutative /-group G 
(i.e. if xn E G, x E G, then x n-~ x relative to G if and only if x, -~ x relative to G'). 
We establish both these statements in the present paper (§ 4) and thus disprove 
two conjectures of EVERETT. Actually we prove somewhat sharper theorems 
and show tha t  they are valid for a class of convergenees of the kind defined in 
§ 7 of [3]. Possibly these results generalize to non-commutative/-groups, by 
means of the technique used in [4], but we have not worked it out. 

* This research was supported by the Royal Greek Research Foundation. 
Math. Ann. 155 6 
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The same results apply to Boolean algebras for this class of convergences 
and we formulate our exposition in § 2, § 3 and § 4 so as to reveal this analogy. 
Our proofs are elementary and simplify many of Everet t 's  proofs. 

The extension G' mentioned earlier is not in general a a-extension, even if G 
is Archimedean. The same situation prevails with Boolean algebras. We give 
a necessary and sufficient condition for G' to be a a-extension; this condition 
is satisfied in the simply ordered Archimedean case. If G is lattice-ordered and 
Archimedean, we can get its minimal a-extension (in to 1 steps) by employing 
another concept of convergence, which we call here natural convergence: This 
is the one defined e.g. in [10, (3.1)]; in the case of Boolean algebras (but not 
Boolean rings in general!) it  is equivalent to LSwig's intrinsic convergence. 
Natural  convergence in arbitrary commutative /-groups is investigated 
in § 6. The sequential completion requires wl steps and gives rise to a topo- 
logically invariant (relative to all nets) extension G(~ol). We show that  (for 
ordinary sequences) natural convergence in G is the restriction to G of o- 
convergence in G(wl). If  G is Archimedean, then G(col) is the minimal a-exten- 
sion of G. The completion G* of G relative to all naturally fundamental nets 
was determined by B. BA~ASCH~WSKI [1 ]. 

A net  which is convergent under either o-convergence or natural con- 
vergence is necessarily eventually bounded. In § 7 we investigate a concept of 
convergence (which we call L-convergence) weaker than natural convergence 
and allowing for convergent nets which are not eventually bounded. This is a 
generalization of "individual convergence", introduced by H. NXKANO [11] 
for sequences in a a-vector-lattice. We also touch upon a still weaker concept 
of convergence, which, however, we leave for future investigation. § 8 is 
devoted to the completion of a commutative l.group relative to L-convergence. 

With respect to this convergence the analogy between Boolean rings and 
commutative/-groups is not complete, especially in the non-Archimedean case. 
For example, L6wm has shown that  in the case of Boolean rings an extension 
preserving joins and meets is necessarily topologically invariant. In  the case 
of commutative l-groups we have to impose certain restrictions, mainly as 
regards Arehimedity (cf. Thin. 6.4 for natural convergence and Thin. 7.5 for 
L-convergence). Further,  a Boolean ring which is saturated (complete relative 
to joins and meets) is topologically complete relative to LSwig's intrinsic 
convergence, whereas a conditionally sa tura ted/ .group may fail to be com- 
plete relative to L-convergence. 

We remark that  all constructions concerning commutative l-groups can be 
applied to vector lattices as well. I t  is not difficult to see how scalar multiplica- 
tion can be extended in each case. 

Most of the content of § 2--  § 6 is a condensation of results contained in the 
author's doctoral dissertation, accepted by the University of Athens and 
published in the Greek-language section of the Bulletin of the Greek Math. 
Society [14], where more detailed developments and proofs are to be found. 

l~otation and terminology. Let  L be a lattice. A (directed) net in L is a 
family (x~)~e x of elements of L, whose index domain I is directed by a partial 
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ordering ~ (i.e. a reflexive and transit ive relation) satisfying the Moore-Smith 
condition. We use either of the notations (xi)ie r, (x~) or xt, i E I and adopt  the 
terminology of K~LLEY [7, Chap. 2]. The partial  ordering of L will also be 
denoted by  ~ .  The corresponding strict orderings ~411 be denoted by  > .  A 
net (xi) in L is increasing (resp. decreasing), if i >~ ~ implies xi ~ xj (resp. 
x~ _~ xj.); notation: (xi¢)i~i or (xi)f (resp. (xi~)i~i or (xi)~). 

I f  A is a subset of L, the supremum (or join or 1.u.b.) of A in L, if i t  exists, 
will be denoted by  V (L) a or sup(L)A. Dually the infimum (meet, g.l.b.) will be 

a E A  

denoted by  A (L) a or inf(L)A. The corresponding notation for a family (xi)i~r 
a E A  

in L will be: V (L) x~ or sup(L) (x~ : i C I} and dually A (L) x~ or inf(~) (x~ : i ~ I ) .  
t ~ I  i ~ I  

xi~(~)x means tha t  (x~) is an increasing net and x = V (~) x i. Dually x~(L)x. 
i ~ I  

A sublattice L o of L is said to be regular in L (equivalently L is said to be 
regular over Lo) , if A ~ Lo, x o -~ sup(Lo)A imply x 0 -----sup(L)A, and dually. 
L 0 is (~-regular in L (equivalently L is a.regular over Lo), if the above eonditioa 
is satisfied for countable subsets A g L 0. 

L is saturated ~) (resp. a-saturated), if every subset of L (resp. every non-void 
countable subset of L) has a supremum and an infimum in L. L is condi- 
tionally saturated (resp. conditionally a.saturated), if every non.void bounded 
subset of L (resp. every non-void countable bounded subset of L) has a 
supremum and an infimum in L. The MacNeille saturation of L is the satura- 
t ion f~ of L by  cuts [A, B] ; (one of the two sets m a y  be void). The MacNeiUe 
conditional saturation ~ of L consists of the "non-void" cuts ([A, B] with 
A=~O, B ~ 9 ) .  

Set-theoretical unions and intersections will be denoted by  U and f~ 
respectively. R denotes the real line and M the /-group of all bounded real 
functions on [0, 1]. N is the set of natural  numbers 1, 2 . . . .  and J the ordered 
group of all integers. Subscripts, superscripts and references are omit ted 
whenever no confusion is likely. 

§ 2. Convergence.  Preliminaries 
Let  L be a lattice. 

2.1. Definition. 2) A net (x~)~ I in L o.converges to x ~ L relative to L (denoted: 

o-lim(~)x • = x) if there are an increasing net (a i ) i~  and a decreasing net 

(bi)t~x in L (with the same index domain I as (xi)i~) such tha t  a~ ~_ xi ~_ bi 
for every i ~ I, a~f(L)x and b~(L)x. 

In  a conditionally saturated lattice this takes the well-known form: 

A V x~-~ V A x r ~ x .  

A slight weakening of Definition 2.1 gives: 

1) We do not use the term "completo" to avoid confusion with the notion of topological 
completeness which will be used later. 

2) Cf. [15, Def. 4.1, p. 110] for the case of sequences. See also [2, p. 60, 3rd line] 
which deals with a saturated lattice. 

6* 
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2.2. Definition. (xi)i~ i v-converges to x relative to L ( d e n o t e d  v-lim( ~)xi = x~ 
\ iEZ 1' 

~f there  is an index i o E I such t h a t  the  ne t  (xi)iez,, where I 0 = (i ~ I : i --> to}, 
o-converges to  x. 

Fo r  bounded  nets  o- and  v-convergence are equivalent .  Hence  t h e y  are 
equivalent  for sequences. 

2.3. Definition. (x~)ie I converges naturally to x relative to L (deno ted  

v-lim(L)x, = x) if there  are two nets  ( a~)~r ,  ( b ~ ) ~  (not  necessari ly wi th  
i E I  " _ 

the  same index domain  as (x~)tex), with av¢x, b~¢x and such tha t ,  g iven y E /"  
and  (~ E zJ, the  relat ion % ~ xi ~ b~ is eventua l ly  t rue  relat ive to (x~)iE ~. 

An element  a ~ L is a subelement (resp. superelement) of (x~)ie ~ in L if a g xi 
(resp. a _~ x~) eventua l ly ;  cf. [8, Defs. 1 and  2]. Le t  V be the  set of all sub- 
e lements  and  U the  set of all superelements  of (xi)~c z in L. One can easily prove:  

2.4. Proposition. Definition 2.3 is equivalent to each o/the/ollowing assertions: 
(i) Same as De/. 2.3 with the requirement that 1" ~ A. 
(it) There are two sets A ,  B with 0 4 A g V, 0 4 B c= U and such that A is 

(Moore-Smith) directed upward8, B is directed downwards and sup A = inf B = x. 
(ill) Same as (it) without the requirement that A and B be directed. 
(iv) V fl: O, U -fl: 0 and sup V = inf U = x. 
A n u m b e r  of au thors  have  used one or the  other  of these versions. 

See e.g. [10, 3.1, p. 15], [9, 2.1, p. 113], [8, Thms.  24, 19 and  22]. 
2.5. Theorem.  Let L be a lattice, L the MaclVeille saturation and ;~ the 

MacNeille conditional saturation o / L .  Further, let (xi) be a net in L and x E L. 
Then the/ollowing assertions are equivalent: 

(i) ~-lim(L)xt = x 

(it) o.lim(~)xt = x 

(iii) ~-lim(£)xt = x .  

Proo/. (i) implies (it). Defining ai = A(L)xr, b~ = V (L) x~ we have  g~ 

x~ _--< b~ for every  i E I .  I f  v is an  a rb i t r a ry  sube lement  and  u an a rb i t r a ry  
supere lement  of (xi) in L, then  v g ai ~ b i g  u in L eventual ly .  Vc~e easily 
deduce t h a t  5~(L)X, b~4(Z)x. 

T h a t  (it) implies (iii) is easy to  prove.  
(iii) implies (i). Le t  (di)i~o, (~i)~>~. ( i oEI ) i n  L be such t h a t  d~ ~ x~ g ~i 

for  all i ~ to, d~t(£)x, ~t~(£)xffl~or each'd~ the  set  A~ -- {a E L : a =< a~} ~ is non-- 
void  by  the  definition of L and  d i = sup(Z)Ai. We  define A = U At;  t hen  

i :> io 

x = V ($) d~ = V (£) sup(£)A~ -- sup(~)A and since A g L, x E L : x -- sup(L)A. 
i :> io i ~_ io 

Clearly every  element  of A is a subelement  of (xt). Dual ly  we define a set  
B ~_ L consisting of supere lements  of (xt) and such t h a t  inf(~) B = x. B y  
Prop.  2.4 ((iii)), v-lira(L) xt = x. The  proof is complete.  

Thus  in the  case of a lat t ice L na tura l  convergence in L is the  restr ict ion to  L 
of o-convergence in L. Na tu ra l  convergence in the  la t ter  fo rm was proposed b y  
G. Bn~KHO~ [2, p. 60]. 
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We turn now to the particular cases tha t  will interest us in the following 
pages, namely commuta t ive / -groups  and Boolean algebras. The fundamental  
properties of these structures are assumed known; the reader is referred e.g. 
to [2, Chap. X, XIV,  XV]. The absolute value in an / -g roup  is defined by  
Ixl = x v - x .  Free use will be made of the inequalities Ix V a -  y V a i G 
~< I x - y t ,  I x A a - y A a  I g  I x - - y l  and t x + y l  g Ix t+  IYl. The first two 
are valid in any / -g roup ;  the third if and only if the l-group is commutat ive.  
"Posi t ive"  will mean ~ 0, "str ict ly positive": > 0. 

We shalllater need a few facts about  the Evere t t  extension of a commutat ive  
l-group. I f  G is such an / -group  and G is the MacNeille conditional saturation 
of G and if for any two elements & = sup(0)A, # = sup(~)A ' (A, A'  g G) of 0 
we define & + ~ = sup (0) (A + A'), then G is made into a commutat ive semi- 
group (cf. [3, § 5], [1, p. 54]; for the case of Archimedean l-groups see [2, 
Thm. 17, p. 229]). Every  element & of Ghas the form & = sup(0)A = inf (0) B, 
w h e r e O # A ~ G , O = V B _ < G .  

2.6. Proposition. ([3, Thin. 6].) The element & = sup(0)A = inf(O)B has an 
inverse in  the semlgrou p G, i / a n d  only i] inf(G){b -- a : b ~ B, a C A} = 0. 

Following BANASC~EWSXI [1 ] we denote by  G* the set of all elements of G 
which have an inverse in G. G* is a commutat ive l-group, regular over G. 
Further,  G* = G (equivalently G* is conditionally saturated), if and only if G 
is Archimedean ([3, Thin. 7]). We shall call G* the Everett extension o] G. 

The operations +,  - ,  V, A and lxl in an/-group,  as well as the operations 
V, A, x' (= complement of x), t (symmetric difference) and - in a Boolean 
algebra are continuous relative to each of the three concepts of convergence 
introduced above. This follows without difficulty from the infinite distributive 
laws. o-limxi = x is equivalent to o-lira Ix i - x ]  = 0 in an /-group and to 
o-lim(x i + x) = 0 in a Boolean algebra. Similarly with z- and natural  convergence. 

Let  G be a commuta t ive / -group  and B a Boolean algebra. 
2.7. Definition. The net (xi)~e z in G is o-/undamental, v.]undamental or 

naturally/undamental ,  if and only if the net xi -- xj, (i, ]) ~ I × I o-converges, 
z-converges or converges naturally to 0, respectively. Here I × I is directed 
by  the Cartesian (eoordinatewise) ordering. 

2.7 a. Definition. Same as 2.7, with B in place of G and x i +. x~ in place of xi - -  x¢. 
Let  now F be an l-subgroup of G and A a Boolean subalgebra of B. Moti- 

vated by  classical uniform convergence in the space of real functions we 
introduce the following definition: 

2.8. Deflnitiona). A net (x~)te I in G F.o.converges to x C G (denoted 
k 

F-o-l imxi  = x/,  if there is a decreasing net (ui)i~z in F such tha t  ui¢(F~0 and 
iE I  / 

[xi -- xl <= ui in G for all i ~ I .  A net (xi)ie I is F.o.]undamental if 

F-o- lim ( x ~ - x t ) = 0 .  
( i ,~)El×I 

2.8a. Definition. Same as 2.8, with B in place of G, A in place of F and 
x~ .+ x, xi + xj in place of Ixi - x[ and Ixi - xjl respectively. 

') Cf. [3, § 7]. 
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I f  G is the 1-group of all real functions on R and F the 1-subgroup of all 
constant  functions, then  F-z-convergence (which is defined in an obvious way) 
is equivalent  to  classical uniform convergence. 

Fo r  all concepts of fundamenta l i ty  in t roduced hi therto it is t rue t h a t  if 
(xi)iei and  (y¢)~j  are fundamental ,  then  so are xi + yj, (i, j) E I x J and  
generally all their combinat ions by  means  of the algebraic operat ions of G or B. 
Note  also t h a t  limits are unique in the  convergences of Defs. 2.1, 2.2 and 2.3. 
This is no t  always t rue of 2.8 and 2 .8a :  

2.9. Proposition. F-o-limits o /ne t s  (resp. o/ sequences) are unique in G, 
i / a n d  only i / F  is regular (resp. a.regular) in G. 

2.9a. Proposition. A.o.l imits o/ nets (resp. o/sequences) are unique in B,  
i / a n d  only q A is regular (resp. a.regular) in B. 

I n  fact,  if xi~(F)0 and  0 < a ~ xs, a E G, then F-o-limx s = a and  
F-o-limx s = 0 at  the  same time. 

We  now restrict  our  s tudy  to  sequence F-o-convergence and  A-o-con- 
vergence. I n  view of Prop.  2.9 and 2.9a we assume t h a t  F and  A are a-regular 
in G and B respectively. I t  is easily proved t h a t  a sequence (xn) in G is F-o- 
fundamenta l ,  if and only  if there is a sequence (u,') in F such t h a t  u~40 and  
l x ~ -  x,'+~[ < u," for all n and r4). Similarly with A-o-fundamental i ty ,  where 
x," .+ x~+~ appears in place of Ix,, -- x,'+~ 1. I f  F-o-hmxn = x, then  o-lim(a)x,,=x 
(i.e. G-o-limx," = x) and similarly with fundamenta l i ty .  I f  o-lim(a)x," = x and 
(xn) is F-o-fundamental ,  then  F-o.limx," = x. The analogues in B are also true. 

Two sequences (x,'), (y,) in G are F-o.congruent, if F.o-lim ( x , ' -  y,~) = O. 
We denote : (x=) ~ (y~). Analogously with B and A ; here .+ takes the place of - .  

The key  to  most  of the  results of the  next  two sections is the  following 
fundamenta l  lemma:  

2.10. Lemma.  A sequence (x,') in G is F-o./undamental, i / a n d  only i[ there 
are two sequences (an), (b,') in G such that (an) is increasing, (b,) is decreasing, 
a," < x," < b,, ~or all n ~ N and F-o-lira (b," - -  a n )  = O. In  this case (an) and (b,') 
are also F.o-/undamental and F.o.congruent with (x,'). 

Analogously with B and A.  
Proo/. Suppose Ix~ - xt+r] < u~4 (P) 0 in (7 for all i and r. Then  x~ - us < 

< x," < xi + ui for all i < n, i.e. for i = 1, 2 . . . . .  n. We define 

n n 

an = ~ 1  ( x t - -u , ) ,  bn= ~i (xs + u i ) .  

Clear lyxn- -  un < a," ~ x,~ < b," g x," + u, ' ,whichimpl iesb,~-a, ,  < (x,~+u,)-- 
--  (x n -  u~) = 2u,', i . e .F .o- l im (b n - a,') = 0. The rest  of the  proof is obvious. 

I n  the  case of a Boolean algebra xs + xs + r g us implies x i -  ui ~_ xn < xs V u~ 
n 

for i = 1, 2 . . . . .  n. We define an = i ~ l  (xs - us), b," = A 1 (x~ V ui); t hen  

bn - -  a n  < ( x ~  V u . )  - -  ( xn  - -  un )  = u . .  

4) Compare the definition of o-regular sequence in [3, § 3 and § 7] and [2,13. 232, Ex. 1], 
where a weak version of our lemma 2.10 appears, under a severe and invalidating assump- 
tion. 
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Thus an F.o-fundamental  sequence is of the same nature as an F-o-con- 
vergent sequence, except tha t  it m a y  lack a limit. Roughly speaking a funda- 
mental  sequence is essentially equivalent to a nest of intervals. 

Two ~-regular l-subgroups F, F '  of G are said to be topologically equivalent 
in G, if F-o-lim x,, = x implies F'-o-l im x,, = x in G (for sequences) and conversely. 
Analogously with A, A '  in B. 

2.11. Proposition. F,  F" are topologically equivalent in G, i] and only i]: 
un 4~F) 0 in F im191ies the existence o] (v,,) in F" with u,, < vn ]or all n and vn ~ 0, 
and conversely. I n  such a case sequence F-o-]undamentality and F' .o.]undamentali ty  
are equivalent. Analogously with A ,  A '  in B.  

2.12. Definition. G is F-o-complete, if every F-o-fundamental  sequence in G 
is F-o-convergent in G. I f  G is G-o-complete, we say tha t  it is o-complete. 
Analogously with B and A. 

The following lemma is a sharpening of Lemma 3 in [3] : 
2.13. Lemma. I]  (x~) in G is F-o-]undamental, then so is the sequence 

xl, x 1 V x2, x 1 V x~ V x 3 . . . .  and its dual. S imilarly  with B and A .  
Proo[. I f  Ixn- -  x,,+r] < u,,4( P) 0 and y,, = x I V x  z V . . ' V x , , ,  then 

ly,,~ - y,,+,-I = l(x~ v . . .  v x,.,) v x,, - ( x l  v - . .  v x,,) v (x,,+~ v . . .  v x,.,+,.)l < 
< Ix,, - ( x , ,+ l  v . . .  v x , ,+ , ) l  s Ix , ,+,  - x,,l v . . .  v Ix , ,+ ,  - x,,l < ~,,. T h ~  
proof for Boolean algebras is similar. 

§ 3. Closure 

Assume again tha t  G is a commutat ive  1-group, F a ~-regular l-subgroup of G, 
B a Boolean algebra and A a ~-regular Boolean subalgebra of B. We begin 
with some definitions concerning G and F ;  the analogues for B and A run 
in a parallel and obvious way. 

A subset K of G is F-o.closed in G, if x~ ~ K, n = 1, 2 . . . .  and F-o. l im x,, = x 
(x ~ G) imply x ~ K. The F-o-closure of a set L in G is the least F-o-closed set 
containing L. This defines a genuine closure operator which in turn defines 
a topology, but  we shall not go into this topology now. The first F-o-limit 
extension o] L in G is defined by:  

[L] = {x C G: there is a sequence (x,,) in L with F-o-llm x,, = x}. In  general 
[L] is not F-o-closed. 

Let  o) 1 be the least uncountable ordinal. For each ~ < to 1 we define the 
F-o-limit  extension of G o] order 4, denoted by  L(~), inductively as follows: 
L(1) = [L]; if ~ has a predecessor ~ - 1, then L(~) = [ L ( ~ -  1)]; if ~ < o~ I 

is a limit ordinal, then L ( ~ ) =  [~U<~ L(~)].  Finally L ( m , ) =  <tJ L(~). Using the 

fact tha t  every sequence of ordinals less than  ¢o, is bounded from above by an 
ordinal less than  wl, we easily prove tha t  if L is any subset of G, then the F-o- 
closure of L in G is L (wl). Similarly with B. 

We can also define alternate upward and downward F.o-limit extensions. 
L 1 = {x E G: there is an increasing sequence (x,,) in L such tha t  F.o- l imx , ,=x} ;  



8 8  F R E D O S  P A P A ~ O E L O U :  

I t  can be shown tha t  if G is F-o-complete  and  L is a sublat t ice of G, then  
L* u L$ ~ L (~) ~ L ~+1 m L ,+  1 for every ~ < ¢o r I n  part icular  L (o~1) = L ~1 = Lo  1. 
Similarly with B. The proof follows classical lines (el. [5, Kap .  IV]).  I t  seems 
however  t h a t  stronger hypotheses  are required to  prove the equal i ty  
L(~) = L *+I r~ L ,+  1, which is valid in the  cases of real functions and subsets 
of the real line. See [5, Thm.  34.2.6 as sharpened on p. 402, and Thin. 33.2.9]. 
Prop.  3.1 and 3.1a below, which are proved in [14], give a sufficient con- 
dition. 

A part ial ly ordered set P is said to satisfy condition X, if it satisfies the 
following condit ion and its dual :  

I f  for each natura l  number  i (xik)k~2¢ is an increasing sequence in P such 
co  oo 

t h a t  Yi = V(P) Xik exists, if the  sequence (Yl)ic~, is decreasing and if A (P),,. 
i = 1 ~ *  k = l  

co  oo 

= A(P) V (P) xik exists, then  the set 
i = 1  k = l  

D = {d E P : there is a choice-function k (.) on N with values in N and such 
tha t  d < xi, k(i) for all i C N)  

co oo 

A(P) V(P) = sup(P)D. is non-void a n d i = l  k=l  xik 

This is a weakening of the concept  of "x0-regulari ty" introduced by  
K. M A T ~ S  [9]. 

3.1. Proposition. I]  G is sequentially v-complete s) and a direct union (cardinal 
product) G = X G~ o/commutat ive  1.grou~s, each o /which  satisfies condition X,  

~:E T 

i[ moreover F = G and L is a sublattice of G, then L(~) = L~ +lf~ L~+ 1 [or every 
~ < o ~ .  

3.1a. Proposition. I /  B is a Boolean cr-algebra satis[ying condition X6), 
i[ A = B and i /15 is a sublattice o[ B,  then L(~)  = L ~+1 r~ L~+ 1 ]or all ~ < ~o 1. 

We tu rn  now to  a part icular  case of importance.  I n  the sequel H always 
denotes an 1-subgroup o[ G (not necessarily ~-regular in G) and C a Boolean 
8ubalgebra o[ B.  

3.2. Proposition. I~ H ~ F,  then H(1)  = H x = H I and H is regular in H(1) .  
Proof. The first half  is an immedia te  consequence of L e m m a  2.10 (applied 

to  H and F) .  To prove the  second half assume S c= H,  inf¢/) S = 0 and a C H (1), 
co 

a < s for all s ~ S. Since a ~ H 1, there is a sequence (a,) in H with a = V (a) an. 

Then  an < s for all n ~ N and all s ~ S, hence a~ ==_ 0, a < 0. 
3.2a. Proposition. I[  C ~_ A ,  then C(1) = C ~ = C~ and C is regular in C(1). 
3.3. Lemma.  I /  H ~_ F and i[ (xn) is a decreasing sequence in H(1),  then 

there is a decreasing sequence (Yn) in H with xn < y ,  ]or all n and such that (xn) 
and (y,,) have the same lower bounds in G. I[,  moreover, (x,,) is F-o-[undamental, 
then (yn) can be chosen to be F-o-congruent with (x~), hence F.o-/undamental.  

~) See Definition 6.7 below. 
6) If B ~ X B t, where each B ~ satisfies condition 2:, then B too satisfies condition 22 

TET 
(a Boolean algebra is bounded). 
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Proo/. By 3.2, for each x n ~ H ( 1 ) =  H i there is a decreasing sequence 
(bn, i)iE N in H with F-o-lira bn, i = xn, say bn, i -  xn ~ un, i 4~F) 0- Define 

i 
Yn = bl, n /~ b~, n / ~  " " " A bn, n f o r  e v e r y  n .  Clearly y~ ~ H, (y~) is decreasing a n d  

xn ~ y~, since xn ~ xk ~ b~,n for all k = 1, 2 . . . . .  n. I f  a ~ Yn for all n, then 
a ~ bk, ~ for all k, n with k <_- n; hence a --< A (a) bk, n = xk for every b. This 

n 

shows tha t  (x~) and (y~) have the same lower bounds in G. 
Assume now tha t  (xn) is F-o-fundamental,  say x n -  x .+ r ~ vn4(F) 0. 

Then Yn -- xn = bl ,n  A b~, n A " ' "  A bn, n - -  x n : [bl, n -  Xn] A [b2, n - -  Xn] A 

A " ' "  A [b~ ,n -  xn] = [(bl, n -- xl) ÷ (x 1 -- Xn) ] A [(b2, n -- x~) + (x 2 -- xn) ] A 
A " ' "  A [(b~, n -  Xn) + ( x , - -  xn)] g [Ul, n + vl] A [us,~ + v~] A " ' "  A 
A [u,~,n + vn] =- u*. 

I t  is easily verified tha t  u* 4(F) 0. 

3.3a. Lemma.  Same as 3.3. with B,  A ,  C in place o / G ,  F, H respectively. 
The proof follows the lines of 3.3. Thus for the A-o-fundamentali ty of (y,) 

o n e  shows : y,~ ÷ y~+~ ~ (Ul, n V Vl) A (U~, n V V2) A • • • A (Un, . V vn) -~ u ~  ~(A)O. 

3.4. Theorem. I /  H ~= F and i/ H is (~-regular (resp. regular) in G, then 
H (1) too is a-regular (resp. regular) in G and topologically equivalent to H in G. 

Proo/. Assume H is a-regular in G and x~ ¢~o)0, x~ ~ H(1). Let  (Yn) be the 
sequence in H, the existence of which is asserted by  Lemma 3.3. Then (xn) 
and (Yn) have the same lower bounds in G, hence in H(1) also. This implies 
y .  ¢H(~)0 and since Yn C H :  Yn ~ (H)O" By the a-regularity of H in G y~4(a)O. 
From this and the relation 0 g Xn ~-- y~ we conclude x,~4~a)O. Thus H(1) is 
a-regular in G. 

Assume now tha t  H is regular in G and let A ~(1) xo = 0 (x~ ~ H(1)). Each 
6EA 

c o  

x ~ =  nA(~)b~n, where b~n ~ H. Then x~ ~ AttO) b ~ n ' n  ~,( I )  AH(I)b~ = 0, A:(i) b~n 

= 0, A (~) b~n = 0, A (~) b~,~ = O. We easily conclude A(a) x~ = 0. 
(~,n ~,n (~ 

That  H and H(1) are topologically equivalent follows from 3.3 and 2.11. 

3.4a. Theorem. I / C  ~ A and C is a-regular (resp. regular) in B,  then C(1) 
too is (~.regular (resp. regular) in B and topologically equivalent to C in B .  

3.5. Theorem. I~ H ~= F,  then H(1) is F-o-closed in G. 
Proo]. I t  is sufficient to show tha t  H(1) = H(2). I f  x ~ H(2), then, by  Pro- 

position 3.2, there is a decreasing F-o-fundamental  sequence (xn) in H(1) such 
c o  

tha t  x =  A(a)x,. By  Lemma 3.3 there is another such sequence (Yn) in H,  
~ = 1  

hence x ( / /1  --- H(1). 

3.5a. Theorem. I]  C ~_ A ,  then C(1) is A-o-closed in B.  
I f  however H ~ F,  then H (1) is in general not F-o-closed and the H (~), 0 ~_ ~ 
¢o~ may  be pairwise distinct. Similarly if C ~ A. Examples are given below. 

§ 4. Completion 
G is again a commutat ive  1-group, F a a-regular l-subgroup of G, B a Boolean 

algebra and A a a-regular Boolean subalgebra of B. 
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Let ~SF be the commutat ive  l-group of all F-o-fundamental  sequences in G; 
(the operations are defined thus: (xn) + (Yn) = (x, + Yn), - (xn) = ( -  xn), 
(xn) V (Yn) = (xn V Yn)). G is represented in ¢5p by the constant sequences and 
is regular ill ¢5F. 

Let  G~ be the quotient /-group of ~SF modulo the l-ideal of all F-o-null 
sequences, i.e. t he / -g roup  of all classes into which ~SF is parti t ioned by  the 
congruence relation ~ (F-o-congruence). The class to which a sequence (xn) 

belongs is denoted by  [(xn)]; we further set 5 = [(x, x . . . .  )]. By  Lemma 2.10 
each class [(xn)] can be represented in both the forms [(an)] and [(bn)] where (an) 
is increasing and (bn) decreasing. I t  is not difficult to see tha t  [(xn) ] g [(Yn)] 
in GF, if and only if an g dn in G for all n, where (an) is an increasing sequence 
in [(xn)] and (dn) a decreasing sequence in [(Yn)]. Using this fact  one can easily 
prove tha t  GE is a regular extension of G; the embedding of G in GF is given by 
G ~ x--> x E OFT). 

An exactly similar construction we can make with B to get an extension B A. 
The analogous assertions are true in this case too. 

4.1. Proposition. I /(xn) is an F-o./undamental sequence in G, then F.o-lim xn 
= [(x~)] in GT). 

Proo]. Let (an), (bn) be the two sequences of Lemma 2.10. Clearly 5n ~ 5n ~ bn ; 
oo oo 

we have only to prove tha t  V (°F) 5 n = A (°~) bn = [(xi)]. 
n = l  n = l  

Let  [(Yi)] be an upper  bound of an' n = 1, 2 . . . .  ; (Yi) can be chosen to be 
decreasing. Then y~ => as for all i, hence [(Yi)] ->--- [(at)] = [(xi)]. The dual is 
established similarly. This shows tha t  o-lim(°P) Sn = [(xi)] and since (xn) 
is F-o-fundamental  we conclude F-o-lim xn = [(xi)]. 

4.1a. Proposition. Same as 4.1, with B in place o/ G and A in place o I F. 
GF is therefore the F-o-closure of G in GF and hence, by  Thms. 3.4 and 3.4a: 
4.2. Theorem. G and GI~ are topologically equivalent in GI~. B and BA are 

topologically equivalent in B A. 
In  the particular case F = G we see tha t  G o as an extension of G is "topolog- 

ically invar iant"  over G, i.e. the restriction (relativization) to G of sequence 
o-convergence in G o is equivalent to sequence o-convergence in (7. This dis- 
proves a conjecture of C. J.  EV~RWTT, who expressed the view tha t  "some 
condition akin to regularity (a concept introduced by  KA~TOROVrrCH [14], 
which has nothing to do with the te rm as used in the present paper) seems lack- 
ing" for this to be true (see [3, p. 114]). He gave a sufficient condition [3,Thin. 5]. 

4.3. Theorem. (TF is F-o.complete. B~ is A-o.complete. 
Proo 1. Let  (Xn) be an F-o-fundamental  sequence in GF and (Yn) a decreas- 

ing sequence F-o-congruent with it (Lemma 2.10). By  Lemma 3.3 there is a 
decreasing F-o-fundamental  sequence (Yn) in G which satisfies Yn -~ Yn for 
all n and has the same lower bounds with (Y , )  in (7. I t  is easily verified tha t  

co 

[ (y i ) ]=  A(or)Y~ hence [(y~)]= o-lim(a~)Yn= o-lim(°~)Xn. Since (Xn) is 
n = l  

F-o-fundamental  [(y~)] - F-o-limXn. Similarly with B. 

,) cf. is, § 4, Thin. 4]. 
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In virtue of Theorems 3.4 and 3.4a the preceding result can be sharpened: 

4.4. Theorem. I / F '  is the F-o-closure o] F in GF, then GF is F'-o-complete. 
I] A" is the A-o-closure o / A  in BA, then B a is A'-o-eomplete. 

In  fact F and F '  are topologically equivalent in G2 by  Thins. 3.4. and 3.5. 
In particular if F == G, then F '  = Ga, hence: 

4.5. Corollary. G G is o-complete. B z is o.complete. 
The first half disproves the opinion of C. J. EVeReTT that  "i t  is not possible 

to complete G by the Cantor process in a single step except in special instances" 
[3, § 4]. The diagonality of G, a condition which Everet t  imposes on G in order 
to secure completion in one step, is unnecessary. In  the general ease he accepts 
as a solution to the completion problem the extension G* mentioned in § 2, 
which is however much "larger" than G a. B. BA~'ASCHEWSKI [1, Satz 14] 
has essentially shown that  G* is the completion of G relative to natural 
convergence of nets in general. We shall return to tlfis point later (see Thm. 6.8 
below). Theorem 4.4 shows that  the apparent successive extensions in [3, § ~] 
actually terminate with the first step. 

4.6. Theorem. I /  a commutative l-group E is an extension of G which is 
a.regular over F and F-o-complete, then GF is isomorphic with the F-o-closure o/G 
in E, under an isomorphism that maps each element o /G onto itsel]. Analogously 
with B. 

Thus GF is the minimal F-o-complete extension of G. If  G is simply (linearly) 
ordered, then so is G o. 

One might suspect tha t  if G is Archimedean, then Ga is conditionally 
a-saturated. If  G is simply ordered this is true, since G is then a subgroup of R 
([2, Chap. XIV, Thin. 15]). In  the general case it is not: 

4.7. Proposition. A necessary and su[ficient condition that G a be conditionally 
a-saturated is the [ollowing: I] (xn) is an increasing bounded sequence in G, 
then there is a decreasing se~tuence (Yn) in G with xn g Yn ]or all n and (y,~-- xn) ~ (a) O. 

Roughly: I f  [A, B] is a cut in G which can be approached from below 
by an ordinary sequence, then it  can also be approached from above by  an 
ordinary sequence. I t  is easily seen that  the condition is equivMent to its dual. 

4.7a. Proposition. A necessary and su]ficient condition that B n be a Boolean 
a.algebra is the [ollowing: I] (xn) is an increasing sequence in B, then there is a 
decreasing sequence (Yn) in B with xn g yn /or all n and (Yn - xn) 4(B)O. 

We shall now give examples tha t  do not satisfy these conditions. We 
begin with a Boolean algebra: Let  S be an uncountable set,B the Boolean algebra 
{A ~_ S: either A or A c = S -  A is finite} and (xn) a sequence of pairwise 
distinct elements of S. Define X ,  = {xl, x 2 . . . . .  xn}. Then (Xn) is increasing 
but  does not  satisfy the above condition. 

For  examples of commutative/-groups define: 
G (resp. G ' ) =  {]:] is a bounded real function on D = [0, 1] × [0, 1] 

such tha t  there is a continuous function ]* on D with ] (x, y) 
= ]* (x, y) for all but  a finRo (resp. countable) number of 
points (x, y) E D}. 
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The MacNeflle conditional saturation of both G and G' is the /-group G of 
all bounded functions on D. Define 0 C G by  0 (x, y) = 0 if x = 0 and 1 if x ~ 0. 

oo 

Also / ~ ( x , y ) = n x  if 0<- x-<- 1/n and 1 if 1 / n < x ~  1. T h e n 0 = n ~ ( ~ ) f ,  

(]n ~ G) but  it  is not difficult to prove tha t  there is no sequence (hn) in G or G' 
oo 

Defining ~ ( x ,  y) = n x e  1 - '~  < e on D we see tha t  q~ C G, lira ~v~(x, y) = 0, 
hence G-o-lira q,~ = 0; however it is not true tha t  G-o-lira ~ = 0. Thus the 
restriction to G of the o-convergence in G is in general weaker (more convergent 
sequences) than the o-convergence in G; in other words (Thin. 2.5) natural  
convergence in G is weaker than  o-convergence. The derived topologies are 
also non-equivalent. 

§ 5. Relativized convergence 

The last mentioned example shows the possibility of defining new concepts 
of sequence convergence in a commuta t ive / -g roup  G or a Boolean algebra B 
by  considering the restriction (relativization) to them of the o-convergence of a 
(not necessarily a-regular) extension. I n  the next  section we shall describe 
natural  convergence of sequences as a convergence of this kind. 

Let  E be a commuta t ive / -group which is an extension of G. In  introducing 
E-o-convergence in G we can assume without loss of generality tha t  E is o- 
complete. For  if it is not we can extend it to EB, which is o-complete (Corollary 
4.5) and introduces the same sequence convergence and fundamental i ty  in G 
(Thin. 4.2). We can then complete G by  taking successive E-o-limit extensions 
G($), 0 g ~ g co 1 until we arrive at  G(~ol) which is E-o-closed in E hence E-o- 
complete. We can also proceed by  the Cantor method, construct the first 
extension G{1}, embed it in E and repeat  0) 1 tinles. The resulting completions 
are isomorphic. Similar considerations apply to Boolean algebras. 

I f  G is the 1-group of all continuous real functions on [0, 1] and E = M 
(the /-group of all bounded functions on [0, 1]), then the corresponding ex- 
tensions G(~), 0 g ~ g co 1 constitute the well-known Baire classes of bounded 
functions (cf. [5, Kap.  IV],  [13, Kap.  XV]). In  the case of Boolean algebras 
we get the Borel classes if we consider the Boolean algebra B of all finite 
unions of (open, closed or half-open) subintervals of [0, 1] and the extension 
algebra D consisting of all subsets of [0, 1] (cf. [5, Kap.  IV], [8, p. 1190]). 

§ 6. Natural convergence 

In  the case of Boolean algebras (but not Boolean rings in general) natural  
convergence, as we defined it, is equivalent to the intrinsic convergence, defined 
and studied extensively in the case of sequences by  H. L6wIo in [8]. In  the 
present section we shall s tudy natural  convergence in commutat ive  1-groups. 
Since most  of the results more or less have their parallels in Boolean algebras 
we shall not  make detailed references to [8]. We assume that G is a commuta-  
t ive/ -group.  
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A directed net  (xi) in G is eventually bounded/rein above ( resp . / re in  below) 
in G, if it has a t  least  one supere lement  (resp. subelement)  in G. I t  is eventually 
bounded, if it has bo th  a supere lement  and  a subelement .  For  ord inary  sequences 
" b o u n d e d "  and  "even tua l ly  bounded"  are equivalent .  

6.1. Proposition. A net (xi) in G is naturally [undamental, i / a n d  only i/ 
it is eventually bounded in G and 

(1) i n f ( ~ ) { u - - v : u E  U and vE  V } = 0 ,  

where U is the set el superelements and V the set o/subelements o/(xi)  in G. 
Proo/. I f  v-li.m [xi - x~] = 0 and W is the  set  of supere lements  of Ix i -- x~], 

(i, j) ( I × I in G, t hen  inf(a) W = 0 and  for each w E W there  is j(w) E I such 
t h a t  Ix i -- x¢(w)l <: w for all i ~ ](w), i.e. x~(w) -- w ~ xi ~ xj(~) + w for all 
i ~ ] ( w ) .  Hence  x ~ ( w ) - w E  V, x j ( w ) + w E U  for every  wE W; obviously  
inf(a){(x~.(w ) ÷ w) - (xi(~) - w):w ( W} = inf(a){2w:w E W} = O, which im- 
plies (1). 

The  converse is an  immedia te  consequence of the  fact  t h a t  each u -  v 
(u E U, v E V) is a supere lement  of ( ] x i -  xj[). 

I t  follows t h a t  in an Archimedean  /-group an increasing net  is na tu ra l ly  
fundamen ta l  if and only if i t  is bounded  f rom above,  and  dually. 

6.2. Proposition. I / E  is a regular extension o/GS), (xi) a net in G and x E G, 
then v-lim(°) x~ = x implies v-lim(E) xi = x. 

Proo/. I f  U is the  set  of supere lements  and  V the  set  of subelements  of 
(xi) in G, then  x = inf(a) U implies x = inf(E) U and dually.  Apply  now Prop.  2.4 
((~)). 

6.3. Lemma.  I / a  ( G, (xi)i~i is a net in G which is eventually bounded/rom 
above and i] U is the set o[ superelements el (xi) in G, then assertion (i) below 
implies (ii). I /moreover G is Archimedean, then (ii) also implies (i). 

(i) V ( a ) ( x j A a ) = a  for every  i ( I .  

(ii) a g  u for all u E U .  

The  dual  l emma  is also true.  
Proo]. I f  (i) is t rue  and  u E U, then  there  is an i 0 E I such t h a t  xj ~ u for 

all ~ ' > i 0 ,  hence x ~ A a < u  for all ~ >  i 0 and  finally a =  V ( x ~ A a ) <  u. 

Conversely,  assume t h a t  G is Areh imedean  and t h a t  (ii) is satisfied. F ix  
i ( I .  Obviously  x c A a < a  for all 7" > i .  Le t  b be a n y  uppe r  bound  of 
(x¢ A a)i~i. We shall p rove :  

(A) I f u ( U ,  t h e n u + b - - a E U .  
I n  fact  let u be in U and k an index such t h a t  xj g u for all j >= k. Assume 

moreover  t h a t  k ~  i. Then  for every  j ~  k we have :  x j = x j A a + x j - -  
-- x~ A a <= b + 0 V (x~ -- a) ~ b + 0 V (u - a) = b + u - a by  (ii). Hence  
u + b - a E U .  

Now choose u 0 E U. Applying  (A) repea ted ly  we deduce:  

s) Here and in the sequel "regular extension" in such a context means "commutative 
1-group which is a regular extension." 



94  ~REDOS PAPANGELOU: 

(B) u 0 + n ( b - a ) ~ U  for every n ~ / V  
hence b y  (ii) a _~ u 0 + n (b - a), i.e. n (a - b) <-_ u o - a. Since G is Archimedean 
a - - b - ~  0, a ~  b. I t  follows t h a t  a =  V (x~Aa) .  

Note  t h a t  the assumpt ion tha t  G is Archimedean is essential for the impli- 
cation (ii) ~ (i). I n  fact  let M be t h e / - g r o u p  of all bounded real functions on 
[0, 1]. Define an(X) = n2x(1 - x~) n, x E [0, 1], n = 1, 2 . . . . .  (The sequence 
(an) will be used freely in the sequel wi thout  explicit reference to its definition 

here.) The  sequence (an) is not  bounded from above in M (if xn = 1/~/n + 1,  then  
liman(xn) = + oo). Le t  J be the ordered group of all integers and define 

n 

G = J o M  (lexicographic or ordinal p roduct ;  see [2, p. 9]). An element 
(k, ]) C G is a superelement of the sequence (0, an), n = 1, 2 . . . .  if and only if 
k ~ 1. Hence any  element a = (m, g) with m _-< 0 satisfies condition (ii) of 
the lemma, bu t  for (i) to  be satisfied it is necessary and sufficient t h a t  a be g (0, 0). 

6.4. Theorem. I / G  is Archimedean, E is a regular extension o/ G, (xi) is a 
net in G which is eventually bounded in G and x C G, then v-lim(a) xi = x and 
v-lim(E) xi = x are equivalent. 

Proo]. I n  view of Prop.  6.2 we need only show t h a t  v-lira(s) x t = x implies 
~-lim(a) x~ = x. Le t  U be the set of superelements and V the set of subelements 
of (xi) in G. We shall prove x = inf(a) U and dually. E v e r y  u E U is a super- 
element of (xi) in E also, hence x ~ u for all u C U. I f  a C G is any  lower bound  
of U, then  by  L e m m a  6.3 V (a) (xj A a ) =  a for every i, which implies 

V(g) (xj A a) = a for every i. j___i 
Let  U' be the set of superelements of (x~) in E.  The last assertion implies, 

by  6.3 again, t h a t  a ~ u' for all u' C U', i.e. a ~ inf(~) U' = x. This establishes 
x = inf(a) U. 

The requirement  t h a t  (x~) be eventually bounded  in G is essential. Le t  E 
be the  /-group R[ °,1] of all real functions on [0, 1] and G = M ;  then  
Y-|im(E)(~ n = 0, al though (an) is unbounded  in M.  The Archimedi ty  of G is also 
essential: take  G =  J o M and E = J o R[ °,1] and consider the sequence 
(O, an),n= 1 , 2  . . . . .  

Recall  t h a t  G* denotes the  Evere t t  extension of G. 

6.5. Proposition. I / ( x i )  is a net in G and x C G, then v-lim(a)xi = x i / a n d  
only i/v-lim(a*)x~ = x. 

Proo/. Suppose v-lim(a*)xt = x. E v e r y  superelement u* of (xi) in G* is of 
the  form u* = inf(a*)U(u*), U(u*)~_ G, where obviously the  elements of 
U (u*) are superelements of (xi) in G. Setting U -- [3 U (u*) we have inI (a*) U = x, 

U* 

hence inf(a) U = x. 

Theorems 6.6 and 6.8 below were proved by  B~_WASCHEWSKI [1, S~tze 13, 14]. 

6.6. Theorem. (BANASCHv.WSKI). Every naturally /undamental net in (7 
converges naturally in G*. 

This follows f rom Prop.  6.1, since V, U determine (they do no t  consti tute) 
a cut  in G which by  Prop.  2.6 belongs to  G* and  is obviously the  natura l  l imit 
of (xt) in 0". 
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6.7. Definition. A commutat ive  /-group E is said to be v-complete (resp. 
sequentially v-complete), if every natural ly fundamental  net (resp. sequence) 
in E converges natural ly in E. 

6.8. Theorem. (BANASCHEWSl~). G is v-complete, i] and only i] G : G*. 
Proo]. I f  G is v-complete and [A, B] is a cut in G with in~(a) {b -- a : b ~ B, 

a C A} : 0, then A, considered as an increasing "ne t" ,  is natural ly fundamental  
(by Prop. 6.1), hence converges natural ly in G. I t s  limit [A, B] in G* must  
therefore belong to G. Thus G* C_ G, G* : G. The converse follows from 
Thm. 6.6. 

6.9. Theorem. I~ E is a v-complete regular extension o/G,  then E contains 
a regular 1-subgroup isomorphic with G*, under an isomorphism which maps 
each element o/G onto itsel]. 

Proo]. I f  x* is an element of G*, there is a net (xi) in G, naturally funda- 
mental  relative to G and such tha t  v.lim(a*)x~ : x. Since, by  Prop. 6.2, the 
net (xi) is naturally fundamental  relative to E also, there is y* ( E  such tha t  
v-lim(E)x~ = y*. The mapping G* ) x * - ~  y*~  E is the desired isomorphism. 

To show tha t  G* (more precisely its image) is regular i nE  assume A(a*)x * = 0. 
iE I  

For each i ~ I  there is a set A~ ~ G such tha t  x* : in f (a*)Ai  . Thus 
0 = A(a*)hff(a*)A~ = inf(a*)A = inf(a)A, where A = U A s. Then 0 = inf(E)A 

iE I  i61 
which implies 0 = A (E) x*. 

i E I  

Thus if G is an arbi t rary commuta t ive / -group,  its minimal v-completion 
is G*. We return now to ordinary sequences to determine the sequential 
v-completion of G. In  the proof of the next  theorem we use the fact  tha t  if 
(xn) is a naturally fundamental  sequence, then so are xl, x 1 V x~, x 1 V x~ V x a . . . .  
and its dual. The easy proof follows the lines of 2.13. 

6.10. Proposition. I /  G is sequentially v-complete, then a sequence (xn) is 
naturally/undamental in G i /and  only if it is o-convergent. 

Proo/. I f  (xn) is natural ly fundamental  in G, then so is xn, xn V x~+ v 
x~ V x~ +1 V x,  + 2,-.- and its dual, for each n; hence y~ = V (a) x~ and z~ = A(a)x~ 

exist for each n = 1, 2 . . . . .  I f  u is any  superelement and v any subelement 
of (xn) in G, then  v ~_ z n ~_ x n g Yn ~ u eventually;  therefore Y n -  zn~0, 
which shows tha t  (Yn), (zn) are G-o-fundamental (hence naturally fundamental) ,  
G-o-congruent and define a limit x in G which is the o-limit of (xn). 

6.11. Corollary. A sequence (xn) in a commutative l-group G is naturally 
]undamental relative to G i /and only i / i t  is o-convergent in G*. 

This follows from 6.5. 
6.12. Corollary. For ordinary sequences natural convergence and /unda- 

mentality in G is the restriction to G of o.convergence and o-]undamentality in G*. 
To complete G relative to natural ly fundamental  sequences we proceed 

as in § 5 and construct G(col) in G*. This is sequentially v-complete, topolog- 
ically invariant  and regular over G as well as regular in G*. This is seen from 
the following propositions: 

6.13. Proposition. 11 H is an 1.subgroup o/ G* containing G, then G is 
regular in H and H is regular in G*. 
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6.14. Proposition. If H is an l-subgroup of G* containing G and if xi E G, 
x ~ G, then v-lim(a)xi---x, v.lim(H)xt = x and v-lim(a*)xi = x are equivalent. 

They follow from the fact tha t  H* = G* and from Prop. 6.5. Now 6.14 
and 6.10 imply: 

6.15. Corollary. A sequence (Xn) in G is naturally fundamental relative to G, 
i / and  only i / i t  is o-convergent in G(eot). 

6.16. Theorem. I f  E is a sequentially v-complete regular extension of G, then 
G(e)i) is isomorphic with a regular l.subgroup of E, containing G, under an 
isomorphism that maps each element o /G onto itself. 

Proof. G is regular in E* and by Thin. 6.9 G* too can be regularly embedded 
in E*. Then G(wl), being regular in G*, is regular in E* also. However G(col) 
is contained in E, since E is sequentially v-complete, and is therefore regular 
i nE .  

A direct proof is given in [14]. Thus G(wl) is the minimal sequential 
v-completion of G. The importance of sequential completion relative to natural 
convergence is seen from the following: 

6.17. Theorem. An  1-group is conditionally a.saturated, if and only i / i t  is 
Archimedean and sequentially v.complete (in either case it is commutative). 

Proof. Assume G is conditionally a-saturated. Then it is Archimedean 
(see [2, Chap. XIV, Thin. 17]), hence G* = G. If (xn) is a naturally fundamental 
sequence in G, then there is & E G with 

o o  c o  

&= A (0) V (~) x t== V (0) A (0) xi .  
n =  l i ~ n  n = l  i ~ n  

Since G is conditionally a-saturated and regular in ~, we infer that  & C G 
and 

o o  o o  

= A (a) V (a) x~=: V (a) A (a) x~. 
n = 1 i > n  n =  1 i ~ n  

Hence G-o-llmx n = &, v-lim(G)xn = &. 
Conversely assume G is AreMmedean and sequentially v-complete and let 

o o  

(x~) be an increasing bounded sequence in G, say x n < b. Then ~ = V(a)xn 
n = l  

exists in (~ and O-o-limx,~ = ~. By  6.11 (Xn) is naturally fundamental in G, 
hence naturally convergent in G, say v-lim(a)xn = x. But then O-o-]imx,, = x, 

o o  o o  

h e n c e  x = i e  = x = VT) x. 
n 

6.18. Corollary. I] G'is Archimedean, then G ( o~1) is the minimal conditionally 
a-saturated regular extension of G. 

Before closing this section we remark that  one can develop a theory 
analogous to that  of join-extensions introduced by L6wzo for Boolean rings [8]. 
I t  is immediately seen that  in the case of 1-groups a join-extension is neces- 
sarily a "meet-and-join" extension and the parallel of L6wig's Theorem 66 [8] 
is trivial (compare loe. cir. Thm. 67). However we must be content with 
accepting G* as a satisfactory "saturat ion" of G. In fact G* "fills" as many 
"gaps" in {~ as we can hope to fill. If G is not Arehimedean, the remaining 
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gaps are of a deeper nature  and  are due to  the  non-Archimedi ty  of G. T h e y  can 
only be filled a t  the  cost  of reducing the extension algebra to  a semigroup. 
If,  for instance, [A, B]  is a cut  in G not  belonging to G*, i.e. not  satisfying 

A (a) ( b - a ) = 0 ,  then  there is x 0 E G  with 0 < x  o g  b - a  for a l l b E B ,  
bEB, aEA 
a E A. This implies t h a t  for every a E A a + x 0 <: b for all b E B, hence 
a + x o E A, since [A, B]  is a cut. I f  E is any  extension of G to  a commuta t ive  
/-group and B '  = (b' E E : b' is an upper  bound  of A}, A '  = (a '  E E : a '  is a 
lower bound  of B'}, then  A ~ A ' ,  B g B '  bu t  x o _~ b ' - -  a '  for all b' E B ' ,  
a' ~ A ' .  (a + x o E A implies a + x o _~ b' for all b' E B ' ,  hence a _ b' --  x o for 
all a E A ,  b ' - x  0 E B ' ,  a ' ~ -  b ' - x  0, x o = < b ' - a ' ) .  I n  par t icular  sup(~)A 
cannot  exist. 

§ 7. L-convergence 

E v e r y  o-fundamental  or natural ly  fundamenta l  net  in a commuta t ive  
/-group is eventual ly  bounded;  sequences in part icular  are bounded.  However  
the  sequence of functions (an) in M considered earlier converges to  0 in M 
relative to pointwise convergence, wi thout  being bounded.  I t  is therefore 
natura l  to have convergent  or fundamenta l  nets which are not  eventual ly  
bounded.  The purpose of the  present section is to s tudy  a weakening of na tura l  
convergence allowing for such nets. 

I n  [11] H. NAKANO introduced the following definition of convergence in a 
condit ionally a-sa tura ted  vector  latt ice (see also [12, § 5 and  note on p. 314]):  
A sequence (x~) is said to  be individually convergent  t o  x, if for every pair  of 
elements a, b o-lira (a V xn) A b = (a V x) A b. The nex t  definition is a modifica- 
t ion of this and coincides with it in the part icular  case of NAvAhO. Compare 
also [8]. 

Le t  G be a commuta t ive / -g roup .  

7.1. Definition. A net  (x~) in G L-converges to x E G relative to G (denoted 
Lim(a)x, = x), if for each pair  of elements a*, b* in G ~,-lim(a)(a * V xl) A b* 
iE I  

= (a* V x) A b*. 
Obviously for an  eventual ly  bounded  net  (x~) Limx~ = x and  u-limxi = x 

are equivalent.  I f  a net  (x~) L.converges to  x, then  every  subnet  of (x~) L-con- 
verges to  x. 

7.2. Proposition. Lhn(  a) x~ = x i/ and only if /or every b > 0 in (7 
~-lim(a) Ix~-  x] h b = 0. 

Proof. Suppose L i m x  t ~- x, i.e. v-lira(a* V xi) A b* = (a* V x) A b* for 
every  a*, b*, and  let b be any  positive element. Choosing a* = x, b* -~ b + x 
we see t h a t  v-lira (x V x~) A (x + b) --- x f rom which we infer 

(1) v-lim [0 V (x t -- x)] A b = 0 .  

Next ,  choosing a* = x - b, b* = x we have v-lira [(x - b) V x~] A x = x, hence 
v-lim (-- [(x -- b) V x~] A x) = - x ,  therefore 

(2) v-tim [0 V ( x -  x~)] A b = 0 .  
Math. Ann. 155 7 
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(1) and (2) now imply: 

~-lim{[0 V ( x , -  x)] A b} V {[0 V (x - x,)] A b} = 0 

v-lim[OV ( x i - - x )  V ( x - - x , ) ] A b = 0  

v-lim I x t -  x] A b = O. 

The converse follows from the fact tha t  

I ( a * V x , ) A b * - -  (a* V x) /', b* i g l x , - - x  I A ( b * - a * A b * ) .  

7.3. Lemma.  I n  an l-group, i] x, y and b are >= O, then 

( x +  y) A b ~ _ x A b +  y A b .  

7.4. Theorem. I f  L i m x ,  = x and Limy¢ = y in  G, then Lim(--x i )  = - -x ,  
iEI  ]EJ iEI  

Lira ( x i + y ¢ ) = x + y ,  Lim ( x i V y j ) = x V y a n d d u a l l y .  
(i,i) 6 I × J  (i,])El×J 

This follows from 7.2 and 7.3. For instance 
ix,  v - x v yl  g v - x v + Ix v - x v yl g Ix, - xl + lyJ - y l ,  
hence Ix, V y ~ - - x V y l A b ~  [ x , - - x  l a b +  ] y i - y l A b .  

Compare the next theorem (and its proof) with [8, Thin. 50, p. 1158]. 
7.5. Theorem. I] G is Archimedean, E is a regular extension o/ G, (xi) is a 

net in G and x E G, then Lim(~)x, = x implies Lim(O)x, = x. I / ,  moreover, E too 
is Archimedean, then JAm(G) x, = x and Lim(E) xi = x are equivalent. 

Proo]. By 7.2 it  is sufficient to prove the theorem for xi ~ 0, x = 0. I f  
Lim(E)xt = 0, then v-lim(~)xi A b = 0 for all b ~ 0, b E E ;  in particular this is 
true for b E G. Since the net (xi A b) is bounded in G, this implies by  6.4 
v-lim(a}x¢ A b = 0 for all b ~ 0, b E G, i.e. Lim(a)x¢ = 0. 

Conversely, assume E is Archimedean and Lim(a)x¢ = x. Let  b' be any  
positive element of E. To show tha t  ~-lim(E)xi A b' = 0 we need only show 
inI(E) U' = 0, where U' is the set of superelements of (x i A b') in E.  

Let z E E be such tha t  z g u '  for all u '  E U'. Then z ~ b' and by  Lemma 6.3 : 

(3) z =  V ( E ) ( x , A b ' A z ) =  V (E)(x,Az)  for every i 0. 

Now let a be any positive element of G. From (3) we get 

(4) Z A a ~- V (E) ( (x  i A a) h z A a) for every i 0 . 
i~_ io 

However  v-lim(a)x~ A a ---- 0 implies r-lim(E)x, A a = 0, by  Thm. 6.4, and this 
combined with (4) and Lemma 6.3 shows tha t  z A a ~ 0. 

Since this is true for every positive element a of G we have in particular 
z A x~ g 0 for all i. By  (3) z ~ 0, which establishes the equality inf(E) U' = 0. 

The hypotheses concerning Archimedity are essential in the above theorem. 
Thus if G =  M,  E = J o M  we have Lim(G)(rn = 0 but  not  Lim(E)(0, an) 
= (0,0). I f  G = J o M ,  E = J o R [ ° , I ] ,  then Lim(E)(0, a~ . )=(0 ,0)  but  not  
IAm (a) (0, q,) --- (0, 0). The difficulties with these two examples are eliminated 
if we employ another concept of convergence: l imx i = x, if x is the only 
element satisfying x = V (x, A x) = A (x~ V x) for every i 0. This is weaker 

than  L-convergence and coincides with it  in an Archimedean l-group. The 
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analogue of 7.4 is t rue  for this concept  of convergence too. Proofs  of these facts  
and  others  concerning this  convergence will be incorpora ted  in ano ther  paper .  

I t  follows f rom the  above considerat ions t h a t  L-convergence is mos t  
na tu ra l  in an Areh imedean  /-group. Howeve r  we shall s ta te  theorems and  
m a k e  construct ions for the  general  case, whenever  possible. 

7.6. Proposition. I]  (x~) is a net in  G and x E G, then Lim(a~xi = x i / a n d  
only i /Lim(a*)xt  = x. 

Proo/. Suppose Lim(a)x~ = x and  let b* be a n y  posit ive e lement  of 
G*. Then  there  is b E G with b* = b. Now v-lira(o) ]xi -- x I A b = 0 implies 
v-lim (a*) I x i -  x I A b = 0, hence v-lim (a*) Ixi - x 1 A b* = O. 

Conversely,  if v-lim (a*) Ix i - x/ A b* = 0 for every  posi t ive b* E G*, then  
in par t icular  v. l im(a*)]xi-  x/ A b = 0 for  every  posi t ive b E G, and  hence 
v-lira(a) l x ~ -  x[ A b = 0 (Prop. 6.5). 

7.7. Theorem.  I /  G is the direct union (cartesian product) G = X Gv o/ 
v E T  

commutative l-groups ( G ~ ) ~  and i/  x l E G, x E G, then Lim(a)x . = x i[ a~td 
i t 

only i/ Li.m (G~) x~ = x ~ /or every v E T (here y~ denotes the T-th coordinate o / the  
$ 

element y E G ). 
This follows wi thout  difficulty f rom the  fact  t h a t  for each b > 0, b E G 

the net  (Ixi -- x I A b) is bounded  in G. I n  fact  if u is a supere lement  of ( I x i -  x I A b) 
in G, then  for each T E T u v is a supere lement  of ( I x ~ -  x~I A b v) in G t and  
conversely if s is a supere lement  of (]x~ . ° -  x~'l A b ~°) in G ~0, then  there  is a 
supere lement  u of ( [x~ -  x I A b) in G such t h a t  s = u ~° (choose u ~ =  b ~ for all 

# v0). 
The  analogous proposi t ion for na tu ra l  convergence is t rue  for o rd inary  

sequences (which can be proved  to  be bounded)  bu t  fails to generalize to nets. 

( If  T i s  infinite, a net  (x~) in (7 m a y  have  no superelement ,  even though  v-lim (a~)x~ 
= x ~ for every  v E T.) 

The  significance of the  above  theo rem is i l lustrated in the  following examples :  
Consider M and R[°,ll. I n  R[°,ll L-convergence (but  not  na tu ra l  convergence) 
is equivalent  to  pointwise convergence;  however ,  for  o rd inary  sequences 
L-convergence,  na tu ra l  convergence and  pointwise convergence coincide. 
I n  M Z-convergence  is again pointwise convergence (by 7.5) bu t  na tu ra l  con- 
vergence is not  even for sequences equivalent  to it. Observe t h a t  bo th  M and 
R[°,~l are condit ional ly sa tura ted .  

§ 8. Completion 

A net  (x~)t~ z in G is said to  be L./undamental  relative to G, if 
Lira (a) (x i - xj) = 0. 

( i , j ) E l × I  

8.1. Definition. A c o m m u t a t i v e  1-group G is said to  be L.complete (resp. 
sequentially L.eomplete), if every  Z - fundamen ta l  ne t  (resp. sequence) is L-  
convergent  in G. 

I n  the  case of a Boolean ring B the  Boolean ring ~ of all normal  ideals of B 
is the  min imal  regular  extension of B to  a sa tu ra ted  Boolean r ing 

7* 
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(cf. [8, Thin. 68]). At the same time ~B can be easily shown to be the minimal 
regular extension of B to a Boolean ring which is complete relative to LSwig's 
intrinsic convergence (applied to nets in general). 

However the situation with commutative/-groups is different. The l-group M 
is conditionally saturated but  not sequentially L-complete. Thus L-completion 
goes beyond order saturation; this reveals the importance of obtaining the 
L-completion of an arbitrary commutative/-group.  

One can construct a sequential L-completion of G by the Cantor process 
in wl steps, following the lines of [8]. There are points in [8] where L6wia  
shifts things from B to ~ to facilitate proofs (see for instance the proof tha t  
if (x.) is fundamental in B, then limx~ = [(xi) ] in the "first fundamental ex- 
tension" of B [8, Thin. 133]) but  it is possible to give direct, although more 
elaborate, proofs. We shall not, however, follow this line. Instead, we shall 
obtain an L-completion (~ of G; a sequential L-completion (isomorphic with 
the one obtained by  the Cantor method) can then be constructed by limit 
extensions within ~. 

Our method of L-completion applied to the /-group of all bounded real 
functions on a set X yields (to within isomorphism) the /-group of all real 
functions on X. Taking M as our prototype we observe that  every positive 
real function on [0, 1] (i.e. every positive element of R[°,l]) can be approached 
in the sense of L-convergence by an increasing L-fundamental net (in fact 
sequence) of positive elements of M. As with the classical Cantor process, the 
idea is to represent positive elements ~ of the sought after extension ~ by such 
nets in G. We shall then have Z~ = V (~) xi. Obviously £~ can be represented by  

iE I  
many such nets. To avoid the trouble of taking equivalence classes we choose 
the net of all positive x E G with x ~ 5. The property x ~ ~ can easily be charac- 
terized in terms of G and (xt): x ~  £ --- V(~)xi if and only if x = xAZ~ 

iE I  
---- V (~) (x A xi) = V (G) (x A xi). We thus arrive at the defufition of normal 

iE I  iEI  
Tyramid below (8.3). 

Taking into account Prop. 7.6, as well as the fact tha t  L-convergence is 
weaker than natural convergence, we assume, without loss of generality, 
that  G = G*, i.e. that  G is ~-complete. The assumption is not essential but  
greatly facilitates proofs. We repeat that  the most interesting case is tha t  of 
an Archimedean 1-group G. 

Two nets (xi)iE 1 and (Yj)~ez are said to be L-congruent in (t, if 
Lira (v) (x~ -- y~) = 0. 

8.2. Proposition. A net (xt)iex in G is L-/undamental, i] and only q there is 
a net (yj)jej L.congruent with it, 

In fact if say ] x ~ - - y j i A b g u f o r a l l i ~ i  o , ] ~ i 0 , t h e n  ]x~-x~, ]Ab 
g [ x ~ - Y t o l A b +  lYh--Xi'[Ab--~ 2 u f o r a l l i ,  i ' ~ i  o. 

Let  P = G + = (x E G : x >= 0}. If S is a subset of P which is directed up- 
wards, then the identity mapping of S onto S makes S into an increasing net. 
This net is L-fundamental in G if and only if for each b E P there is a set U ~_ P 
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satisfying: (i) inf(a) U = 0 and  (ii) for every u E U there is an s o E S such t h a t  
(8 -- so) A b _~ u for all s _-> s o, s E S. I n  this case we shall say tha t  the set S 
is L./undamental. 

8.3. Definition. A non-void subset S of P is said to be a pyramid, if it is 
directed upwards  and L-fundamenta l .  A normal pyramid is a pyramid  S which 
contains every  element x E P satisfying x = V (a) (x A 8). I f  S is any  pyramid  

sES " 

we define S -  = {x E P : x = V (v) (x A s)}. 
s E S  

A normal  py ramid  S is an  ideal in P in the sense t h a t  x E S, y E S imply  
x V y E S and  0 ~ x g y, y E S imply  x E S. S -  is the  least normal  py ramid  
containing S and is L-congruent  with S. 

8.4. Proposition. I f  S and T are pyramids, then so are the sets {s + t : s E S, 
t E T}, {s V t : s E S, t E T} and {s A t : s E S, t E T}. I f  S and T are normal 
pyramids, then {s A t : s E S, t E T} too is a normal pyramid and coincides with 
the set-theoretic intersection S f~ T. 

Proo/. P u t  Q = {8 + t : s E S, t E T}. Le t  

(S--So) A b g  u for all s ~  So, s E S  

(1) ( t -  to) A b ~  v for all t ~ to, t ~ T ,  

and s e t q o = S o + t o .  I f q E Q ,  s a y q = s  l + t l , a n d q ~  qo, c h o o s e s g E S ,  t ~ E T  
such %hat s 2 ~ so, s 1 and  t~ ~ to, t r Then  (q - qo) A b g [(s~ + t~)-  (s o + to) ] A b g 
g (s~ - so) A b + ( t ~ -  to) A b =< u + v. Thus  Q is L-fundamenta l .  Similarly 
with ?~he rest sets. 

8.5. Proposition. Two normal pyramids S and T are identical i/ and only 
i] they are L.congruent. 

Proof. Assume S, T are L-congruent  and  let x E S. Suppose Is - t] A x g u 
for all s ~ So, s E S and  all t ~ t o, t E T. We  can assume s o ~ x; then  for  every  
t ~  t o : x - x A t = I x A s  o - x A t ] A x ~  [s o - t  t A x ~ u . W e e a s i l y c o n c l u d e  
A (x -- x A t) = 0, i.e. x = V (x A t), hence x ~ T. Conversely x E T implies 

t E T  t E T  

x E S .  
8.6. Definition. Let P be the set o /a l l  normal pyramids in P. I f  S, T E P 

we define: 
S +  T = { s +  t : s  ~ S , t  E T}- -  

SV T={sVt:sES, tET}-- 

S A T=Sf~T={sAt:sES, tE T} 

S~_T if and onlyif S g T. 

8.7. Proposition. P is a commutative semigroup under +, with the pyramid 
{0} as zero element. The cancellation law holds in P and 

(2) S+ T={0} implies S={O} and T={0}. 

Proo~ o] the cancellation law. I f  S + T = S + T',  i.e. {s + t : s E S, t E T } -  
= { s + t ' : s E S ,  t ' E T ' } - , t h e n { s + t : s E S ,  t E T }  a n d { s + t ' : s E S ,  t ' E T ' }  
a reL-congruen t ;  say  t~ - t '  1 A b < u for  all t = s + t ~ 1 o = s o + t o and all 

' ' ' t '  T '  l ' = 8 ' + t ' _ ~ t ~ = s  o + t o .  Then  for all t ~ t  o , t E T  and all t ' > t  o , E 
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we h a v e : l t - t '  l a b =  I ( s o V s ~ + t ) - ( s  o V s ~ + t ' ) i A b _ - < u , s i n c e s  o V s ~ + t > -  
~_ s o + t oands  o V s~ + t' ~ s~ + t~. We  infer t h a t  T a n d T '  a r eL-congruen t  and,  
by  8.5, T = T ' .  

8.8. Proposition. S ~_ T in P, i] and only i] there is Q E P such that S + Q = T. 
This Q is unique. 

Proo]. Suppose S g T. Fo r  each t E T the  net  (t A s)8~s is L- fundamen-  
tal ;  being bounded  it  is na tu ra l ly  fundamen ta l  and  since G is r -comple te  
dt = V (a) (t A s) exists. Then  

8ES 
(3) 8 A s ( d ~ - - t A s ) = 0 ,  i.e. 8~sV ( t A s - - d ~ ) = 0  for  all t E T .  

I f  tl, t~ E T, then  r - l i m t  1 A s = d r ,  and  ~- l imt  2 A s = d r , ,  hence 
$ 8 

r-lira It 1 h s -  t2 A s[ = [d r , -  dt.]. Howeve r  [tl h s - t2 h s[ =< It I - -  t2[ for all s, 
which implies : 

(4) Idt,- d~l _-< I t1-  tul. 

I n  par t icular  if t 1 ~ tz, t hen  t 1 -- t 2 ~_ d r , -  dr., i.e. t 1 - dr, >= t z - dr. 
Since T is directed upwards  we infer f rom this t h a t  the  set  A = {t - d~ : t E T} 
is also directed upwards .  A is L - fundamen ta l  too, for b y  (4) : 

I ( t a -  dr , ) -  (t~.- d,.)l ___ I r a -  t~l + I d t , -  d,l [ _ 2 It I - t21. 

Thus  A is a p y r a m i d  and  Q = A -  is a normal  pyramid .  I t  remains  to be 
shown t h a t  S + Q = T. 

Assume t o E T. To  show t o E S + Q it  is sufficient, b y  8.6, to show: 

(5) to= A [ t o A ( S + q ) ] .  
sES, qEQ 

I f  ~ 0 ~ t  o A ( s + q )  for  all s, q then  in par t icular  ~0>= t o A ( s + t  o - d r , )  
for all s E S ,  hence ~o~ OA(s - -d t ° )+to>= O A ( t  o A s - d t , ) + t o .  Tak ing  
s u p r e m u m  over  s E S, we infer f rom (3) t h a t  q9 ~_ 0 A 0 + t o = to, which estab-  
lishes (5). Thus  T ~_ S + Q. 

Conversely,  if s o E S, qo E Q, t hen  

so + qo ---- So + tVT qo A (t -- d,) ---- tVr [s o + q o A ( t - d , ) ]  
(6) 

= V [(So+qo) A(s 0 + t - d ~ ) ] .  
tET 

B u t s  o + t - d ~ = s  o V t + s  o A t - d ~ s  o V t ( s i n c e t A s  o - d ~ = <  0 b y ( 3 ) )  
and  s o V t E T (since S ~_ T). T being an ideal in P ,  we infer s o + t -  d~ E T 
for  all t E T and  (6) shows t h a t  s o + qo = rVT [(So + q0) A t '] ,  i.e. s o + qo E T. 

Thus  { s + q : s E S ,  q E Q } ~ _ T ,  hence S + Q = ( s + q : s E S ,  q E Q } - ~ _ T .  
T h a t  S + Q = T implies S g T is obvious and  uniqueness of Q follows f rom 

the  cancel lat ion law. 
Summing  up  the  consequences of 8.8: I f  S, T E P,  then  S V T is the  least  

c o m m o n  "mul t ip l e "  and  S A T the  grea tes t  common  , ,divisor" of S and  T 
in P re la t ive  to  the  opera t ion + .  At  the  same t ime  S V T and  S A T are 
respect ively  the  join and  mee t  of S, T relat ive to  the  par t ia l  ordering g .  

Fo r  each x E P the  set  {y E P : y < x} is a normal  p y r a m i d  in P ,  which we 
denote  b y  ~. 
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8.9. Proposition. I] S is a pyramid, then S -  = V (p) ~ = sup (p) {~ : s E S}. 
8ES 

8.10. Proposition, The mapping P ~ x ~ ~ E P is an embedding of P in P 
which preserves sums, di~erences, the ordering relation and all existing joins 
and meets. 

We now extend the semigroup P to a commutat ive / -group ~ by  considering 
formal differences S -- T of elements of P.  Cf. [2, Chap. XIV,  § 3, pp. 217-218] .  
The set of positive elements of ~ is P with the original ordering, join operation 
and meet  operation. Prop. 8.10 implies: 

8.11. Theorem. (~ is a commutative 1-group which is a regular extension o] G. 
I f  S is a normal pyramid  we shall sometimes find it  helpful to distinguish 

between S as a subset of P and S as an element of P.  Elements of P wiU be 
denoted by  boldface letters S, T . . . . .  while S, T . . . .  will be retained for the 
corresponding sets. The elements ~, ~ . . . .  will be identified with x, y . . . . .  

8.12. Lemma.  I] 0 ~ S ~ x where x E G, then S is an element o] G (more 
precisely there is y E G such that S = (s E G : s <= y}). 

Proo]. The pyramid  S is L-fundamental  and bounded in G. I t  is therefore 
naturally fundamental ,  hence natural ly convergent in G. 

8.13. Proposition. I1 (xi) is eventually bounded in G and x E G, then 
v-lim(a)xi = x i / and  only i[ v-lim(a)xi = x. 

Proo]. Suppose I x i - x  I ~ c for all i ~ i 0 (c E G). Suppose further 
v-lim(a)xi = x and set 0A = (S : S is a superelement of (Ixt - xl) in ~ such tha t  
S g c}. Then OA ~ G by  Lemma 8.12 and inf(a) 02 = 0. 

8.14. Theorem. 1I (xi) is a net in G and x E G, then Lira( a)x~ = x i/ and 
only i/Lim(e)x~ = x. 

Proo]. Suppose Lim(a)xi = x. We shall show tha t  for every S ~ 0 in 
v-lira ( ~ ) ] x ~ - x  I A S = 0 .  Fix  S and define 9 2 = { S - - s + u E ~ : s E S  and 
u is a superelement of (Ix t - x[ A s)i in G}. 

Then inf (a) 02 = 0, since X g S - s + u for all s and all u (X E ~) implies 
X g S -  s for all s, hence X ~ 0 by  8.9. Moreover every element of 02 is a 
superelement of ( ]x~ -x [  A S) in ~, since given s and u [ x i - x [  A S 
= I x , - x l  A (s + S - s) __< I x , - x l  A s +  Ixi--x] A ( S - s )  g t x , - x l  A s + S -  s 
_--__ u + S - s eventually. Thus ~-lim (a) [xi - x[ A S = 0. 

Conversely, suppose Lim(~)xi = x. Then for every positive S in 
v-lira (a)[x~ -- x[ A S = 0; in particular v-lira (~)[x~ -- x] A b -- 0 for every 
positive b E O. By  Prop. 8.13 ~-lim(a) Ix i - x t A b -- 0 and the proof is complete. 

We are now in a position to prove tha t  every L-fundamental  net  in (~ 
is L-convergent in ~. 

8.15. Lemma.  I~ (S~)i~x is an increasing net in P which is L-lundamental 
relative to ~, then iV(z g) S~ exists. 

Proo I. We shall show tha t  R = O S~ is a pyramid and tha t  R -  is the re- 
i E I  

quired supremum. 
Since (S~) is L-fundamental  u-lim (~) IS~ - S~I A B ~- 0 for every B E ~ ,  

in particular for every b E P.  Fix b and for each superelement A E P of 
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([S~-- St[ A b)~,j choose i(A) E1 so t h a t  I S , -  Sj[ A b g A for all i , j  ~ i(A). 
Define 
2: = (2 (A + S~ (A) - s) : A is a supere lement  of (lSi - Sj[ A b),, j and  s E Si (A)}. 

Clearly inf (~) Z: = 0. We  shall prove  t h a t  every  e lement  o fXis  a supere lement  
of I s -  s '  t A b, s, s '  E R t .  I n  fact  let 2(A + S~(A) -- so) E Z.  Then  for every  
s E R  with  s ~ s  o there  is an index i ( s ) ~  i(A) such t h a t  s E St (s) (Si, i E I  
is increasing), or equivalent ly  s ~ S~(8); hence I s -  s0] A b = ( 8 -  so) A b g 
-- (S~(s) --  so) A b g~(St(s) - Si(A)) A b + (Si(A) -- so) h b g A + S~(A) --  so. 

W e i n f e r v -  lira (a) s -  s' A b = O. By  Prop. 8.13 v- lira (a) ls-- s'I A b= O 
( s , s ' )ERxl~  ( s , s ' )ER×R 

and thus  R f is L - fundamen ta l  re lat ive to  G. Defining S = R -  = x=,{i ~" S,)/- 

we see, by  8.9, t h a t  S = V (~) s = V (~) V (~) s = V (~) St. 
sER  i E I  sES¢ i E I  

8.16. Corollary. ~ is y-complete and ~ = ~. 
8.17. Lemma.  In  a y-complete commutative l-group, i/ (xi) is an L-/unda- 

mental net of positive elements and V is the set o/positive subelements of (xi), 
then (xl) and V ~ are L-congruent. (This l e m m a  is ac tual ly  t rue  in every  com- 
m u t a t i v e / - g r o u p . )  

Proo/. For  each i E I the  net  (x~ A x~)kc1 is bounded  and L- fundamenta l ,  
hence na tura l ly  fundamenta l ,  therefore na tura l ly  convergent ,  say:  

(7) v - l i r a  x i A x k = Y i  . 
k 

Now v-lira lxt A x~-- xj A xkt = IY, -  Y~I and  since Ixi A x ~ -  x~ A xk] <---- ]xi-  xs] 
k 

for  all k we infer 

Le t  V, = {v : v is a posi t ive sube lement  of (x i A x~)~}. I t  is easy to  prove  t h a t  

(9) V = U V~ 
i E l  

(10) y, = sup V, (by  (7)).  

Assertion. E v e r y  v E V is f requent ly  in (Vi),EI, i.e. for every  i E I there  is 
p _>- i such t h a t  v E V~. 

I n  fact  let v E V and i E I .  Then  v E V~ for some ] E I b y  (9), i.e. there  is 
k (v) E I such t h a t  v g x~ A x ,  for  all k => k (v), hence v ~ x ,  for all k >= k (v). 
Choosing p ~ i, k (v) we have  v ~ x ,  for all k >= p, hence v =< x~ A x ,  for  all 
k _~ p,  i.e. v E V~. 

W e  now proceed to  show t h a t  

(11) L i m  Ix , - -  v I = 0 .  
iEI ,  vE V 

Fix  b ~ 0. Le t  A be the  set  of supere lements  of ( I x ~ -  x~] A b)~,~ and  for  
each a E A choose i (a) such t h a t  

(12) [x~-- x¢l A b _~ a for all i ,] ~_ i (a) .  

Then,  by  (8): 

(13) [y~-- y~] h b _~ a for all i,~ ~_ i (a) .  
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Recall  t h a t  y~(~) = sup Vi(a) b y  (I0) and  define • = {3a + Yi(a)-- v : a E A 
and v ~ Vi(a)}. Obviously  i n f ~  = A A (3a + Yt(a) -- v) = O. W e  shall show 

a~A vEV~(~ 
t h a t  eve ry  e lement  of ~ is a supere lement  of  (txt -- v I A b)i,~, i~iore precisely:  

I f  3 a + yi (a)-- vo E f2, then  for  all i ~ i (a) and  all v ~ v o (v ~ V) 

(14) Ix~ - v I A b ~ 3a  + Y i (a ) -  Vo. 

Le t  i ~ i (a)  and  v ~ vo. B y  the  Assert ion p roved  earlier there  is some 
p ~ i such t h a t  v ~ Vv, i.e. v <= yr. Then  

l x , -  v3 =< Ix , -  y~l + ly~- y~t + y ~ -  v ~ i ~ , -  y~t + l y , -  y~l + y o -  v0 _~ 

<= i x , -  y~l + ly~-  y.I + l y ~ -  y.o)i  + y.o) - Vo 
since v o ~ Vi(a). Apply ing  L e m m a  7.3 and  using (12), (13) we infer:  

(15) ]xi--  v] A b g [x~-  yi[ A b + a + a + yt(a) -- Vo. 

H o w e v e r  ] x i - Y i l A b = v ' l i m [ x ~ - x ~ A x k ] A b  b y  (7) and  since 
k 

Ix i - x~ A xk[ A b = ]x i A x~ - xi A xkl A b <= [x~ -- xkl A b <= a eventual ly  (for 
k ~ i(a)), we have  ] x i - Y ~ I  A b ~ a and  (15) yields (14), which in tu rn  
implies (11). The  proof  is complete.  

8.18. Proposition. Every L. /undamental  net (x~) in G is L-convergent in ~. 
Proo]. I t  is sufficient to  p rove  the  theorem for  nets  of posi t ive elements,  

for if (zi) is an a rb i t r a ry  L . f u n d a m e n t a l  net  then  the  nets  (z~) = (z i V O) and 
(z~-) : ( - z  i V 0) are L - fundamen ta l  (1 z+ - z~] g ]z~-  zil ) and Lim(a)z~ - 

i 

-- L i m  (~) z~- = L im (~) z~. 

I f  (xi) is an L - fundamen ta l  net  of posi t ive e lements  in G and  V is the  set  
of i ts  posi t ive subelements ,  then  V t is L - fundamen ta l  relat ive to  G, by  
Proposi t ion 8.2 and  the  preceding lemma.  Hence  V is a pyramid .  S = V-  is a 
normal  p y r a m i d  and  S = sup (~) V = Lim(O)v -- Lim(0)xi by  the  l e m m a  again.  

vEV iEI 
8.19. Theorem.  (~ is L-complete. 

I n  fac t  every  L - fundamen ta l  ne t  in (~ is L-convergen t  in ~ -- (~. 
8.20. L e m m a .  I / G  is conditionally saturated, T is a pyramid in  P and A 

a subset o / T  which is directed upwards, then A too is a pyramid.  
Proo~. For  each t ~ T define d~ = V (G) (t A a) ~ t. B y  the  regular i ty  of (7 

aEA 
in ~ d~ -- V (~) (t A a). The  ne t  ( d ~ ) ~  is d i rected upwards  and  L- fundamenta l ,  

a~A 
since l d ~ -  d J  <-- lt~ - t~l. Hence  B -- {d~ : t ~ T} is a p y r a m i d ;  se t t ing 
S = B -  we have  

8 =  V (~)d ,=  V ((~) V ( ~ ) ( t A a ) =  V (~) V ( ~ ) ( t A a ) =  V (~)a 
tET lET a~A aEA ~(T aEA 

_ V (a) (t A a). Thus  A ~ is L-convergen t  in ~,  since a E A g T implies a = e e 

hence L - fundamen ta l  in ~. B y  Thm.  8.14 i t  is L . f u n d a m e n t a l  in G too.  
8.21. Theorem.  I1 G is conditionally saturated, then so is ~. 
Prool. I f  St ~ g T in (~ for  all i E I ,  t hen  the  set  A = U S~ is obviously 

directed upwards  and  A g T.  B y  the  preceding l e m m a  A~ is a p y r a m i d ;  
se t t ing S = A -  we have  S ~- sup (~) A --- Y(~) V (a) s - V (~) S~. 
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The construction of ~ was made under the assumption that  G is v-complete. 

If  G is not  v-complete we define ~ = ~ .  Combining Prop. 7.6 and Thm. 8.14 
we see tha t  the latter theorem is valid without the tacit  assumption G = G*. 
Theorem 8.21 now reads: If  G is Arehimedean, then ~ is conditionally saturated. 
Every positive element of G is a join of positive elements of G. I t  follows tha t  
every element of ~ is the 1,irnit of some net in G. Hence: 

8.22. Proposition. G is dense in ~x relative to L-convergence o] nets. 

8.23. Corollary. G is L.complete, i/ and only i/ G = ~. 
Thus ~ can serve as a "minimal" L-complete extension of G, in the sense 

that  it is generated by G with respect to L-convergence. In  this connection 
notice tha t  in the next  theorem the assumption of Archimedity is essential 
(consider G -= M, E = J o M). 

8.24. Theorem. I] G is Archimedean and E is an L-complete Archimedean 
and regular extension o/G,  then ~ is isomorphic with a regular 1-subgroup o] E 
containing G, under an isomorphism that maps each element o/ G onto itself. 

Proof. G* can be regularly embedded in E by Thm. 6.9. If S is a normal 
pyramid in G*, then S+ is L-fundamental in E, by Thin. 7.5, hence V(E)s 

sES 
exists. Mapping S-+ V(~)s and then identifying S with its image in E we get 

s E S  

S = V(E)s. This embedding can obviously be extended to non-positive elements 
sES 

of ~. 
Now let A <~)8~=0 and e G  S, for all i E I  (eEE) .  Choosing an i 0 E I  

iE l  
we have: 

(16) e = e A S i , = e A  V(E)s= V(~)(eAs).  
sESi, sESi o 

However e A s < St A s for all i E I and by  8.12 S~ A s E G*. Since A(a)(Si A s) 
i E l  r 

= A(a*)(St A s) = 0 and (7* is regular in E we infer e A s = 0 for every s E Si, 
i E I  

and by  (16) e < O. 
8.25. Theorem. A sequence (x,) in G is L. /undament~ in (7, i / a n d  only i/ 

it is o-convergent in ~. 
In  fact in ~ an L-fundamental sequence is bounded (if (xn) is L-fundamental,  

oO 

so is ~ ,  x. V x,, x 1 V x, V x 3 . . . .  hence nVJ~)x, exists) and therefore naturally 

fundamental;  the theorem then follows from 6.10. Thus sequence L-con- 
vergence in (7 is the restriction to G of sequence o-convergence in ~ and we can 
construct a sequential L-completion of G by repeated extensions in ~ (see § 5) ; 
we arrive at  a commutat ive/ .group G [col] which is regular over (7 as well as 
regular in ~. I t  is also topologically invariant over G: 

8.26. Proposit ion.  I 1 H is an l-subgroup o] ~ containing G, then G is regular 
in H and H is regular in ~. For (x~) and x in (7 Lim(a)x~ = x, Lim(u~x~ = x 
and l,lm(~)x~ = x are equivalent. 

Proo]. Suppose S~¢(B) 0, S~ E H. If 0 g T g 8~ for all i E I (T E ~) and if t E T, 
then  t ~ S~ for all i E I .  Since t E (7 ~ H we infer t = O. Thus  T = {0}, S~;(a)0. 
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Tha~ Lira(a) x i = x implies Lira(H) x i = x and  Lira(H) xi = x implies Lim(a)xi 
=- x is proved much  as the  first half  of Thin. 8.14. 

8.27. Theorem. I f  G is Archimedean and E is a regular extension ol G which 
is also Archimedean and sequentially L.complete, then G [COl/is isomorphic with 
the E-o-closure of G in E which is regular in E, under an isomorphism that maps 
each element o /G onto itself. 

The embeddabi l i ty  of G[o~l] in E is a consequence of Thin. 7.5. The 
regulari ty of G [o)i] in E is proved by  the  same a rgument  t ha t  served to es- 
tablish Thin. 6.16. 

8.28. Theorem. I f  G is the l-group of all bounded real functions on some 
set X ,  then G [col] and (~ are isomorphic with the 1-group of all real functions on X.  
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