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§ 1. Introduction 

Let M be a compact, irreducible Riemannian globally symmetric space, 
Io(M ) the largest connected group of isometries of M. As customary, let the 
Riemannian structure of M be that induced by the negative of the Killing 
form of the Lie algebra of Io(M). Let ~c be the maximum of the sectional 
curvatures of M whose values are then restricted to the interval [0, ~c]. By a 
theorem of E. CARTAr~, the maximum dimensional totally geodesic sub- 
manifolds of M of constant curvature 0 are all conjugate under Io(M ). In this 
paper we shall prove an analogous statement for the maximal curvature to. 

Theorem 1.1. The space M contains totally geodesic submanifolds of constant 
curvature ~. Any two such submanifolds of the same dimension are conjugate 
under Io(M ). The maximal dimension of such submanifolds is 1 + re(if) where 
re(if) is the multiplicity of the highest restricted root g(see §2). Also, ~: = I[gll 2, 
where II II denotes length. 

Remark. Except for the case when M is a real projective space the sub- 
manifolds above of dimension 1 + m(~) are actually spheres. 

During the proof of Theorem 1.1 we shall obtain the following result : 

Theorem 1.2. Assume that the space M above is simply connected. Then the 
closed geodesics in M of minimal length are permuted transitively by Io(M). The 
minimum length is 2rc/ll~l. 

For Grassmann manifolds a result like Theorem 1.2 is proved and applied 
by ELiASSON [3] in a study of closed geodesics on manifolds homeomorphic to 
Grassmann manifolds. Certain totally geodesic spheres in Grassmann mani- 
folds have been studied by WOLF [6], [7]. See also RAUCH [8]. 

Notation. We shall use the customary notation Z, R, and C for the integers, 
real numbers and complex numbers, respectively. Lie groups are denoted by 
capital Roman letters and their Lie algebras by the corresponding lower case 
German letters. The adjoint representation of a Lie group (resp. Lie algebra) 
is denoted Ad (resp. ad). If N is a manifold, p a point in N then N v denotes 
the tangent space to N at p. 
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§ 2. Root space decompositions 
Let tt be a compact semisimple Lie algebra over R, 0 an involutive auto- 

morphism of tt, Let u c be the complexification of u, g the real form of u c 
corresponding to (u, 0), that is g = f + p ,  where [= {T~u[OT= T} and 
p={iXlXsu, OX=-X}.  Then u = t + p , ,  where p , = i p .  Let a C p  be a 
maximal abelian subspace, put a, = ia and extend a ,  to a maximal abelian 
subalgebra t of u. Then the complexification t ~ C u c is a Cartan subalgebra 
of u c. Let A denote the corresponding system of nonzero roots, Ap the set of 
a ~ A which do not vanish identically on a ~ (the complexification of a in u~). 
Let Z denote the set of restrictions of elements of Ap to a~; its elements are 
called restricted roots. Let t r = tc~t, h,  = itv Then all a ~ A take real values on 
a + h,. Select compatible orderings in the dual spaces of a + h, and a and let 
A + and X + denote the set of positive elements in A and X, respectively. I f f i s  a 
function on t c its restriction to a c is denoted f For  each 2 ~ Z the number of 
a ~ Ap such that 2 = ~ is called the multiplicity of 2 and is denoted by m(2). 

For  each linear form 2 on a c put 

t~={T~t[(adH)2T=2(H)2T for all H ~ a , }  

pa={Xep,}(adH)ZX=2(H)2X for all Hea,}.  

Then t~=f_~,  P,~=P-z and fo and Po are the centralizers of a ,  in t and p, ,  
respectively. The endomorphisms (ad H) 2 (H e a , )  commute and are symmetric 
with respect to the Killing form B of u c. But the eigenvalues of (adH) 2 are 0 
and 2(H) 2 0l e X) (cf. [4], p. 248). It follows that 

t z=Px={O}  if 2 ¢ Z u { O }  

and that we have the direct decompositions 

(1) t=go+ ~ t z ,  

(2) P , = P o +  E P x "  

For  each a e A select X~ 4:0 in u c such that [H, XJ  = e(H)X~ for all H e ft.' 
Extend 0 to an automorphism of tf, also denoted 0, and let 

u + (00 = C(X,  + OXA n-  (a) = C(X~ - OX~). 

Then we have for 2 ~ S (cf. Lemma 3.6, Ch. VI in [4]) 

(3) t~+it~= ~,u+(a) ,  p ~ + i p z = ~ u - ( ~ ) .  

Since 2 is real on a, the two right hand sides in (3) are invariant under the 
conjugation of u ~ with respect to ~, so 

(4) t . ~ = t n  ~ u+(a), p . ~ = p , ~  ~ u-(a)  

and 

(5) to=t,+tc~ F.u+(a), p o =%.  
~ = 0  
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Using the well-known commutation relations between the X,  the following 
two lemmas are obtained from (3), (4), and (5) without difficulty. 

Lemma 2.1. Let 2, #~Zw{0}.  Then 

[f~, p,]  Cp~+,+p~_~,  

[f~, ~ ]  C f~+~ + ~_~, 

[p~, p,] Cf~+~+ f~_~: 

For each linear function ~ on t c let He s t c be determined by B(H¢, H) 
= ~(H) (H s t c) and if t/is a linear function on a c let A, e a ~ be determined by 
B(A,, H) = q(H) for all H e a c. Put ( ~ ,  42) = B(H¢,, Hcz), (tl~, t/2 ) = B(A,,, A,z ) 
and [~l = ]H¢I = B(H¢, He) 1/2 if He ~ it, [l•ll = [[A,l[ = B(A,, An) 1/2 if A , e  a. If 
2 e Z let az denote the subspace RiAz of a,. If a e A then H,  - Aa et t , .  

Lemma 2.2. Let 2 e S. Then 

[L, P~] C P2~ + a~. 

Let Wt and Wo be the Weyl groups of (u, t) and (u, a.), respectively. They 
act on t c and a ~ as well as on their duals (sHe = H,~ etc.) The sets d and Z have 
been ordered. Let C C a + t~. be the Weyl chamber where all ~ s A + take 
positive values and let Cp C a be the Weyl chamber where all 2 ~ S+ take 
positive values. By the compatibility of the orderings, C, C CI(C), CI denoting 
closure. 

Lemma 2.3. Let 6 e A +denote the highest root. Then H a ~ CI(C), A~ e CI(Cp) 
and A~ + O. 

Proof. Since W~ permutes A and W, permutes Z, the two first statements 
are contained in the general statement that the closed Weyl chamber consists 
of those elements which dominate their transforms under the Weyl group. 
Finally 6 > ~ for all a e A so, by the compatibility of the orderings, 3-~ 2 for 
all 2 e X; hence 3~: 0. 

Lemma 2.4. Let ~ ~Ap. Then 

(a, ~) = rn(~, ~), where m = 1, 2 or 4. 

This is well known (cf. ARAK~ [1], p. 6---7) but we give a direct proof. The linear 
form a + 0a is 0 on a; it is not in A because then [X~, OX,] would tie in 
f + if, whereas clearly [X~, OX~] C p + ip. If a + 0a = 0 then m = 1. If a + 0a 4= 0 
then a + 0a is not a root so the integer 2 (0~t, a)/(~, ~) is > 0, whence the angle 
between H,  and Ho~ is 0, n/3 or n/2. But 

1 
(6) a-i = -~(H, - Ho, ) 

so the lemma follows. 

§ 3. Closed geodesics of minimal length. Proof of Theorem 1.2 
Preserving the notation of§ 2, we assume now that u is simple. Let U be the 

simply connected Lie group with Lie algebra u, "extend" 0 to an automorphism 
21" 
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of U and let K be the group of fixed points of 0. As is well known, K is con- 
nected. The negative of the Killing form B of u c induces a Riemannian structure 
on U/K and on U. Let o denote the point {K} in U/K and let Exp denote the 
Exponential mapping of p ,  onto U/K. 

Let 7(t) ( - ov < t < or) be a geodesic in a Riemannian manifold. The geo- 
desic is called closed if there exists a number L > 0  such that 7(t + L ) = 7 ( t )  
for all t. The geodesic is said to be simply closed if in addition 7(tl)4: 7(t2) for 
0 < t a < t 2 < L. If jtl is the arc parameter, L is then called the length of the 
simply closed geodesic. 

If a geodesic in the symmetric space U/K intersects itself then since it is 
an orbit of  a one-parameter group of U it is a simply closed geodesic (see e.g. 
[4], p. 355). 

Lemma 3.1. The shortest, periodic one-parameter subgroups in a simple, 
simply connected, compact Lie group U have length 4~z/161 and they are all 
conjugate in U. 

Let C,  = iC C t and consider the polyhedron P ,  C C,  given by 

P ,  = { n C t[ (2 ~ i)- 1~ (H) > 0(ct e A + ), (2 n i)- a 6 (H) < 1 }. 

Since U is simply connected, the unit lattice te = {H ~ tlexpH = e} satisfies 
the well-known relation 
(1) t enCl (P , )  = {0} 

([4], p. 264). For  ~ e A let t, = {H e tI~t(H) e 2giZ} and let T, be the centralizer 
of expt,  in U. In view of Lemma 4.5, Ch. VII in [4], T~ contains an element u 
such that the restriction of Ad(u) to t is the reflection s, in the hyperplane 
~t = 0. It follows that 

(2) exp(2 H(~)) = e,  

where H(~)= 2~ziHj[~[ 2 is the projection of 0 onto the hyperplane ~ = 27zi in t. 
Each H ~ t e  satisfies f l (H)e2~iZ for all f l e a  so it is clear from (1), (2) and 
Lemma 2.3 that the one-parameter subgroup t ~ exp(2tH(6)) is periodic and 
has length 21H(fi)l. Now let t-~ exptX be any periodic one-parameter subgroup 
of U of length <2[H(6)[, the parameter being fixed such that exp t X + e for 
0 < t < t and expX = e. Then for some u e U, H1 = Ad(u)X lies in CI(C,) and 
since expH a =e ,  6(HO=n2~i where n ~ 0  in Z. Since H a 4=0 we have n + 0 .  
Also n 4= 1 by (1). But the point 2H(6) is the only point which minimizes the 
distance from 0 to the union of the hyperplanes 6- -n2~i (n  > 2) in t. Thus 
Ha = 2H(6) and the lemma is proved. 

We can now prove Theorem 1.2 for the space U/K. First observe that if 
H e a ,  then ExpH = o if and only if exp2H = e. Let A(~ = ~iA~t]~t[ 2, (oreAd), 
and let us verify the relation 

(3) Exp(2A (~) = o. 

Let ]~]2 = mll~l[2, so by Lemma 2.4, m =  1, 2, 4. In the first case, H,=A-~ and 
(3) reduces to (2). In the cases m = 2, 4 we use i H , -  iA-~ ~, so by (2), 

exp(2zriA~[[~][ 2) e exp(2ztiHJ[[~[] 2)K = K ,  
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proving (3). In particular 4A(3) e te, and since 6(4A(5)) = 4r~i and 4A(5)eCI(C,) 
we have by (1), 4tA(5) ¢ t e for 0 < t < 1. Consequently the geodesic 

(4) t ~ Exp(2t a (3)) 

is simply closed and has length 2 IIA(J)II = 2rc/ll~[{. 
Now let t ~ E x p t X b e  any simply closed geodesic of length <2rc/HSlt 

such that ExpX = o, Expt~X #: Expt2X for 0 < tl < t2 < 1. Select k E K such 
that H = Adv(k)XeCI(C~,)  where Q ,  = iCp. Then 2H ~ te so 

6 ( H ) = m ~ i ,  
where m > 0  in Z. But H + 0  so m + 0  and rn+ 1 because of(l) .  But the point 
2A(3) is the only point which minimizes the distance from 0 to the union of the 
hyperplanes 6-= m~i(m > 2) in %. Thus H = 2A(5) and Theorem 1.2 is proved 
for the space U/K. 

In order to complete the proof of Theorem 1.2 we must consider the group 
U as a symmetric space U x U/U* (U* = diagonal in U x U) with Riemannian 
structure Q* defined by the Killing form B* of u x u, the identification being 
made via the mapping z :(ul, u2)U*--,uj u21 (u~, u 2 ~ U). The tangent space to 
U x U/U* at o is according to the usual identification given by the orthogonal 
complement of the Lie algebra of U* in u x u, hence equals the space 
{(X, - X)] X e u}. Since 
(5) B*((X, - X ) ,  (Y, - Y))= 2B(X, Y) X, Y e u  

and since d r o ( X , - X ) = 2 X  it is clear that for each tangent vector Z to 
U x U/U*, 
(6) 2Q*~Z, Z) = Q(dz(Z), dz(Z)).  

Here Q is the Riemannian structure on U defined by B. The space {(H, - H)[H e t} 
is a maximal abelian subspace of the tangent space above and is contained 
in the Cartan subalgebra t x t of u x u. The roots of (u x u) c with respect to 
(t x t) e are given by the linear forms 

(H1, H2)-"~(H1), (Ht, H2)-~o~(H2) (Ht, H2 ~ if) 

as 7 runs through the roots of u c with respect to i x. The highest restricted root, 
1 1 

say 5, is given by 5(H, - H )  = 6(H) (Het) and by (5) we find As=  (~-Ha, - -~-H~) 

and 2115112--10t 2. In the Riemannian structure Q* the one-parameter sub- 

groups from Lemma 3.1 have length 2~]/~/101 which equals 2n/]t611. This 
concludes the proof of Theorem 1.2. 

We note some simple consequences of the proof. First we have from (2) 
and (3), 

Corollary 3.2. Let ct ~ A. Then 1~1 <= }6[ and II~It _-< ll~-ll. 
Corollary 3.3. Suppose ~ e A and ~ 4: + 6.. Then 

2 ( ~ ' 6 )  0 or +_1 
(0, o) 

so the value is 0 if 2~ ~ ,Y,. 
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1 . 
In fact, fi(A(6))= ni and by (3), a(A(3"))=--finn where n e Z. But 6 -  a is 

a positive integral linear combination of the simple roots in A +, so n = 0, 
_ 1, + 2. But if n = ___ 2 we deduce from Cot. 3.2 that g =  + 

Let M be as in Theorem 1.2. For each p e M let Ap denote the set of 
midpoints of closed geodesics of minimal length passing through p. We call 
A e the midpoint locus (associated with p). 

Corollary 3.4. For each p ~ M the midpoint locus ~ Ap is a totally geodesic 
submanifold of M and is an orbit of the isotropy subgroup of lo(M ) at p. 

In fact let q e Ap. Then the geodesic symmetry of M with respect to q 
leaves p fixed and consequently maps Ap into itself. In addition to Theorem 1.2 
we now need the following more general lemma whose proof is contained in 
the proof of Prop. 5.1 in [-5]. 

Lemma 3.5. Let Q be a Riemannian globally symmetric space, N a sub- 
manifold of Q such that for each n ~ N, N is invariant under the geodesic 
symmetry of Q with respect to n. Then N, with the Riemannian structure induced 
by Q, is totally geodesic in Q. 

We conclude this section with a further description of the midpoint locus 
and the space of closed geodesics of minimal length. 

For  e = 0, 1/2, 1, put 

Then by Cor. 3.3, t(1) = t~., p(1) = p~- and 

t = t o +  t(0) + f + [(1), P,  = P o +  p(0)+ p + p(1). 

P r o p o s i t i o n  3.6. Let S and S', respectively, denote the centralizers of 
exp2A(~) and A(S) in K. Their respective Lie algebras are given by 

(7) ~ = to + t~(0) + [~-, ~'---- ~o + t(0). 

In the space U/K the midpoint locus A o can be identified with K/S and the space 
of closed geodesics of minimal length is identified (vith U/S'. Let o ' =  ExpA(3"); 
then 

Ao, = Exp p . 

Proof. The relations (7) are immediate. Using 0 one finds that an element 
k ~ K commutes with exp2A(3") if and only if k leaves the point ExpA(6") fixed. 
Hence .d o = K/S; the identification of U/S' is also immediate. Finally 

Ao, = exp(-A(~))K expA(3") • o. 

If T~ ~ it is clear that 

Adv (exp( - A (6))) T = - sinh (ad (A (6))) T (mod ~) 

This leads to a natural definition of the Radon transform for M, generalizing the one given 
in [5]. 
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so the curve 

t ~ exp( - A (6)) exp t T exp (A (S)). o 

has tangent vector - sinh(adA(6))T at t = 0. But 

sinh(adA(~))f= P ( 2 ) '  

which finishes the proof. 

§ 4. Totally geodesic spheres. Proof of Theorem 1.1 

In order to compute the maximal curvature x for the space U/K from § 3 
it suffices to consider plane sections C p,  spanned by orthonormal vectors H, 
X where H ~ C~,. The corresponding curvature is then given by a formula of 
Cartan (cf. [4], p. 205) as 

(1) 

Decomposing X by (2) § 2, 

we have 

so ~ IISII 2. 

B((adH)2X, X). 

X = X o +  ~ Xa 
~ e ~  + 

B((adH)2X, X)= ~, 2(H)2B(X~, Xz)<= 6(H) 2 
),e,~ + 

Now since 26  is not a restricted root it is easily seen from Lemmas 2.1 
and 2.2 that the subspace a~ + p~ of p ,  is a Lie triple system. Let S and ~ be 
as in Prop. 3.6. If 2 e E  + such that (2, S) = 0  then by Cor. 3.3 neither S + 2  
nor 6 - 2  is a restricted root. Hence by (7) § 3 and Lemmas 2.1 and 2.2, 

(2) [~, a~] = p~, [~, p~] = a ~ +  p~. 

Since a~- is a maximal abelian subspace of a~+ p~-, the globally symmetric 
space M~=Exp(a~-+py) has rank one. If H, X are orthonormal vectors, 
H e a~-, X e py, the corresponding sectional curvature of M~ is by (1) equal to 
116112. It follows that x =  1161[ 2 and that M~ has constant curvature. Let So 
denote the identity component of S. Since [~, ay] = py it is clear that the orbit 
Adv(So)" A(S) is the sphere in a~-+ py with center 0, passing through A(6). 
Since all s ~ S O leave ExpA(6) fixed all geodesics in M~ through 0 pass through 
o' = ExpA(6). Hence M~ - o' is the diffeomorphic image of a ball (I-4], p. 356) 
so M~ is simply connected, thus a sphere. 

Now since the geodesic symmetry s o, of U/K leaves o fixed it is clear that 
any geodesic segment of minimum length joining o and o' is a part of a closed 
geodesic of length <2n/llS[[. By Theorem 1.2 it is a simply closed geodesic 
of length 2n/116tl. The closed geodesics of this length, starting at o, and 
passing through o' are permuted transitively by S, hence form finitely many 
distinct spheres ,~ of dimension 1 + m(S), namely the images of M~ under S. 
Let at denote the unit sphere in the tangent space (Xi)o. Each at is an orbit of 
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Adv(So) so any two different a i are disjoint. Now let 2; be any totally geodesic 
sphere in U/K of curvature II S[I 2. Using a motion u ~ U we may assume that S 
passes through o and o'. Then the unit sphere a in the tangent space (Z)o is 
contained in the union of the a~. But a is connected so it is contained in a single 
a~. Hence there exists an element s e S such that s" Z ( M~. 

Next we observe that 

3 [a~+ p~-, a~+ p~]. 

The right hand side of this relation is a Lie algebra t' contained in t and 
ad,(t') restricted to a~-+ Px is the Lie algebra of the special orthogonal group 
of the tangent space (M~)o. It follows that this group is contained in the 
restriction of Adv(So) to (M~) o. Thus any two totally geodesic spheres of the 
same dimension, contained in Mo, are conjugate under a member of U; 
to finish the proof of Theorem 1.1 for the space U/K it remains to verify that 
any totally geodesic submanifold N of U/K of constant curvature  113112 is a 
sphere. But if N were not a sphere it is clear, passing to the universal covering 
of N, that N would contain a simply closed geodesic of length <2rc/[ISl[ z 
which is impossible. 

If M is any compact Riemannian globally symmetric space such that 
Io(M ) is simple then Theorem 1.1 can be applied to the universal covering 
space of M and the theorem follows for M. 

Now let us establish the remark following Theorem 1.1 in the case when 
Io(M) is simple. Let Z denote the center of U and put 

K z = {ulu-'O(u) ~ Z}.  

Then U/K z is a Riemannian globally symmetric space and any such space, 
associated with (u, 0), actually covers U/Kz ([4], Theorem 8.1, Ch. VII). It is 
appropriate to call U/K z the adjoint space of the orthogonal symmetric Lie 
algebra (n, 0) because if its construction (which does not require n to be 
simple) is carried out for the group case u = o x o, 0 interchanging the two 
factors, then one obtains the adjoint group of o. Under the covering map 
q~:uK~uK z of U/K onto U/Kz the sphere Exp(a~-+ p~-) is mapped onto a 
sphere if and only if ~o(ExpA(6))+o. But q~(ExpA($))=o if and only if 
expA(6)~ Kz, which is equivalent to exp2A(6)~Z, which in turn implies 

/ 4 N  

K = S. But if K = S then by Prop. 3.6, p ( 2 )  = 0 SO 

p , = a , = p ~ - +  ~ Pz. 
(Z, ~") =0  

Thus 27+ has the property that all 2 ~ 27 + -{6-'} are perpendicular to 6.. This 
means 27 + = {6-} so U/K is a sphere and consequently, U/Kz is a real projective 
space. 

We have now established Theorem 1.1 and the subsequent remark for the 
case when Io(M) is simple. The remaining case when M is a group (cf. [-4], 
Prop. 1.2, p. 327) is handled quite similarly. We only indicate the necessary 
changes. 
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Suppose U has Riemannian structure given by - B .  Then if X, Y are 
orthonormal vectors in u the corresponding sectional curvature of U is 

1 
~-B((adX) 2 Y, r ) ,  

and the maximum sectional curvature is readily found to be 11612. However, 

with the conventions in Theorem 1.1 we must view U as U × U/U*, whereby 

1 (cf. (6) § 3). Accordingly all the Riemannian structure is multiplied by ~-  

sectional curvatures are multiplied by 2 so x = 21612/4 which, as we have seen, 
equals It'lL 2. Since the multiplicity m(~) now equals 2 the totally geodesic 
spheres in U of curvature 1]61I 2 have dimension < 3. In the adjoint group U/Z 
the totally geodesic submanifolds of constant curvature tl~[12 and dimension 3 
are spheres unless the point expH(6) lies in Z. As is well known, expH(~5)e Z 
if and only if ~(H(6)) E 2niZ for all ~ E d (see e.g. [4], p. 268). But in view of 
Cor. 3.2, ct(H(6))~ 2niZ implies that all roots except + 6  are orthogonal to 6, 
which implies U = SU(2) so U/Z is a real projective space. 
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