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Parallelizability of Proper Actions, Global K-slices
and Maximal Compact Subgroups

Herbert Abels

0.1. A locally compact topological space is by definition hausdorff.
A pair (G, K) consisting of (1)a locally compact topological group G
having a compact group of connected components and (2) a maximal
compact subgroup K of G is called a (G, K)-pair. The results of the
appendix (Theorem A.5, Corollary A.6) on (G, K)-pairs generalizing
known results on Lie groups may be of independent interest.

Main Theorem. Suppose we have a (G, K)-pair. Let X be a proper
G-space (Definition see 1.6). If the orbit space G\X is paracompact then
there is a G-mapping f : X — G/K, where the action of G on G/K is in-
duced by left translations.

In the terminology of Palais’ [32] a subset S of a proper G-space
X is called a global K-slice, if there is a G-mapping f : X - G/K such that
S= f~(K). So the main theorem states the existence of a global K-slice.

The G-mapping f : X —G/K is actually the projection of a trivial
fibre bundle with fibre S:= f~!(K) and structure group K (1.2). Since
the base space G/K is homeomorphic to a euclidean space R”, X is
homeomorphic to R"x S. We call n the non-compact dimension of G
n=nc—dim(G), since n depends only on G.

There are two refinements of the main theorem: Suppose we have a
(G, K)-pair. Then the problem of finding all G-actions on a topological
space X admitting a global K-slice is equivalent to the two problems
(1} of finding all subspaces § of X such that R” x § is homeomorphic to
X and (2) to find all K-actions on such § (2.2).

The other refinement is the following: The K-space X is K-homeo-
morphic to T x §, where T is a continuous K-module obtained as fol-
lows: Restrict the adjoint representation of G on the Lie algebra LG
of G to K. Then T is the quotient K-module LG/LK. All these notions
make sense not only for connected Lie groups but also for (G, K)-pairs
(see Appendix).

As an application of the main theorem we show how it generalizes
known results on ends of proper G-spaces for connected G (2.7f). We
also see that there is a reasonable notion of non-compact dimension
for arbitrary locally compact topological groups.
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All results also hold in the differentiable category (differentiable al-
ways means C®-differentiable), ¢.g.:

Main Theorem (Differentiable Version). Suppose G is a Lie group
having a finite number of connected components. Let K be a maximal
compact subgroup of G. Let X be a paracompact differentiable manifold
and let G act differentiably and properly on X. Then there is a differentiable
G-mapping f : X - G/K.

In particular S is a closed differentiable submanifold of codimension

0.2. Here are examples of locally compact topological groups G
and proper G-spaces:

Example 1. Let X be a locally compact connected metric space. Let
G be the group of all isometries of X endowed with the compact-open
topology ([10]). More generally: Let X be a connected uniform space,
fix a base B of the uniformity and let G be the group of all homeomor-
phisms of X leaving every U e B fixed, i.e. for every Ue B and every
ge G we have: (x,y)e U implies (g-x,g-y)e U. Endow G with the
compact-open topology. Then X is a proper G-space ([3, Theorem 7 and
Corollary, p. 606]. The fact that the action is proper is not stated there
but follows as on p. 605).

Example 2. The natural action of the Lie group of all bijective (= dif-
ferentiable) isometries of a Riemannian manifold ([19, IV, Theorem 2.5],
[29, Chapter 1, Theorem 4.7]).

Conversely: If a locally compact topological group G acts properly
on a paracompact differentiable manifold X, there is a Riemannian
metric ds? on X such that every ge G acts isometrically (cf. 30, p.9,
Theorem 2]). The continuous homomorphism from G into the Lie group
I(X, ds?) of all isometries of (X, ds?) is injective iff the action of G on X
is effective, i.e. gx =x for every x € X implies g = 1. The degree of sym-
metry N(X) of the paracompact differentiable manifold X is the maximum
of the dimensions of I(X, ds?) for all possible Riemannian metrics ds?
on X (cf. [25]). So the degree of symmetry N(X) is the maximum of the
dimensions of all Lie groups G acting properly and effectively on X.
For similar statements concerning Example 1 s. [1, 30, 32].

Example 3. The locally compact topological group G acts properly
upon itself by left translations, more generally on a coset space G/L
where L is a compact subgroup.

Example 4. Let X be a completely regular hausdorfl space. If X is
the total space of a locally trivial principal G-fibre bundle, then G acts
properly on X if the base space is regular and G is locally compact. If
conversely X is a proper G-space and G acts freely on X, then X —»G\X
is a locally trivial principal G-bundle ({32, Proposition 1.2.5, Theorem
4.1], [33, Théoréme 1]).
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Example 5. Let (R, X, t) be a dispersive dynamical system on a com-
pletely regular hausdorff space X. Then X -»R\X is a locally trivial
principal R-bundle. So X is a proper R-space iff R\X is regular (cf. [18]).

If H is a closed subgroup of G and if X is a proper G-space, then
the action restricted to H is proper.

The hypothesis of the main theorem that G\X be paracompact is
unpleasant because hard to check. Let G be a locally compact topologi-
cal group such that the group of connected components of G is compact.
If X is a proper G-space, then G\X is paracompact in the following cases:

Case 1. X is locally Lindelof and paracompact (proof as in {18, Corol-
lary 14]: Let G; be the connected component of the neutral element
in G). Note that G;\X - G\X is a continuous closed surjective mapping
and the inverse image of every point is compact. So G,\X is paracompact
iff G\X is paracompact [39, Problem 20G].

In particular:

Case 2. X is locally compact and paracompact.

More particularly:

Case 3. X is locally compact and metrizable.

Or

Case 4. X is a locally compact topological group and thus paracom-
pact.

Hajek [18] made a variation of the following

Conjecture. Let G be a connected locally compact topological group
acting properly on a paracompact hausdorff space X. Then G\X is
paracompact.

If this conjecture were true the “note” in Case 1 would enable us
to replace the hypothesis “G\X paracompact” in the main theorem by
the hypothesis “X paracompact”. It is easy to see from the main theo-
rem — or by elementary considerations — that under the hypotheses of
the main theorem X is paracompact.

0.3. As far as I know only the following special cases of the main
theorem are known. Example 4: “Reduction of the structure group of
a principal G-bundle to the maximal compact subgroup” {36, 20]. Ex-
ample 5: “Parallelization of dynamical systems” has been intensively
studied: [4, 5, 6, 18, 31] and literature cited in [6, p. 55]. I thank Strantza-
los for drawing my attention to these studies which were the starting
point of the present paper (cf. [37]). Cf also [17]: K={1}, [28]: K
normal, [9, Theorem 3.1].

0.4. The contents of the paper are: § 1 contains the proof of the main
theorem. Some lemmas on the way can also be interpreted as corollaries
of the main theorem, e.g. 1.3. § 2 contains the refinements and applica-
tions mentioned above. In order to keep the paper readable also for
those interested in Lie groups only, the difficulties arising from con-
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sidering non-Lie groups are dealt with in the appendix: We need a theo-
rem on maximal compact subgroups for locally compact topological
groups having a compact group of connected components analogous
to the corresponding theorem on Lie groups. Once this theorem is
established {A.5 and A.6) there are no extra difficulties arising from
considering non-Lie groups.

Detailed proofs are given for the topological category, the differen-
tiable case is treated only if it differs.

The ingredients of the proof of the main theorem are (1) Palais
theorem on the existence of local slices [32], (2) a study of the K-space
G/K (Appendix A.5 and A.6).

>

§1

1.1. A G-space is a triple (G, X, @) consisting of a topological group
G, a topological space X and an action of G on X, ie. a continuous
mapping ¢ : G x X — X such that g{g, ¢(h, x))=0(g - h, x) and p(1, x)=x
for every g,he G and xe X and 1 the neutral element of the group G.
Since we usually consider only one action on a space X, we just speak
of the G-space X and write g - x instead of ¢(g, x). A G-mapping of a
G-space X into a G-space Y is a continuous mapping f: X =Y such
that f(g-x)=g- f(x) for every xe X and every ge G. A G-mapping f
is called a G-homeomorphism or a G-isomorphism if f is a homeomorphism.
A subset A of a G-space is called G-stable if g- A=A for every ge G.

Let X be a G-space. A G-orbit is a subset of X of the form G-x
={g - x;g € G}. The orbit space G\X is the set of all G-orbits of X endowed
with the finest topology making the natural mapping X —-G\X con-
tinuous.

If H is a closed subgroup of the topological group G, then G/H is
the orbit space of G under the H-action ¢(h,g)=g-h™ ', i.c. the space of
cosets {g- H; ge G}. We consider G/H has a G-space under the action
GxG/H-G/H, (g, x- Hyr>g-x-H.

1.2. Theorem. Suppose we have a (G, K)-pair. Let f: X~ G/H be a
G-mapping from a G-space X to G/K. Then f is the projection in the trivial
fibre bundle f:X— G/K with fibre S:= f~'(K), base G/K, structure
group K and associated trivial principal K-fibre bundle G— G/K.

For a more general version of this theorem see [32, 2.1.2]. It appears
most convenient to state the properties of f in the language of fibre
bundle theory.

Proof. The natural mapping n:G— G/K has a global section
t:G/K— G (see Appendix Theorem 1.5). Let K act on GxS by
k-(g,s):=(gk™ %, k-s). Let G x xS be the corresponding orbit space and
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denote theorbit of (g,5) by [g,5]. Let Gacton G x (Sbyg-[x,s]:=[g-x, 5]
The mapping Gx S—X, [g,5]¢-s is a G-mapping and in fact a
G-homeomorphism: The mapping X — G x xS, x> [t f (x),(to f(x)) "
is an inverse G-mapping.

The proof has the

1.3. Corollary. G x x\S— X, [g, s]+>g - 5, is a G-homeomorphism.

1.4. Corollary. Let Y be another G-space. Then the restriction mapping
{G-mappings X — Y} — {K-mappings S—- Y}

e ut>ulS
is a bijection.

This is obvious for X = G x 5. Then Corollary 1.3 implies Corollary
14.

By Corollary A.6 of the appendix there is a K-homeomorphism, say
A:G/K—-T, where T is a continuous K-module of dimension n=nc
—dim (G). Therefore we can apply Weyl’s trick: Let Y be a K-space
and let f:Y—>G/K be a continuous mapping. Then the mapping
J: Y- G/H defined by f(y):=1""fAk™" f(k-y))dk is a K-mapping.
Here | ... dk denotes normalized Haar integral on K. If f is a K-mapping,
we have f = f. To prove the main theorem we need the following exten-
sion lemma:

1.5. Lemma. Suppose we have a (G, K)-pair and a G-space X. Let
U, i=1, 2, be G-stable subsets of X and let f;: U;—G/K be G-mappings.
If S;:= f, Y(K) is a normal space and if U nU, is closed in U;uU,,
then there is a G-mapping f: U, U, —G/K such that fl1U, = f,.

Proof. Since U, nU, is closed in U, uU,, a fortiori S, U; is closed
in S,. Since G/K is homeomorphic to a euclidean space of finite dimen-
sion, by Tietze’s extension theorem there is a continuous mapping
F:S8,-G/K such that F|U10S2—f1|U1mSZ ([39, Theorem 15.8}). By
Weyl’s trick there is a K- mapplng F:S,—-G/K such that F|U, NS,
=f11U;nS, = f,1U;nS,, since f, is a K-mapping. By Corollary 1.4
there is exactly one G-mapping f* : U,— G/K such that f'|S, = F. Again
by 1.4 we have f'|U,nU, _fllUanz The mapping f : U;uU, - G/K
such that f|U, = f" and f| U, = f; is the desired G-mapping.

1.6. Following Palais [32, Definition 1.2.2] we call a G-space X
proper if (1) G is a locally compact topological group, (2) X is a com-
pletely regular hausdorff space and (3) every point of X has a nhood V
such that for every point of X there is a nhood U with the property
that {ge G; g- UV %@} has compact closure in G.

Note that this definition differs from Bourbaki’s [8, Chapter III,
§47: In case (1) and (2) is satisfied Bourbaki’s definition is equivalent to
the condition (3,): For any two points x and y of X there are nhoods
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U and V of x and y resp. such that {ge G; g- UnV 0} has compact
closure in G. In the language of topological dynamics the systems
(= R-spaces) satisfying (3) are called dispersive (s. [6]). The two notions
of proper G-spaces coincide if X is locally compact, more generally: if
the orbit space is regular [32]. In general: Palais-proper implies Bour-
baki-proper. The converse is false as is shown by a very interesting
example due to Bebutov [6, IV, 1.5.5 and 18, p. 79]. For a further dis-
cussion of these and similar notions see [32], for dynamical systems
[6,1V;5;31].

The following statements are easily checked: Let X be a proper
G-space (always in the sense of Palais). The isotropy group G, of every
point x € X is compact and the proper G-space G/G, is homeomorphic
to the orbit G - x of x. The main result of [32] is

1.7. Theorem. If G is a Lie group and X is a proper G-space, then for
every point x € X there is a G-stable nhood U and a G-mapping f : U - G/G,.

1.8. Corollary. Suppose we have a (G, K)-pair. Then every point of a
proper G-space has a G-stable nhood U with a G-mapping f : U~ G/K.

Proof. By a theorem of Gluskov’s cited in the appendix G contains
a compact normal subgroup B such that G/B is a Lie group. Since the
compact normal subgroup B is contained in any maximal compact
subgroup (A.5 (iii)) it is enough to show that every point of the proper
G/B-space B\X has a G/B-stable nhood U with a G/B-mapping
f:U-G/B/K/B=G/K. So we may assume that G is a Lie group
having a finite number of connected components. Let x be a point of X.
Since the isotropy group G, is compact there is an element ge G such
that g-G,-g~* C K. The mapping G—G/K, yry-g~!-K is constant
on the cosets y- G,, thus induces a G-mapping G/G,— G/K. Compose
this G-mapping with the G-mapping f:U—G/G, of Palais’ theorem
to obtain the required G-mapping.

1.9. Main Theorem. Suppose we have a (G, K)-pair. Let X be a proper
G-space. If G\X is paracompact then there is a G-mapping X - G/K.

Proof. Let n: X —G\X =:Y be the natural mapping. By Corollary
1.8 and since Y is regular there is an open cover U of X such that every
U e U is G-stable and there is a G-mapping from the closure U to G/K.
If Y is paracompact there is an open o-discrete refinement of the cover
o) = {m(U); Ue U} of Y ([27, Chapter V, Theorem 28]), i.e. there is
a sequence U, nelN, of families A, of open subsets of Y such that

U ¥, is a cover of Y which refines n(ll) and every family ¥, is dis-
n=1

crete, i.e. for every point y € Y there is a nhood V of y such that VA + 0
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for at most one element 4 € U,. In particular Y,:= (] A4 is closed in
Ae,

Y. Since every A€, is contained in some n(U), U e, there is a G-
mapping f, 17w~ '(4)— G/K. For every neN the G-mappings f,, A,
composetoa G-mapping f, : X,—G/Kwhere X,:=n"(Y)= {J =7 *(4)
because U, is discrete. Aeuy

We claim: There is a sequence of G-mappings F;: X; U - U X; - G/K,
j€N, such that F;|X;u--vuX; ,=F;_, for j>1. We set F, := f, and
define F, inductively by Lemma 1.5: X,, X;u---0X,_,, f,. F,_; play
the role of U,, Uy, f,, f; of that lemma. It remains to prove that
S:= £, Y(K) is a normal space. The mapping n|S:S—Y, is surjective
continuous closed and the inverse image of any point is compact, because
the inverse image of any set n(M), M CS, is K - M. The closed subspace
Y, of Y is paracompact, thus S is paracompact [39, Exercise 20G],
a fortiori normal. So by Lemma 1.5 there is a G-mapping F,: X, u--- LU X,
— G/K such that F,| X,v---uX,_,=F,_,.

The mapping f : X - G/K such that f|X,=F, is 2 G-mapping: The
mapping f is continuous at every point x & X because n(x) is an inner

0
point of some A€ | ) U, and thus x is an inner point of some X,,.

n=1

1.10. The differentiable case. Differentiable always means C*-dif-
ferentiable. Let G be a Lie group. A differentiable G-space X is a dif-
ferentiable manifold together with a differentiable action G x X — X.
A differentiable G-mapping f:X—Y from a differentiable G-space X
to a differentiable G-space Y is a mapping which is both a G-mapping
and differentiable.

Theorem. Let G be a Lie group having a finite number of connected
components. Let K be a maximal compact subgroup. Let X be a paracom-
pact differentiable manifold with a proper differentiable G-action. Then
there is a differentiable G-mapping X - G/K.

We just indicate how the proof differs from the proof of the topological
version. We can replace throughout the whole paragraph every topologi-
cal notion and statement by the corresponding differentiable one, expect
where the Tietze extension theorem is used: Lemma 1.5 and hence in
the proof of Theorem 1.9. But with a little care the differentiable case
can be handled by the same method:

Let A be a subset of a differentiable manifold X. We call a mapping
S from A to a differentiable manifold Y differentiable if there is an open
nhood U of 4 and a differentiable mapping F : U— Y such that F{A= f.
A partition of unity argument proves the following extension
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Lemma. Let A be a closed subset of a paracompact differentiable
manifold X and let f : AR be a differentiable function. Then there is
a differentiable function F: X - R such that F|A= f.

The following definition is useful. A mapping f :4— Y of some G-
stable subset 4 of a differentiable G-space X to a differentiable G-space
Y is called a differentiable G-mapping if there is an open G-stable nhood
U of A in X and a differentiable G-mapping ¥ : U— Ysuch that F|4 = f.
Note that a differentiable G-mapping is both differentiable and a G-
mapping. I do not know whether every mapping that is both a G-map-
ping and differentiable is actually a differentiable G-mapping. The fol-
lowing lemma replaces Lemma 1.5.

1.11. Lemma. Let G be a Lie group with a finite number of connected
components, let K be a maximal compact subgroup of G and let X be a
paracompact differentiable G-space. Let U, i=1,2, be G-stable closed
subsets of X and let f;: U~ G/H be differentiable G-mappings. Then
there is a differentiable G-mapping f : U, U, G/K such that f |U, = f;.

Proof. Let V, be open G-stable nhoods of U, in X and let g;: V,— G/K
be differentiable G-mappings such that g;|U;= f;. The set T,:=g; '(K)
is a closed submanifold of V.. Since G\X is paracompact (see §0.2,
Case 2) hence normal there is a closed G-stable subset W, of V] such that
U, CW,. Since G/K is diffeomorphic to a euclidean space there is — by
the extension lemma above — a differentiable mapping F : X — G/K such
that F{W,=g,|W,. By Weyl’s trick (differentiable version) we con-
struct the differentiable K-mapping F: X — G/K. By Corollary 1.4 (dif-
ferentiable version) there is a unique differentiable G-mapping f: V;
—G/K such that f’|T,=F|T,. The G-mapping g,|W,V, coincides
on W,nV,nT,=W,nT, with g,|W,nT,=F|W,nT,=F|W,nT,. By
the uniqueness part of Corollary 1.4 (not necessarily differentiable version)
we have g, |W,nV, = f'|W,nV,.So there is a well defined differentiable
G-mapping f : W1 UV, — G/K on the open G- stable submanifold W1 ul,
of X such that f|W, =g, |W,, f|V, = f". The restriction of f to U, uU,
has the desired properties.

Now the proof of the main theorem — differentiable version — runs
just like the proof of the topological version except that we start with
a cover U of X by G-stable open submanifolds U of X such that there
is a differentiable G-mapping from U — G/K. Such a cover exists by the
differentiable version of Palais’ theorem [32, Proposition 2.2.2]. We
also need the following fact: If A is a discrete family of subsets of G\X
and f,:7n"'(4)> G/K is a differentiable G-mapping for every Ae ¥,
then the composite mapping f :Un~!(4)— G/K is a differentiable G-
mapping. This is implied by the following “very strong normality con-
dition” of the paracompact space G\X [27, Chapter V, Lemma 3.1]:
There is a discrete family { V(A4); 4 € A} of nhoods V(A) of the sets 4 € U.
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§2

This paragraph contains refinements and applications of the main
Theorems 1.9 and 1.10. Everything in this paragraph also holds in the
differentiable category.

A first refinement of the main theorem describes the K-space X.

2.1. Theorem. Suppose we have a (G, K)-pair. Let X be a G-space
admitting a global K-slice. Then there is a K-homeomorphism @ : X - T x §
such that

(1) T is the continuous K-module of dimension n= nc—dim (G) de-
scribed in the Appendix A.6.

(2) The action of K on T x S is the product action.

(3) o(s)=(0,s) for seS.

4) (G-s)=TxK-s forseS.

Proof. This is just an application of Theorems A.5 and A.6 of the
appendix. We use the notations of these theorems. By Corollary 1.3 X
is G-homeomorphic to G x xS. Let the inverse mapping of the multi-
plication Ex K—G be denoted x+>(e(x), k(x)). The mapping e: G- E
is a K-mapping if we let K act on G and E by inner automorphisms
(A.5 (1)) The mapping G x xS— E x S, [g, s]—(e(g), k(g) - s) is a K-homeo-
morphism. The fact that the K-space E is K-isomorphic to the continu-
ous K-module L(G)/L(K) of dimension n= nc—dim(G) implies the
theorem.

Theorem 2.1 implies for the orbit space: G\X is homeomorphic to
K\S and K\S —K\X is a strong deformation retraction.

A second refinement of the main theorems is to reduce the problem
of finding all proper G-actions on certain spaces X to the two problems
of finding all subspaces S of X such that R"x S is homeomorphic to
X and of finding all actions of K on such S.

Suppose we have a (G, K)-pair. Let €(G, X) be the set of all G-homeo-
morphism classes of G-actions on X admitting a global K-slice. If X is
completely regular hausdorff, a G-action admitting a global K-slice is
obviously proper. The converse is true by our main theorem if G\X is
paracompact. If K is a compact topological group, then E(K, X) is
just the set of all K-homeomorphism classes of K-actions on X, because
X is a global K-slice.

2.2. Theorem. Suppose we have a (G, K)-pair. Let n =nc—dim(G).
Then for every topological space X there is a bijection
Y :E(G,X)-»UE(K,S)

where the union is taken over topological spaces S such that R"x S is
homeomorphic to X, one such space out of every class of homeomorphic
spaces.
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Note that the theorem implies that E(G, X) depends only on the
maximal compact subgroup of G and on », not on the algebraic relations
between K and the non-compact part of G. So E(G, X) = E(K xR, X),
where K x IR" is the direct product of topological groups.

Proof. The mapping ¥ is defined as follows. Let ¢ be an action of
Gon X thatadmits a global K-kernel, i.e. thereisa G-mapping f : X - G/K.
Define ¥ (@) = K-homeomorphism class of f ~!(K). The point is to show
that ¥ depends on the G-homeomorphism class of ¢ only. We first
define the inverse mapping @ (cf. 32, p. 306, Theorem]). Pick a homeo-
morphism ¢ : E—IR", where E is a subset of G such that the multiplica-
tion Ex K— G is a homeomorphism. We denote the inverse homeo-
morphism G—Ex K by g+(e(g), k(g)). Let S be a K-space and let
g:R*x §— X be a homeomorphism. Then we have a composite homeo-
morphism h

GxS—ExS S R xS X .

(g, s1>(e(g), k(g) - 5)

Now G x .S is a G-space under the action g [x,s]=[g - x, s]. There is
exactly one G-action on X such that h is a G-homeomorphism. The
G-homeomorphism class thus defined obviously does not depend on the
homeomorphisms chosen. Let &(S) be the G-homeomorphism class of
this G-action. There is a G-mapping f: X —>G/K, f(h([g,s])=

such that f~*(K)=g(S) is K-homeomorphic to S. If §; and S, are
K-homeomorphic spaces such that R*x S, and R"x S, are homeo-
morphic to X, then &(S;)=®(S,). So & is well defined on UE(K, S)
and takes values in (G, X).

Concerning ¥ we have

2.3. Lemma. Suppose we have a (G, K)-pair. Let X be a G-space
admitting two G-mappings f\, f,: X - G/K. Then there is a G-autohomeo-
morphism h of X such that f,°-h= f,.

This lemma implies the theorem: ¥ depends only on the G-homeo-
morphism class of the G-action on X and ¥ is obviously the inverse
mapping of &.

Proof of 3.2. Again we make use of the fact that the restriction of
the natural mapping n: G- G/K to E is a K-mapping, if we let K act
on G/K by left translatlons and on E by inner automorphisms. So
fi:X-E, f: —-(1r|E) o f; are K-mappings. Thus p;: X —8;:= f,"}(K),
pi(x):=(fi(x))"' - x are K-retractions preserving orbits.

So we have two K—mappmgs P118,:8,—8; and p,|[S,:8,-S,
which are unfortunately not inverse of each other. For instance
Piopy(s)=(lcf3(5))- s for se S, where [: E—~K is defined by the con-
dition g" '€ E-I(g), so I(g)=k(g™") in our earlier notation. Since
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E is a K-space, | is a K-mapping. The K-mapping j:S;—S,,
j(s):=(l f5(s))"! - s, is the inverse of p, > p,|S,. Similarly we conclude
that p, o p;:§,—8S, is a K-homeomorphism. So p,|S,:5,— S, and
p2|8;:8,— 8, are K-homeomorphisms and p,-j:S;—S, is an inverse
K-homeomorphism of p|S,:S5,—S,. By Corollary 1.4 these two K-
mappings induce mutually inverse G-mappings X —»X. Let h: X - X
be the G-homeomorphism such that h|S,=p,|S,. Since the two G-
mappings f,ch and f, from X to G/K coincide on the global K-slice
S,, they are equal, again by Corollary 1.4.

As a further application we show how the results of the present
paper generalize known facts on ends of proper G-spaces for connected
G [2, 1113, 22, 26, 35, 38, 40]. We need some preparatory material
24-2.6.

2.4. Theorem. Let the non-compact locally compact connected topo-
logical group G act properly on the locally compact topological space X.
Then the embedding of X into its one-point-compactification X U {0} is
homotopic to the constant mapping X — co.

Proof. [38]. In the notations of Theorem A.5 of the appendix: E is
homeomorphic to some R”, n>0. So there is a path y:[0, 1]=>Gu {0}
in the one-point-compactification of G such that y(0) = co and y(1) = iden-
tity element of G. The desired homotopy F: X x[0,1]-> X u{c0} is
then given by
p(t)-x for y(t)* o

o0 for y@t)=0.

F(x,t)={

F is continuous because the action is proper.

We need the notion of cohomology at infinity [16]. By cohomology
we mean Cech cohomology with values in a fixed ring 4. Let X be a
locally compact paracompact topological space. Let T be the system
of all closed subsets F of X whose complement is relatively compact.
T is a projective system ordered by inclusion.

2.5. Definition. The cohomology at infinity H" (X) is the direct limit
}vm:l H"(F) of the inductive system H"(F), F e T.

There is a long exact sequence [16]
o HEX)~ HY(X)~ HE, (X)— HE (0 HY* () - -

involving cohomology groups H"(X) and cohomology groups HXX)
with compact support. In the case of Theorem 2.4 this exact sequence
falls apart since H(X)— H"(X) is the zero-mapping.

The first group H2(X) is closely related to the number of ends of X.
Freudenthal’s end point compactification X of the locally compact
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space X is defined by the following properties: (1) X \X is totally dis-
connected or equivalently O-dimensional. (2) If Y is any compactification
of X such that Y\ X is 0-dimensional, then the embedding X — Y has
a unique continuous extension X — Y. The cardinality of X \ X is called
the number of ends of X and denoted e(X).

2.6. Theorem. [16, 34, 38]. Let X be a connected locally compact para-
compact topological space. Then H2(X) is isomorphic to the ring of con-
tinuous functions from X \X to the discrete ring A.

In particular: If A is a field, then e(X)= dim,H?2(X) in case one of
the two numbers is finite.

We are now ready to state

2.7. Theorem. Let G be a locally compact topological group having
a compact group of connected components. Let n=nc—dim (G). Let X
be a locally compact paracompact proper G-space. Then

(@) H*X)=0 form<n.

(b) H*(X)=0 iff G\X has a compact open subset #@. In particular,
if X is connected: H'(X)=#0 iff G\X is compact.

(©) If G\X is compact: H(X)=~ H* "(X) for every ke Z.

2.8. Corollary. If G is non-compact and X is connected, then e(X) <2.
If e(X) =2, then G\X is compact and G is a semidirect product of a maximal
compact subgroup K and a normal subgroup E isomorphic to R. The group
K contains an open subgroup L of index <2 such that E-L is a direct
product of E and L. The group L is normal in G.

Proof of Theorem 2.7. By the main theorem there is a G-mapping
f:X—-G/K. Then X is homeomorphic to R"x S, where S:= f 1 (K).
So H¥(X)= H*(S)® H*(R"; Z) which implies (a). Since G\X is homeo-
morphic to K\S, G\X is compact iff § is compact. H"(X)= H?(S) is
non zero iff S has a compact open subset + . Since G\ X is homeomorphic
to K\S, G\X has a compact open subset =+ @ iff § does, which implies (b).
Finally if S is compact we have H*(X)~ H* "(S)= H* (S)= H* " "(X)
for every k € Z, because IR" is contractible.

Proof of Corollary 2.8. By Theorem 2.4 we have short exact sequences

0— H*X)- H% (X)-> H*" ' (X)-0.

Take a field A as ring of coefficients for the cohomology. Since X is
connected we have dim, H!(X)=dim,H’(X)~1=e(X)—1 by Theo-
rem 2.6 in case one of these numbers is finite.

Since G is non-compact we have n= nc—dim (G) > 0. Theorem 2.7
implies: If H}(X)#+0 then n=1 (a), G\X is compact (b) and H!(X)
= H%X) (c). So e(X)=1+dim,H!(X)<2 and e(X)=2 iff H!(X)*0,
in which case n=1. We now apply Theorem A.5 of the appendix for
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n=1. In the notations given there E is a one-parameter subgroup of
G (iv), normal (i) and G is the semidirect product of E and a maximal
compact subgroup K of G (ii). Now consider the continuous homo-
morphism r: K — Aut(E), k— L |E, where I, is the inner automorphism
of G, I(g)=k-g-k™'. The image of r is a compact group of automor-
phisms of E, so contained in {+1;}. So the kernel L of r is an open
subgroup of K of index <2. By construction E- L is a direct product
of E and L. The normalizer of L contains K and E, so L is a normal
subgroup of G.

29. Let G be an arbitrary locally compact topological group,-let
G, be its connected component of 1. Then

nc—dim G, = min{meZ; H"(G) <+ 0} {2.9.1)

by 2.7 (b) applied to the proper G-space G defined by right translations,
say. If G/G, is compact we have

nc—dimG=min{meZ; H"(G) % 0} (2.9.2)

by 2.7 (a) and (b) applied to the proper G-space G. So we define for an
arbitrary locally compact topological group G:

nc—dimG:= nc—dim G, = min{meZ; H™(G) + 0}
and this definition is by {2.9.2) in keeping with our previous definition.

2.10. Corollary. If H is a closed subgroup of the locally compact
topological group G we have:
ne—dimH Snc—dimG
and
nc—dimH =nc—dimG
iff G,/H, is compact.
Proof. Look at the proper H,-space G and apply 2.7.
Mostow [31a] has shown: If H and G are connected Lie groups,
L and K their maximal compact subgroups, H a closed subgroup of
G and nc—dim G=d+ nc—dim H, then G/H is a fiber bundle over
K/L with typical fiber R%. In case d = 1, Borel [7, Theorem 2] has shown
that this bundle is trivial, which is not true in general. The number of
ends of G/H is 0, 2, 1 according to the cases d=0, {, 22. For ends of
homogeneous spaces cf. also [24].

Appendix

We will prove a refined version of the theorem of Malcev-Iwasawa
on maximal compact subgroups for locally compact topological groups
having a compact group of connected components. The corresponding
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theorem on Lie groups can be found in [21, Chapter XV, Theorem 3.1].
Using this theorem, the solution of Hilbert’s fifth problem (A.2), a local
splitting theorem (A.1) and the notion of Lie algebra of a topological
group we get the desired result (A.5 and A.6).

A.1. Theorem (Gluskov [14, Theorem A}). Let G be a locally compact
topological group, U a nhood of the neutral element { of G. Then there
is a nhood VCU of 1 in G that splits as a direct product of a compact
group and a connected local Lie group.

A.2. Theorem {Gluskov [14, Theorem 8]). Let G be a locally compact
topological group having a compact group of connected components. Then
every nhood of 1 in G contains a compact normal subgroup B such that
G/B is a Lie group.

A.3. Let G be a topological group. We will define a sort of Lie algebra
of G (see e.g. [15, 23]): Let L(G) be the set of all continuous homo-
morphisms from the additive group IR to G endowed with the compact-
open topology, which is the same as the topology of uniform convergence
on compact sets [8]. L(-) is a functor from topological groups to topo-
logical spaces. In particular we have an adjoint representation of G on
L(G) defined by

(Ad(x) X)(s)=x-X(s)-x~! for xeG, XelL(G), seR.

The mapping G x L(G)— L(G) defined by the adjoint representation is
continuous at (1, X) for every X e L(G), as is easily checked by looking
at the topology of uniform convergence on compact sets, and hence
everywhere, since Ad(x): L(G)— L(G) is continuous.

Lemma. Let G and H be topological groups. A continuous homo-
morphism f : G— H which is a local isomorphism induces a homeomor-
phism L{f}: L(G)— L(H).

Proof. Any local homomorphism from R to any topological group,
defined on a connected nhood of 0 in R extends uniquely to a continuous
homomorphism on all of R So L(f) is bijective. It remains to prove
that L(f) is open. Let N be an open nhood of { in G such that f|N is
injective and f~':f(N)—N is continuous and multiplicative. Let
WK, U [X]1={Ye L(G); Y(s)e X(s5) - U for every se K} be a nhood
of X in L{G), K compact CR, U a nhood of { in G. We have to show
that its image under L(f) is a nhood of L{f)(X). We may assume that
K is a closed interval [ —r, r]JCR. Let n be a positive integer such that

X (lrf-) CN. Let V] be a nhood of 1 in G such that V'C U and let V be
a nhood of 1 in G such that X(%—«) VCN and V- X(s5)C X(s)- V; for
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every se K. Then W (—fj, V) [XTC WK, UY[X] and L{f) W (_I’f_, V)

X1= Wi (S0 XD

AA4. Theorem Let G be a locally compact topological group. Let 1(G)
be the set of all continuous homomorphisms R— G, endowed with the
compact-open topology. If X, Ye L(G) then the sequence of points
(X (%) Y (%)) € G converges to a point which we denote (X + Y){(s).
Then X + Y :R—>G is a continuous homomorphism. L(G) with this addi-
tion and the multiplication by scalars defined by the formula

r-X)(s):=X(r-s)
turns L(G) into a complete locally convex topological R vector space.

Proof. The theorem is true for Lie groups and for compact groups
{see [23]), hence for the direct product of a compact group K and a
Lie group H. By Gluskov's Theorem A.1 and since any local Lie group
is locally isomorphic to a simply connected Lie group, there is a con-
tinuous homomorphism K x H— G of a direct product as above to G,
which is a local isomorphism and hence induces a homeomorphism
L{H x H)- L{G). This proves the theorem. For a different proof s. [15].

Remark. By the same argument one can also define a continuous
Lie algebra structure on L(G), such that a Campbell-Hausdorff-theorem
holds using [237. But the G-module structure is enough for our purposes.

There is a continuous mapping, classically called the exponential

exp: L(G)= G, expX)=X(1).

A.5. Theorem. Let G be a locally compact topological group whose
group of connected components is compact. Then there is a maximal
compact subgroup K of G and a subset E of G such that

(@) x-E-x"'=E for every element x¢ K,

(ii) the multiplication E x K — G is a homeomorphism,

(iii) for every compact subgroup L of G there is an element ec E
suchthate-L-e ' CK,

(iv) consider L(G) as a K-module by restricting the adjoint representa-
tion of G to K. Then there is a finite set of finite dimensional K-sub-
modules S,,...,S, of L(G) such that their sum S;+ -+ 8, is direct,

the mappin
g g:8,@®-@®5,~GC

a(x, + - +x)=exp(x;)-----exp(x;)

is @ homeomorphismonto E and for each E,: = exp(S;)we havex -E;-x "' =E,
for every xe K.
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A.6. Corollary. The finite dimensional K-submodule T:= S, ® --- ® S,
of L(G) is acomplementary submodule of L(K) in L(G), i.e. L(K)® T = L(G).
We have K-isomorphisms

T2, EalE, GK.

Here K acts on E C G by inner automorphisms and on G/H by left transia-
tions of cosets. The mapping n is the natural mapping G—G/K.

By (iii) for any two maximal compact subgroups K and L of G we
have dimG/K = dimG/L. We call it the non-compact dimension of G-

ne—dim(G) = dim G/K = dimg L(G)/L(K) .

Proof. For a Lie group G the space of continuous homomorphisms
L(G) can be identified with the Lie algebra of left invariant vector fields
on G. For a Lie group having a finite number of connected components
the theorem and its corollary are known [21, Chapter XV, Theorem 3.1].
That the S, are actually K-modules and ¢ is a K-mapping is seen from
the following facts: The exponential mapping is a local homeomorphism;
expad(x) (X)= x-exp(X)-x~! for every xe G, X € L(G). Now let G be
a locally compact topological group such that the group of connected
components is compact. There is a compact normal subgroup B of G
such that G/B is a Lie group. G/B has only a finite number of connected
components. Let p: G—G/B be the natural homomorphism. Let W
be a nhood of 1 in G/B containing no subgroup except {1}. Then p~! (W)
contains a nhood of 1 in G that splits as a direct product of a compact
group A and a local Lie group. So there is a direct product of 4 and a
Lie group H and a continuous homomorphism A x H & G which is a
local isomorphism and such that f|4=1,. Now p(4) is a subgroup of
W, s0 A is contained in the kernel of p. The continuous homomorphism
pef|H: H— G/B of Lie groups is continuous and open, hence induces a
surjection L(H)— L(G/B). By means of the isomorphism L(f):L(A4)
x L(H)— L(G) the two vector spaces are identified. For every element x
of the open subgroup f(4Ax H)CG we have Ad(x) L(H)C L(H). Since
the group of connected components of G is compact, f (4 x H) is of finite
index in G. So there is a finite dimensional G-submodule M of L(G)
such that L(p): M — L(G/B) is surjective.

Now let K, E;, S;, T be the objects of the theorem and the corollary
for the Lie group G/B. Then p~!(K)=: L is a maximal compact subgroup
of G and any compact subgroup of G is conjugate to a subgroup of L.
Let S, be the inverse image of S; under L(p)|M : M — L(G/B). Then §,
is an L-module containing the L-module ker(L(p)|M). Since every
finite dimensional continuous L-module is semisimple, there is an
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L-module T; CS'i such that L(p}| T; is a vector space isomorphism onto
S;. Let F;:=expg (7). The commutative diagram

Ti_m“’Fi

L(p)jz l.v

L2.¢
§; —kerm, E,

~

shows that expg : T,— F, is a homeomorphism. The formula x - exp(X)- x !
= expAd(x)(X)showsthatx - F,- x ' =F,forxe L. Thesum T, +--- + T,
is direct since any non trivial relation ¢, + --- +t, =0 would imply the
non trivial relation L{p)t, + --- + L(p) t,=0. An analogous diagram as
above shows that T, @ .- @ ,.5F, ----- Fy, oty + -+t ) =expglty) -
- eXpg(ty) is a homeomorphism.

Let R:=@® T, C L(G). The homomorphism L(p)|R: R~ T is a vector
space isomorphism. We have a continuous projection mapping L(G)~» R
rendering the diagram

LG22, L(G/B) = L(K)® T

prox

R

Lp) T

commutative. This projection mapping is an L-module homomorphism.
Its kernel L(p)™ *(L(K)) is just L(L) injected into L(G).

The multiplication F x L— G is continuous. Let g be the following
composite continuous mapping g: G—F

Gt G/BEY-ExK -2, 2T

p}z IJL(p)
g

F+«——X—R

The mapping G— F x L, x—(g(x), (g(x))"!- x) is an inverse mapping of
the multiplication F x L—>G.
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