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Parallelizability of Proper Actions, Global K-slices 
and Maximal Compact Subgroups 

Herbert Abels 

0.1. A locally compact topological space is by definition hausdorff. 
A pair (G, K) consisting of (1)a locally compact topological group G 
having a compact group of connected components and (2) a maximal 
compact subgroup K of G is called a (G, K)-pair. The results of the 
appendix (Theorem A.5, Corollary A.6) on (G,K)-pairs generalizing 
known results on Lie groups may be of independent interest. 

Main Theorem. Suppose we have a (G, K)-pair. Let X be a proper 
G-space (Definition see 1.6). I f  the orbit space G\X is paracompact then 
there is a G-mapping f : X ~ G/K, where the action of G on G/K is in- 
duced by left translations. 

In the terminology of Palais' [32] a subset S of a proper G-space 
X is called a global K-slice, if there is a G-mapping f : X-~ G/K such that 
S - - f - 1  (K). So the main theorem states the existence of a global K-slice. 

The G-mapping f : X ~ G/K is actually the projection of a trivial 
fibre bundle with fibre S : = f -  a (K) and structure group K (1.2). Since 
the base space G/K is homeomorphic to a euclidean space F~", X is 
homeomorphic to IR"× S. We call n the non-compact dimension of G 
n = n c - d i m  (G), since n depends only on G. 

There are two refinements of the main theorem: Suppose we have a 
(G, K)-pair. Then the problem of finding all G-actions on a topological 
space X admitting a global K-slice is equivalent to the two problems 
(1) of finding all subspaces S of X such that 1R" x S is homeomorphic to 
X and (2) to find all K-actions on such S (2.2). 

The other refinement is the following: The K-space X is K-homeo- 
morphic to T x S, where T is a continuous K-module obtained as fol- 
lows: Restrict the adjoint representation of G on the Lie algebra LG 
of G to K. Then T is the quotient K-module LG/LK.  All these notions 
make sense not only for connected Lie groups but also for (G, K)-pairs 
(see Appendix). 

As an application of the main theorem we show how it generalizes 
known results on ends of proper G-spaces for connected G (2.7t). We 
also see that there is a reasonable notion of non-compact dimension 
for arbitrary locally compact topological groups. 
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All results also hold in the differentiable category (differentiable al- 
ways means C®-differentiable), e.g.: 

Main Theorem (Differentiable Version). Suppose G is a Lie group 
having a finite number of connected components. Let K be a maximal 
compact subgroup of G. Let X be a paracompact differentiabte manifold 
and let G act differentiably and properly on X. Then there is a differentiable 
G-mapping f : X--> G/K. 

In particular S is a closed differentiable submanifold of codimension 
n. 

0.2. Here are examples of locally compact topological groups G 
and proper G-spaces: 

Example 1. Let X be a locally compact connected metric space. Let 
G be the group of all isometries of X endowed with the compact-open 
topology ([10]). More generally: Let X be a connected uniform space, 
fix a base ~ of the uniformity and let G be the group of all homeomor- 
phisms of X leaving every U e ~ fixed, i.e. for every U e ~ and every 
g ~ G we have: (x, y)~ U implies (g.x,  g. y)e U. Endow G with the 
compact-open topology. Then X is a proper G-space ([3, Theorem 7 and 
Corollary, p. 606]. The fact that the action is proper is not stated there 
but follows as on p. 605). 

Example 2. The natural action of the Lie group of all bijective (=  dif- 
ferentiable) isometries of a Riemannian manifold ([ 19, IV, Theorem 2.5], 
[29, Chapter I, Theorem 4.7]). 

Conversely: If a locally compact topological group G acts properly 
on a paracompact differentiable manifold X, there is a Riemannian 
metric ds 2 on X such that every g ~ G acts isometrically (cf. [30, p.9, 
Theorem 2]). The continuous homomorphism from G into the Lie group 
I(X, ds 2) of all isometries of (X, ds 2) is injective iff the action of G on X 
is effective, i.e. gx = x for every x e X implies g = 1. The degree of sym- 
metry N(X) of the paracompact differentiable manifold X is the maximum 
of the dimensions of I(X, ds 2) for all possible Riemannian metrics ds 2 
on X (cf. [25]). So the degree of symmetry N(X) is the maximum of the 
dimensions of all Lie groups G acting properly and effectively on X. 
For similar statements concerning Example 1 s. [1, 30, 32]. 

Example 3. The locally compact topological group G acts properly 
upon itself by left translations, more generally on a coset space G/L 
where L is a compact subgroup. 

Example 4. Let X be a completely regular hausdorff space. If X is 
the total space of a locally trivial principal G-fibre bundle, then G acts 
properly on X if the base space is regular and G is locally compact. If 
conversely X ig a proper G-space and G acts freely on X, then X - , G \ X  
is a locally trivial principal G-bundle ([32, Proposition 1.2.5, Theorem 
4.1], [33, Th~or~me 1]). 
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Example 5. Let OR, X, t) be a dispersive dynamical system on a com- 
pletely regular hausdorff space X. Then X--,1R\X is a locally trivial 
principal IR-bundle. So X is a proper IR-space ifflR\X is regular (cf. [18]). 

If H is a closed subgroup of G and if X is a proper G-space, then 
the action restricted to H is proper. 

The hypothesis of the main theorem that G\X be paracompact is 
unpleasant because hard to check. Let G be a locally compact topologi- 
cal group such that the group of connected components of G is compact. 
If X is a proper G-space, then G\X is paracompact in the following cases: 

Case I. X is locally LindeliSf and paracompact (proof as in [18, Corol- 
lary 14]: Let G 1 be the connected component of the neutral dement 
in G). Note that GI \X  ~ G\X is a continuous closed surjective mapping 
and the inverse image of every point is compact. So G1 \X is paracompact 
iff G\X is paracompact [39, Problem 20G]. 

In particular: 
Case 2. X is locally compact and paracompact. 
More particularly: 
Case 3. X is locally compact and metrizable. 
Or 
Case 4. X is a locally compact topological group and thus paracom- 

pact. 
Hhjek [18] made a variation of the following 
Conjecture. Let G be a connected locally compact topological group 

acting properly on a paracompact hausdorff space X. Then G\X is 
paracompact. 

If this conjecture were true the "note" in Case 1 would enable us 
to replace the hypothesis "G\X paracompact" in the main theorem by 
the hypothesis "X paracompact". It is easy to see from the main theo- 
rem - or by elementary considerations - that under the hypotheses of 
the main theorem X is paracompact. 

0.3. As far as I know only the following special cases of the main 
theorem are known. Example 4: "Reduction of the structure group of 
a principal G-bundle to the maximal compact subgroup" [36, 20]. Ex- 
ample 5: "Parallelization of dynamical systems" has been intensively 
studied: [4, 5, 6, 18, 31] and literature cited in [6, p. 55]. I thank Strantza- 
los for drawing my attention to these studies which were the starting 
point of the present paper (cf. [37]). Cf. also [17]: K={I} ,  [28]: K 
normal, [9, Theorem 3. l]. 

0.4, The contents of the paper are: § 1 contains the proof of the main 
theorem. Some lemmas on the way can also be interpreted as corollaries 
of the main theorem, e.g. 1.3. § 2 contains the refinements and applica- 
tions mentioned above. In order to keep the paper readable also for 
those interested in Lie groups only, the difficulties arising from con- 
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sidering non-Lie groups are dealt with in the appendix: We need a theo- 
rem on maximal compact subgroups for locally compact topological 
groups having a compact group of connected components analogous 
to the corresponding theorem on Lie groups. Once this theorem is 
established (A.5 and A.6) there are no extra difficulties arising from 
considering non-Lie groups. 

Detailed proofs are given for the topological category, the differen- 
tiable case is treated only if it differs. 

The ingredients of the proof of the main theorem are (1) Palais' 
theorem on the existence of local slices [32], (2) a study of the K-space 
G/K (Appendix A.5 and A.6). 

§1  

1.1. A G-space is a triple (G, X, q>) consisting of a topological group 
G, a topological space X and an action of G on X, i.e. a continuous 
mapping q~ : G x X ~ X  such that q~(g, q~(h, x)) = q+(9" h, x) and q3(1, x) = x  
for every g, h ~ G and x ~ X and I the neutral element of the group G. 
Since we usually consider only one action on a space X, we just speak 
of the G-space X and write g" x instead of ~0(g, x). A G-mapping of a 
G-space X into a G-space Y is a continuous mapping f : X-+ Y such 
that f (g .  x)= g. f (x)  for every x ~ X and every g ~ G. A G-mapping f 
is called a G-homeomorphism or a G-isomorphism i f f  is a homeomorphism. 
A subset A of a G-space is called G-stable if g. A = A for every g ~ G. 

Let X be a G-space. A G-orbit is a subset of X of the form G- x 
= {O" x; g e G}. The orbit space G\X is the set of all G-orbits of X endowed 
with the finest topology making the natural mapping X ~ G \ X  con- 
tinuous. 

If H is a closed subgroup of the topological group G, then G/H is 
the orbit space of G under the H-action q~(h, g) = g "  h-  1, i.e. the space of 
cosets {g- H;  g ~ G}. We consider G/H has a G-space under the action 
G x G/H ~G/H,  (g, x .  H)~--~g. x . H. 

1.2. Theorem. Suppose we have a (G, K)-pair. Let f : X ~ G/H be a 
G-mapping from a G-space X to G/K. Then f is the projection in the trivia[ 
fibre bundle f : X ~ G / K  with fibre S : =  f - l ( K ) ,  base G/K, structure 
group K and associated trivial principal K-fibre bundle G ~  G/K. 

For  a more general version of this theorem see [32, 2.1.2]. It appears 
most convenient to state the properties of f in the language of fibre 
bundle theory. 

Proof. The natural mapping n : G ~ G / K  has a global section 
t : G / K ~ G  (see Appendix Theorem 1.5). Let K act on G x S  by 
k-(O, s ) :=  (gk -1, k. s). Let G x rS be the corresponding orbit space and 
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denote the orbit of(g, s) by [g, s]. Let G act on G x xS by g- [x, s]: = [9" x, s]. 
The mapping G x K S ~ X ,  [g, s ]~9"  s is a G-mapping and in fact a 
G-homeomorphism: The mapping X ~ G x KS, x ~  [t o f (x), (to f (x))- 1 x] 
is an inverse G-mapping. 

The proof has the 

1.3. Corollary. G x ~S--* X, [9, s] v->g. s, is a G-homeomorphism. 

1.4. Corollary. Let Y be another G-space. Then the restriction mapping 
{G-mappings X ~ Y} -~ {K-mappings S-* Y} 

u ~ u l S  
is a bijection. 

This is obvious for X = G x KS. Then Corollary 1.3 implies Corollary 
1.4. 

By Corollary A.6 of the appendix there is a K-homeomorphism, say 
2 : G / K ~  T, where T is a continuous K-module of dimension n =nc 
- d i m  (G). Therefore we can apply Weyl's trick: Let Y be a K-space 
and let j ' : Y - ~ G / K  be a continuous mapping. Then the mapping 
f : Y ~  G/H defined by f (y)  :=  2- '$2(k  - t .  f ( k .  y)) dk is a K-mapping. 
Here S... dk denotes normalized Haar integral on K. If f is a K-mapping, 
we have f = f To prove the main theorem we need the following exten- 
sion lemma: 

1.5. Lemma. Suppose we have a (G, K)-pair and a G-space X. Let 
Ui, i= 1, 2, be G-stable subsets of X and let fi: Ui~G/K be G-mappings. 
I f  $2:= f f  ~(K) is a normal space and if U 1 c~ U 2 is closed in U1 u U2, 
then there is a G-mapping f : U1 u U2 ~ G/K such that f I U1 = f~. 

Proof. Since Ul n Uz is closed in U1 • U2, afortiori S 2 ca U 1 is closed 
in $2. Since G/K is homeomorphic to a euclidean space of finite dimen- 
sion, by Tietze's extension theorem there is a continuous mapping 
F : S 2 ~ G/K such that F [ U 1 c~ S 2 = f11 U1 c~ S 2 ([39, Theorem 15.8]). By 
Weyl's trick there is a K-mapping f f : S z ~ G / K  such that FIUlcaS2 
= f l j U i  caS2 = f l  l U1 caSz, since f~ is a K-mapping. By Corollary 1.4 
there is exactly one G-mapping f '  : U2 ~ G/K such that f ' I  $2 = F. Again 
by 1.4 we have f ' l  U1 n U2 = f l  I U1 c~ U 2. The mapping f : Ul u U2 ~ G/K 
such that f ]  US = f '  and f [  U1 = f l  is the desired G-mapping. 

1.6. Following Palais [32, Definition 1.2.2] we call a G-space X 
proper if (l) G is a locally compact topological group, (2) X is a com- 
pletely regular hausdorff space and (3) every point of X has a nhood V 
such that for every point of X there is a nhood U with the property 
that {g e G; 0. Uca V ~ 0} has compact closure in G. 

Note that this definition differs from Bourbaki's [8, Chapter III, 
§ 4]: In case (1) and (2) is satisfied Bourbaki's definition is equivalent to 
the condition (38): For any two points x and y of X there are nhoods 
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U and V of x and y resp. such that {g e G; g. Uc~ V + 0} has compact 
closure in G. In the language of topological dynamics the systems 
(= R-spaces) satisfying (3n) are called dispersive (s. [6]). The two notions 
of proper G-spaces coincide if X is locally compact, more generally: if 
the orbit space is regular [32]. In general: Palais-proper implies Bour- 
baki-proper. The converse is false as is shown by a very interesting 
example due to Bebutov [6, IV, 1.5.5 and 18, p. 79]. For a further dis- 
cussion of these and similar notions see [32], for dynamical systems 
[6, IV; 5; 31]. 

The following statements are easily checked: Let X be a proper 
G-space (always in the sense of Palais). The isotropy group G~ of every 
point x e X is compact and the proper G-space GIG x is homeomorphic 
to the orbit G, x of x. The main result of [32] is 

1.7. Theorem. I f  G is a Lie group and X is a proper G-space, then for 
every point x ~ X there is a G-stable ,hood U and a G-mapping f : U ~ GIG x. 

1.8. Corollary. Suppose we have a (G, K)-pair. Then every point of a 
proper G-space has a G-stable ,hood U with a G-mappin9 f : U ~ G/K. 

Proof. By a theorem of Glugkov's cited in the appendix G contains 
a compact normal subgroup B such that G/B is a Lie group. Since the 
compact normal subgroup B is contained in any maximal compact 
subgroup (A.5 (iii)) it is enough to show that every point of the proper 
G/B-space B \ X  has a G/B-stable nhood U with a G/B-mapping 
f : U ~ G / B / K / B ~ - G / K .  So we may assume that G is a Lie group 
having a finite number of connected components. Let x be a point of X. 
Since the isotropy group Gx is compact there is an element g e G such 
that g-G~.  g-1C K. The mapping G ~ G / K ,  y ~ y .  9 - 1 .  K is constant 
on the cosets y .  G~, thus induces a G-mapping G / Q , ~  G/K. Compose 
this G-mapping with the G-mapping f : U ~ G/Gx of Palais' theorem 
to obtain the required G-mapping. 

1.9. Main Theorem. Suppose we have a (G, K)-pair. Let X be a proper 
G-space. I f  G \X  is paraeompact then there is a G-mappin9 X ~  G/K. 

Proof. Let rr : X--* G\X = :Y be the natural mapping. By Corollary 
1.8 and since Y is regular there is an open cover 11 of X such that every 
U ~ II is G-stable and there is a G-mapping from the closure V to G/K. 
If Y is paracompact there is an open a-discrete refinement of the cover 
rc(lI) = {rr(U); U e 11} of Y ([27, Chapter V, Theorem 28]), i.e, there is 
a sequence 9/,, n t lN, of families 9/, of open subsets of Y such that 

o0 

U 9/, is a cover of Y which refines rr(ll) and every family 91, is dis- 
. = 1  

crete, i.e. for every point y ~ Y there is a nhood V o f y  such that V n A  ~e fl 
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for at most one element A e 9.I,. In particular Yn := U 3 is closed in 
Ae~ln 

Y. Since every A ~ 9.1 n is contained in some 7t(U), U ~ ll, there is a G- 
mapping fA : n -  1 (~) ~ G/K. For every n ~ IN the G-mappings fA, A ~ ~ ,  

compose to a G-mappingf~ : X,  ~ G/K where X n : = re- 1 (y~) = ~) ~-  1 (iT) 
because 9.1~ is discrete. ~ga~ 

We claim: There is a sequence of G-mappings F i : X1 u . . . w Xj ~ G/K, 
j e N,  such that F~ IX1 w-. .  u Xj_ 1 = Fj_ 1 for j > 1. We set F1 : = f l  and 
define F~ inductively by Lemma 1.5: Xn, X 1 u  ... wXn_l,  f , ,  F~_I play 
the role of U2, U1, f2, f l  of that lemma. It remains to prove that 
S : =  f , - l ( K )  is a normal space. The mapping n l S : S ~  Y, is surjective 
continuous closed and the inverse image of any point is compact, because 
the inverse image of any set n(M), M C S, is K .  M. The closed subspace 
Y, of Y is paracompact ,  thus S is paracompact  [39, Exercise 20G],  
a fortiori normal. So by Lemma 1.5 there is a G-mapping F~ : X~ w.. .  w X~ 

G/K such that F, IX1 w. . .  w Xn_ 1 = Fn_ 1. 
The mapping f : X - ~  G/K such that f lX~ = F~ is a G-mapping: The 

mapping f is continuous at every point x ~ X because it(x) is an inner 

point of some A ~ ~) 92~ and thus x is an inner point of some iX',. 
n = l  

1.10. The differentiable case. Differentiable always means C°%dif - 
ferentiable. Let G be a Lie group. A differentiable G-space X is a dif- 
ferentiable manifold together with a differentiable action G × X ~ X .  
A differentiable G-mapping f : X ~  Y from a differentiable G-space X 
to a differentiable G-space Y is a mapping which is both a G-mapping 
and differentiable. 

Theorem. Let G be a Lie group having a finite number of connected 
components. Let K be a maximal compact subgroup. Let X be a paracom- 
pact differentiable manifold with a proper differentiable G-action. Then 
there is a differentiable G-mapping X ~ G/K. 

We just indicate how the proof  differs from the proof of the topological 
version. We can replace throughout the whole paragraph every topologi- 
cal notion and statement by the corresponding differentiable one, expect 
where the Tietze extension theorem is used: Lemma 1.5 and hence in 
the proof  of Theorem 1.9. But with a little care the differentiable case 
can be handled by the same method:  

Let A be a subset of a differentiable manifold X. We call a mapping 
f from A to a differentiable manifold Y differentiable if there is an open 
nhood U of A and a differentiable mapping F : U ~ Y such that F [A = f .  
A partition of unity argument proves the following extension 
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Lemma. Let A be a closed subset of a paracompact differentiable 
manifold X and let f : A ~ I R  be a differentiable function. Then there is 
a differentiable function F: X ~ such that F[A = f .  

The following definition is useful. A mapping f :A ~ Y of some G- 
stable subset A of a differentiable G-space X to a differentiable G-space 
Y is called a differentiable G-mapping if there is an open G-stable nhood 
U of A in X and a differentiable G-mapping F : U ~ Y such that F I A = f .  
Note that a differentiable G-mapping is both differentiable and a G- 
mapping. I do not know whether every mapping that is both a G-map- 
ping and differentiable is actually a differentiable G-mapping. The fol- 
lowing lemma replaces Lemma 1.5. 

1.11. Lemma. Let G be a Lie group with a finite number of connected 
components, let K be a maximal compact subgroup of  G and let X be a 
paracompact differentiable G-space. Let Ui, i= l, 2, be G-stable closed 
subsets of X and let f i : U i ~ G / H  be differentiable G-mappings. Then 
there is a differentiable G-mapping f : U 1 u Uz ~ G / K such that f I U1 = f t .  

Proof. Let V i be open G-stable nhoods of Ui in X and let gi: V i~G/K  
be differentiable G-mappings such that g~t Ui = f~. The set T~:= g/-I(K) 
is a closed submanifold of V~. Since G\X is paracompact (see § 0.2, 
Case 2) hence normal there is a closed G-stable subset W1 of V t such that 
U1 ( I411. Since G/K is diffeomorphic to a euclidean space there is - by 
the extension lemma above - a differentiable mapping F : X ~ G/K such 
that FI WI =g~tW~. By Weyl's trick (differentiable version) we con- 
struct the differentiable K-mapping ff : X--, G/K. By Corollary 1.4 (dif- 
ferentiable version) there is a unique differentiable G-mapping f ' :  I12 
-*G/K such that f ' [  T 2 =FIT2.  The G-mapping gl[ WIc~V2 coincides 
on W ~ n V 2 n T 2 = W l n T z  with glIWlc~T2=F[WIc~T2=PIWlc~T2.  By 
the uniqueness part of Corollary 1.4 (not necessarily differentiable version) 
we have g 1 [ W1 Q V2 = f ' [  W1 c~ V 2. So there is a well defined differentiableo 
G-mapping f : W 1 ~ V 2--* G/K on the open G-stable submanifold W1 w V 2 
of X such that f [  I411 = gl I Wx, f [  V 2 = f ' .  The restriction o f f  to Us u U2 
has the desired properties. 

Now the proof of the main theorem - differentiable version - runs 
just like the proof of the topological version except that we start with 
a cover t[ of X by G-stable open submanifolds U of X such that there 
is a differentiable G-mapping from 0--* G/K. Such a cover exists by the 
differentiable version of Palais' theorem [32, Proposition 2.2.2]. We 
also need the following fact: If 9.1 is a discrete family of subsets of G\X  
and fa  : n - I  ('4)--* G/K is a differentiable G-mapping for every A ~ ~ ,  
then the composite mapping f :Un-a (A) -~G/K is a differentiable G- 
mapping. This is implied by the following "very strong normality con- 
dition" of the paracompact space G\X  [27, Chapter V, Lemma 3.t]: 
There is a discrete family { V(A); A e ~} ofnhoods V(A) of the sets A ~ 9.1. 
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§z 

This paragraph contains refinements and applications of the main 
Theorems 1.9 and 1.10. Everything in this paragraph also holds in the 
differentiable category. 

A first refinement of the main theorem describes the K-space X. 

2.1. Theorem. Suppose we have a (G, K)-pair. Let X be a G-space 
admitting a global K-slice. Then there is a K-homeomorphism q~ : X--* T x S 
such that 

(1) T is the continuous K-module of dimension n= nc -d im(G)  de- 
scribed in the Appendix A.6. 

(2) The action of K on T x S is the product action. 
(3) q)(s) = (0, s) f o r  s e S. 
(4) ~o(G.s)= T x K . s  for s~S.  

Proof. This is just an application of Theorems A.5 and A.6 of the 
appendix. We use the notations of these theorems. By Corollary 1.3 X 
is G-homeomorphic to G x xS. Let the inverse mapping of the multi- 
plication E x K ~ G  be denoted xk-~(e(x), k(x)). The mapping e:G--*E 
is a K-mapping if we let K act on G and E by inner automorphisms 
(A.5 (i)). The mapping G x KS---*E x S, [g, s]~(e(g), k(g). s) is a K-homeo- 
morphism. The fact that the K-space E is K-isomorphic to the continu- 
ous K-module L(G)/L(K) of dimension n = n c - d i m ( G )  implies the 
theorem. 

Theorem 2.1 implies for the orbit space: G\X is homeomorphic to 
K\S and K\S ,-*K\X is a strong deformation retraction. 

A second refinement of the main theorems is to reduce the problem 
of finding all proper G-actions on certain spaces X to the two problems 
of finding all subspaces S of X such that IR" x S is homeomorphic to 
X and of finding all actions of K on such S. 

Suppose we have a (G, K)-pair. Let ~(G, X) be the set of all G-homeo- 
morphism classes of G-actions on X admitting a global K-slice. If X is 
completely regular hausdorff, a G-action admitting a global K-slice is 
obviously proper. The converse is true by our main theorem if G\X is 
paracompact. If K is a compact topological group, then ~(K, X) is 
just the set of all K-homeomorphism classes of K-actions on X, because 
X is a global K-slice. 

2.2. Theorem. Suppose we have a (G, K)-pair. Let n = nc-dim(G).  
Then for every topological space X there is a bijection 

~P : ~(  G, X)--* U IY,(K, S) 

where the union is taken over topological spaces S such that ~nx  S is 
homeomorphic to X,  one such space out of every class of homeomorphic 
spaces. 
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Note that the theorem implies that ~(G,X) depends only on the 
maximal compact subgroup of G and on n, not on the algebraic relations 
between K and the non-compact part of G. So ~(G, X) ~ ~(K x IR n, X), 
where K x ~" is the direct product of topological groups. 

Proof. The mapping ~ is defined as follows. Let ~p be an action of 
G on X that admits a global K-kernel, i.e. there is a G-mappingf  : X ~  G/K. 
Define ~(q~) = K-homeomorphism class o f f -  1 (K). The point is to show 
that ~ depends on the G-homeomorphism class of ~p only. We first 
define the inverse mapping ~ (cf. [32, p. 306, Theorem]). Pick a homeo- 
morphism t : E--,IR ~, where E is a subset of G such that the multiplica- 
tion E x K ~  G is a homeomorphism. We denote the inverse homeo- 
morphism G-- ,Ex  K by g~(e(g),  k(g)). Let S be a K-space and let 
q : IR n x S ~ X be a homeomorphism. Then we have a composite homeo- 
morphism h 

G x t ~ S ~ E x S  t×aS~IR"xS q--~X. 

[0, s] ~-*(e(g), k(g). s) 

Now G x xS is a G-space under the action g. Ix, s] = [g. x, s]. There is 
exactly one G-action on X such that h is a G-homeomorphism. The 
G-homeomorphism class thus defined obviously does not depend on the 
homeomorphisms chosen. Let q~(S) be the G-homeomorphism class of 
this G-action. There is a G-mapping f : X ~ G / K ,  f ( h ( [ g , s ] ) ) = g . K ,  
such that f - i  (K)=  q(S) is K-homeomorphic to S. If S a and S 2 are 
K-homeomorphic spaces such that IR"x S~ and 1R"x $2 are homeo- 
morphic to X, then q~(Sl)= ~($2). So ~ is well defined on U~(K,  S) 
and takes values in ~(G, X). 

Concerning ~ we have 

2.3. Lemma. Suppose we have a (G, K)-pair. Let X be a G-space 
admitting two G-mappings f l, f2 : X ~ G/K. Then there is a G-autohomeo- 
morphism h of X such that f l  ° h = f2. 

This lemma implies the theorem: ~ depends only on the G-homeo- 
morphism class of the G-action on X and ~P is obviously the inverse 
mapping of ¢~. 

Proof of  3.2. Again we make use of the fact that the restriction of 
the natural mapping n : G ~ G/K to E is a K-mapping, if we let K act 
on G/K by  left translations and on E by inner automorphisms. So 

: X ~ E ,  fi : = (n[E)- 1o f,  are K-mappings. Thus Pi : X ~ S i : = fi - 1 (K), 
pi(x) :=  (f~(x)) -1 .  x are K-retractions preserving orbits. 

So we have two K-mappings p11S2:$2~S!  and P21S~:Sx~S2 
which are unfortunately not inverse of each other. For instance 
Pl ° P2(s) = (l°f2(s))" s for s e S 1 where l: E ~ K  is defined by the con- 
dition g - I  e E . / (g) ,  so l (g)= k(g -1) in our earlier notation. Since 
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E is a K-space, 1 is a K-mapping. The K-mapping j:S1----~S1, 
j(s) :=  (l o ~(s))- 1. s, is the inverse of Pl ° P21S1. Similarly we conclude 
that P2 ° Pl :$2~$2 is a K-homeomorphism. So p l l S 2 : S z ~ S  ~ and 
P2 I S1 : S: ~ $2 are K-homeomorphisms and P2 oj : $1 ~ $2 is an inverse 
K-homeomorphism of pllS 2 :$2- ,S  1. By Corollary 1.4 these two K- 
mappings induce mutually inverse G-mappings X ~ X .  Let h : X ~ X  
be the G-homeomorphism such that hIS2=PllS2. Since the two G- 
mappings f~ o h and f2 from X to G/K coincide on the global K-slice 
$2, they are equal, again by Corollary 1.4. 

As a further application we show how the results of the present 
paper generalize known facts on ends of proper G-spaces for connected 
G [2, 11-13, 22, 26, 35, 38, 40]. We need some preparatory material 
2.4-2.6. 

2.4. Theorem. Let the non-compact locally compact connected topo- 
logical group G act properly on the locally compact topological space X. 
Then the embedding of X into its one-point-compactification X ~ { ~ }  is 
homotopic to the constant mapping X ~ ~ .  

Proof. [38]. In the notations of Theorem A.5 of the appendix: E is 
homeomorphic to some ~n, n >  0. So there is a path ?: [0, l ] ~ G u { ~ }  
in the one-point-compactification of G such that y(0) = oo and 7(1) = iden- 
tity element of G. The desired homotopy F : X x  [0, 1 ] - ~ X u { ~ }  is 
then given by 

F ( x , t ) = { 7 ( ~ . x  for 7( t )#:~ 
for 7 (0=c~ .  

F is continuous because the action is proper. 
We need the notion of cohomology at infinity [16]. By cohomology 

we mean Cech cohomology with values in a fixed ring A. Let X be a 
locally compact paracompact topological space. Let 3; be the system 
of all closed subsets F of X whose complement is relatively compact. 
2; is a projective system ordered by inclusion. 

2.5. Definition. The cohomology at infinity H~(X) is the direct limit 
lim Hn(F) of the inductive system Hn(F), F ~ Z. 
F e Z  

There is a long exact sequence [16] 

n n n n + l  n + l  • .. ~ n c ( x ) ~ n  ( X ) - , H o ~ ( X ) - - , H ,  ( X ) - - , H  ( X ) - - ,  . . .  

involving cohomology groups H*(X) and cohomology groups H~(X) 
with compact support. In the case of Theorem 2.4 this exact sequence 
falls apart since H~(X)~ Hn(X) is the zero-mapping. 

The first group H°(X) is closely related to the number of ends of X. 
Freudenthal's end point compactification .~" of the locally compact 
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space X is defined by the following properties: (1) X \ X  is totally dis- 
connected or equivalently 0-dimensional. (2) If Yis any compactification 
of X such that Y \ X  is 0-dimensional, then the embedding X--+ Y has 
a unique continuous extension X-+ Y. The cardinality of ,~ ' \X is called 
the number of ends of X and denoted e(X). 

2.6. Theorem. [16, 34, 38]. Let X be a connected locally compact para- 
compact topological space. Then H°  (X) is isomorphic to the ring of con- 
tinuous functions from . ~ \ X  to the discrete ring A. 

In particular: If A is a field, then e(X) = dimaH°(X) in case one of 
the two numbers is finite. 

We are now ready to state 
2.7. Theorem. Let G be a locally compact topological group having 

a compact group of connected components. Let n= nc-d im(G) .  Let X 
be a locally compact paracompact proper G-space. Then 

(a) Hm(S) = 0 for m < n. 
(b) HI(X ) 4= 0 iff G\X has a compact open subset 4: O. In particular, 

if X is connected: Hn(x) 4= 0 iff G\X is compact. 
(c) I f  G\X is compact: H~(X) _~ H k-"(X) for every k E Z. 

2.8. Corollary. If G is non-compact and X is connected, then e(X) < 2. 
l f  e(X) = 2, then G\X is compact and G is a semidirect product of a maximal 
compact subgroup K and a normal subgroup E isomorphic to HL The group 
K contains an open subgroup L of index < 2 such that E.  L is a direct 
product of E and L. The group L is normal in G. 

Proof of Theorem 2.7. By the main theorem there is a G-mapping 
f : X ~  G/K. Then X is homeomorphic to IR~× S, where S ' =  f - t ( K ) .  
So Hc*(X)~-H*(S)®H*(~"; Z) which implies (a). Since G\X is homeo- 
morphic to K\S, G\X is compact iff S is compact. Hn(x)= H°(S) is 
non zero iffS has a compact open subset 4= O. Since G\X is homeomorphic 
to K\S, G\X has a compact open subset 4= 0 iff S does, which implies (b). 
Finally if S is compact we have Hk(x) ~-- lick- "(S) ~- H k- n(s) _~ H k- n(x) 
for every k e Z, because IR" is contractible. 

Proof of Corollary 2.8. By Theorem 2.4 we have short exact sequences 

0-+ Hk(X) --* H~ (X) -o lick +1 (X) -o O . 

Take a field A as ring of coefficients for the cohomology. Since X is 
connected we have dimAH~(X)=dimaH°(X)  - 1 = e ( X ) - 1  by Theo- 
rem 2.6 in case one of these numbers is finite. 

Since G is non-compact we have n = n c -  dim (G) > 0. Theorem 2.7 
implies: If HI(X)#0 then n = 1 (a), G\X is compact (b) and H~t(X) 
~-H°(X) (c). So e (X)= l+dimAH~t(X)<2 and e ( X ) = 2  iff Ht~(X)4:0, 
in which case n = 1. We now apply Theorem A.5 of the appendix for 
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n = 1. In the notations given there E is a one-parameter subgroup of 
G (iv), normal (i) and G is the semidirect product of E and a maximal 
compact subgroup K of G (ii). Now consider the continuous homo- 
morphism r :K~Aut (E) ,  k~lktE,  where I k is the inner automorphism 
of G, Is(g) = k- g- k- 1. The image of r is a compact group of automor- 
phisms of E, so contained in {___ It}. So the kernel L of r is an open 
subgroup of K of index < 2. By construction E.  L is a direct product 
of E and L. The normalizer of L contains K and E, so L is a normal 
subgroup of G. 

2.9. Let G be an arbitrary locally compact topological group,.let 
G 1 be its connected component of 1. Then 

n c -  dim G 1 = rain {m ~ Z; Hy(G) 4= 0} (2.9.1) 

by 2.7 (b) applied to the proper G l-space G defined by right translations, 
say. If G/G 1 is compact we have 

nc - dim G = min {m ~ Z; H~'(G) 4: 0} (2.9.2) 

by 2.7 (a) and (b) applied to the proper G-space G. So we define for an 
arbitrary locally compact topological group G: 

nc-d imG:= nc-dimG1 = min{m e Z ;  Hy(G) ~e 0} 

and this definition is by (2.9.2) in keeping with our previous definition. 

2.10. Corollary. I f  H is a closed subgroup of the locally compact 
topological group G we have: 

n c - d i m H  < nc-d imG 
and 

nc -d im  H = nc-dim G 

iff G1/H 1 is compact. 

Proof. Look at the proper H~-space G and apply 2.7. 
Mostow [31a] has shown: If H and G are connected Lie groups, 

L and K their maximal compact subgroups, H a closed subgroup of 
G and n c - d i m G = d +  n c - d i m H ,  then G/H is a fiber bundle over 
K/L with typical fiber IR d. In case d = 1, Borel [7, Theorem 2] has shown 
that this bundle is trivial, which is not true in general. The number of 
ends of G/H is 0, 2, l according to the cases d = 0, 1, ~ 2. For  ends of 
homogeneous spaces cf. also [24]. 

Appendix 

We will prove a refined version of the theorem of Malcev-Iwasawa 
on maximal compact subgroups for locally compact topological groups 
having a compact group of connected components. The corresponding 
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theorem on Lie groups can be found in [21, Chapter XV, Theorem 3.1]. 
Using this theorem, the solution of Hilbert's fifth problem (A.2), a local 
splitting theorem (A.1) and the notion of Lie algebra of a topological 
group we get the desired result (A.5 and A.6). 

A.I. Theorem ( GluJkov [14, Theorem A]). Let G be a locally compact 
topological group, U a nhood of the neutral element 1 of G. Then there 
is a nhood V C U of 1 in G that splits as a direct product of a compact 
group and a connected local Lie group. 

A.2. Theorem (GluJkov [14, Theorem 8]). Let G be a locally compact 
topological group having a compact group of connected components. Then 
every nhood of 1 in G contains a compact normal subgroup B .such that 
G/B is a Lie group. 

A.3. Let G be a topological group. We will define a sort of Lie algebra 
of G (see e.g. [15, 23]): Let L(G) be the set of all continuous homo- 
morphisms from the additive group IR to G endowed with the compact- 
open topology, which is the same as the topology of uniform convergence 
on compact sets [8]. L(.) is a functor from topological groups to topo- 
logical spaces. In particular we have an adjoint representation of G on 
L(G) defined by 

(Ad(x) X ) ( s ) = x . X ( s ) . x  -1 for x ~ G ,  X e L ( G ) ,  selR.  

The mapping G x L(G)-*L(G) defined by the adjoint representation is 
continuous at (1, X) for every X e L(G), as is easily checked by looking 
at the topology of uniform convergence on compact sets, and hence 
everywhere, since Ad (x) : L(G)---, L(G) is continuous. 

Lemma. Let G and H be topological groups. A continuous homo- 
morphism f : G--*H which is a local isomorphism induces a homeomor- 
phism L ( f )  : L(G)-,  L(H). 

Proof. Any local homomorphism from IR to any topological group, 
defined on a connected nhood of 0 in IR extends uniquely to a continuous 
homomorphism on all of IlL So L( f )  is bijective. It remains to prove 
that L ( f )  is open. Let N be an open nhood of t in G such that f i N  is 
injective and f - l : f ( N ) - - , N  is continuous and multiplicative. Let 
WG(K, U)[X] = { Y~ L(G); Y(s)~ X(s). U for every s~ K} be a nhood 
of X in L(G), K compact C IK U a nhood of t in G. We have to show 
that its image under L( f )  is a nhood of L( f )  (X). We may assume that 
K is a closed interval [ - r ,  r] C IK Let n be a positive integer such that 

X(-~-  / ( N .  Let V l be a nhood of I in G such that V~CU and let Vbe 
\ t t ]  

a nhood of 1 in G such that X(~-~--t • V C N  and V . X ( s ) C X ( s ) . V  1 for 
\ n /  
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every s~ K. Then W~ (K_K, V] [X]CWG(K, U)[X]  and L ( f ) W  e (~n-' V) 
/ K  ~ \ n  / 

AA. Theorem Let G be a locally compact topological group. Let L(G) 
be the set of all continuous homomorphisms IR~ G, endowed with the 
compact-open topology. I f  X ,  Y~ L(G) then the sequence of points 

X • Y e G converges to a point which we denote (X + Y) (s). 

Then X + Y : F ,~  G is a continuous homomorphism. L(G) with this addi- 
tion and the multiplication by scalars defined by the formula 

(r. X) (s) :=  X(r .  s) 

turns L(G) into a complete locally convex topological ~ vector space. 

Proof. The theorem is true for Lie groups and for compact groups 
(see [23]), hence for the direct product of a compact group K and a 
Lie group H. By Glu~kov's Theorem A.t and since any local Lie group 
is locally isomorphic to a simply connected Lie group, there is a con- 
tinuous homomorphism K x H ~  G of a direct product as above to G, 
which is a local isomorphism and hence induces a homeomorphism 
L(H × H ) ~  L(G). This proves the theorem. For  a different proof s. [15]. 

Remark. By the same argument one can also define a continuous 
Lie algebra structure on L(G), such that a Campbell-Hausdorff-theorem 
holds using [23]. But the G-module structure is enough for our purposes. 

There is a continuous mapping, classically called the exponential 

exp : L(G)~  G, exp(X) = X(1). 

A.5. Theorem. Let G be a locally compact topoloyical group whose 
group of connected components is compact. Then there is a maximal 
compact suboroup K of  G and a subset E of G such that 

(i) x .  E .  x -  1 = E for every element x ~ K, 
(ii) the multiplication E x K--+ G is a homeomorphism, 

(iii) for every compact subgroup L of G there is an element e e E 
such that e . L . e -  ~ C K, 

(iv) consider L( G) as a K-module by restrictin9 the adjoint representa- 
tion of G to K. Then there is a finite set of finite dimensional K-sub- 
modules $1 , . . . ,  Sk of L(G) such that their sum S 1 + ... + S k is direct, 
the mapping 

~r : $1 @ "'" @ S k ~ G  

a(xl + . . .  + XR)= exp(x0 .. . . .  exp(xk) 

is a homeomorphism onto E and for each E i : = exp (Si) we have x .  E i • x -  l = Ei 
for every x ~ K. 
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A.6. Corollary. The finite dimensional K-submodule T: = $1 ~ " " G Sk 
of L( G) is a complementary submodule of L( K) in L( G), i.e. L( K) ~ T = L( G). 
We have K-isomorphisms 

T ~ ~E ~I~ ,G/K.  

Here K acts on E C G by inner automorphisms and on G/H by left transla- 
tfons of  eosets. The mapping ~ is the natural mapping G ~ G / K .  

By (iii) for any two maximal compact subgroups K and L of G we 
have dim G/K = dim G/L. We call it the non-compact dimension of G: 

nc - dim (G) = dim G / K = dim~ L( G)/ L( K) . 

Proof. For a Lie group G the space of continuous homomorphisms 
L(G) can be identified with the Lie algebra of left invariant vector fields 
on G. For  a Lie group having a finite number of connected components 
the theorem and its corollary are known [21, Chapter XV, Theorem 3.1]. 
That the S i are actually K-modules and a is a K-mapping is seen from 
the following facts: The exponential mapping is a local homeomorphism; 
exp ad (x) (X) = x .  exp (X). x -  1 for every x ~ G, X ~ L(G). Now let G be 
a locally compact topological group such that the group of connected 
components is compact. There is a compact normal subgroup B of G 
such that G/B is a Lie group. G/B has only a finite number of connected 
components. Let p : G ~ G / B  be the natural homomorphism. Let W 
be a nhood of 1 in G/B containing no subgroup except { 1 }. Then p-~(W) 
contains a nhood of l in G that splits as a direct product of a compact 
group A and a local Lie group. So there is a direct product of A and a 
Lie group H and a continuous homomorphism A x H ~ G which is a 
local isomorphism and such that f I A = la. Now p(A) is a subgroup of 
W, so A is contained in the kernel of p. The continuous homomorphism 
p o f I H : H ~ G/B of Lie groups is continuous and open, hence induces a 
surjection L(H)~L(G/B) .  By means of the isomorphism L ( f ) : L ( A )  
x L ( H ) ~  L(G) the two vector spaces are identified. For every element x 
of the open subgroup f (A x H) C G we have Ad(x) L(H) C L(H). Since 
the group of connected components of G is compact, f ( A  x H) is of finite 
index in G. So there is a finite dimensional G-submodule M of L(G) 
such that L(p): M ~ L(G/B) is surjective. 

Now let K, E~, S~, T be the objects of the theorem and the corollary 
for the Lie group G/B. Then p-  1 (K) = : L is a maximal compact subgroup 
of G and any compact subgroup of G is conjugate to a subgroup of L. 
Let Si be the inverse image of S i under L ( p ) I M : M ~ L ( G / B ) .  Then Si 
is an L-module containing the L-module ker(L(p)lM). Since every 
finite dimensional continuous L-module is semisimple, there is an 
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L - m o d u l e  T~ C S~ such that  L(p)[ T~ is a vector  space i somorph i sm onto  
S v Let  F~ : =  exp~(T~). The  commuta t i ve  d i ag ram 

0x~ ,  F, 

L(P)II I p 

shows that  exp~:  T ~ F  i is a h o m e o m o r p h i s m .  The  formula  x-  exp(X)-  x - t  
= e x p A d  (x) (X) shows that  x .  F i • x -1 = Fi for x e L. The  sum T 1 + . . .  + T k 
is direct  since any non  tr ivial  re la t ion  t~ + ... + t k = 0 would  imply the 
non  trivial  re la t ion  L(p) t 1 + ... + L(p) t k = 0. An ana logous  d i a g ra m as 
above  shows tha t  7"1 ~ )" .  0 Tk-~F1 . . . . .  Fk ,  T(t 1 - k " "  + tk) = e x p a ( t 0  . . . .  
• expG (tk) is a h o m e o m o r p h i s m .  

Let  R : =  @ ~ C L(G). The h o m o m o r p h i s m  L(p)IR : R ~  T is a vector  
space i somorphism.  W e  have  a con t inuous  pro jec t ion  mapp ing  L(G)--r R 
render ing  the d i a g r a m  

L(G) z(p), L(G/B)= L(K)•  T 

l prOX 
I 
J, 

R L(p) ~ T 

commuta t ive .  This  p ro jec t ion  m a p p i n g  is an L - m o d u l e  homomorph i sm.  
Its kernel  L(p)- l (L(K)) is jus t  L(L) injected into  L(G). 

The mul t ip l i ca t ion  F × L ~  G is cont inuous .  Let  g be the fol lowing 
compos i t e  con t inuous  m a p p i n g  g :  G ~ F  

G ~ G/B ~ muir. E x K p~ox ~ E "  - .~ T 

~ F ~  ~ R 

The m a p p i n g  G ~ F x  L, x~(o(x) ,  (g(x)) -1. x) is an inverse ma pp ing  of 
the mul t ip l i ca t ion  F × L ~  G. 
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