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Abstract. The mobility of phones in a cellular or Personal Communication Services (PCS) environment introduces the prob- 
lem of efficiently locating the called phone. In this paper, we present an analysis of the delay and number of messages transmitted 
in different sequential and parallel search strategies, considering for the first time the issue of queuing on radio paging channels. 
Our analysis shows that parallel search may not reduce the time to find a mobile phone if the parameters of the system are unfa- 
vorable. We also develop an efficient algorithm for searching with minimum expected number of messages when the location of 
the phone is given by a probability vector. 

1. I n t r o d u c t i o n  

In a traditional phone network, each phone is asso- 
ciated with a known geographical location. The number-  
ing scheme for these fixed phones takes advantage of 
their known location. A relatively simple mapping exists 
f rom the telephone number  to its geographical location. 
The introduction of the 800 number  service utilized an 
indirection in this mapping  while still exploiting the 
proper ty  that the final number  is placed at a known geo- 
graphical location. The 700 number  service, first intro- 
duced by AT&T, exploits the fact that  the called number  
may be mapped  into one of  several fixed numbers using 
a logic and order specified by the customer. The 500 
number  service is more advanced in that  the customer 
can have his /her  calls forwarded to (virtually) any 
phone; however the mapping  between the customer 's  
500 number  and a s tandard number  must  be provided by 
the customer, e.g., by using a touch-tone phone. The 
techniques used in the services mentioned above are 
inadequate for the mobile environment since the location 
of the final destination (viz. the called phone) is unknown 
and must  be determined before the call is completed. 

In response to this need, several schemes have been 
employed and suggested. A centralized paging scheme in 
which the called phone number  is broadcast  and the 
called phone responds is inefficient in the use of  radio 
bandwidth. In the more recent search techniques, the 
basic unit of  paging is the cell level. The problem now is 
to design an efficient search algorithm such that  the rele- 
vant costs are minimized. 

A number  of  research papers address facets of  the 
mobile location problem. The problem is complex 
because there are several performance criteria including 
costs of  reporting, recording, and retrieving the loca- 
tions of  mobile phones, costs of  searching for mobile 

phones when calls arrive, the probabil i ty of a successful 
search, and delays in finding phones. Tracking and 
search costs include radio channel occupancy, transmis- 
sions in fixed networks, and database transactions. The 
overall complexity is also important  because a scheme 
that  requires a highly distributed real-time system may  
introduce problems of its own, particularly with respect 
to reliability. Previous papers [1-5,7,8] address network 
architecture issues, database structures, and tradeoffs 
between registration and paging costs. 

This paper  focuses on the search process. We assume 
that  the system has accurate knowledge that  a phone is 
in a "location area"  which consists of  a collection of 
cells. We then examine sequential search strategies for 
determining the cell in which the phone is located. The 
search procedure consists of  sending paging messages to 
a group of cells in the location area and waiting for a 
response f rom the phone. I f  no response arrives within a 
fixed waiting period, the network sends paging messages 
in another  group of cells, and again waits for a response. 
The procedure continues until the phone responds to a 
paging message. The quality criteria that  we examine are 
the search delay and the total number  of  messages 
transmitted. 

An important  issue is the queuing delay of  paging 
messages on radio channels. Our probabilistic analysis 
reveals that  parallel search may not reduce the time to 
find a mobile phone if the parameters  of  the system are 
unfavorable.  We also develop an efficient algorithm for 
paging to minimize the total number  of  messages when 
we know the probabil i ty of  finding a phone in any speci- 
fic cell. 

Rose and Yates inform us that  they have also inde- 
pendently come up with a similar queuing delay analysis 
[9] and report  an independent analysis of  paging to mini- 
mize total number  of  messages [10]. Our goal in this 
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paper is to study the design implications of our analysis 
taking into account both the delay incurred and number 
of messages transmitted. The delay analysis focuses on 
uniformly distributed traffic and includes the effect of a 
timeout at each cell. In [9], the authors analyze delay as a 
function of the mean of the ordered distribution that 
describes the uncertainty about the location of the 
mobile phone. For the problem of developing an effi- 
cient algorithm for paging to minimize the number of 
messages when we know the probability of finding a 
phone in any paging cell, our emphasis in this paper is on 
the computational complexity of the solution, while in 
[10] the authors deal with methods for different types of 
distributions. 

In [6], Madhavapeddy et al. propose methods to 
empirically compute the probability of a mobile phone 
being in any paging cell using the registration history. 
They also develop algorithms to minimize the expected 
number of messages while searching for a mobile phone; 
we compare and contrast our algorithms with the ones 
in [6] in section 4. 

The rest of the paper is organized as follows. In sec- 
tion 2 we present our model. In section 3, we introduce 
and present an analysis of sequential and parallel 
schemes used for locating a mobile phone. The simple 
analysis in section 3.1 raises important questions about 
the issue of queuing delays. In section 3.2, we analyze the 
effect of queuing on radio paging channels, assuming a 
Poisson call-arrival. In section 4, we develop an efficient 
paging strategy to minimize the total number of mes- 
sages sent in locating the mobile phone when the possible 
locations of the phone are specified by a probability vec- 
tor. We conclude in section 5 with directions for future 
research. 

2. The model, definitions, and notation 

We denote the number of base stations by N~. The 
called telephone can be in any one of the N~ cells served 
by the base stations. In the basic search technique, the 
search is divided into stages, where in thejth stage, kj sta- 
tions that have not searched for the phone in earlier 
stages query for the phone; the search stops when the 
phone is found, or all stations have searched for the 
phone. The stations that page in a stage form a paging 
group. The maximum number of paging groups is 
denoted by NG. (In other words, the paging groups parti- 
tion the set of NB stations into Na subsets.) The case 
when Arc = Ne is called polling, and the case when 
Na = 1 is called flooding. 

Letpi, for 1 ~< i ~<Nm be the probability that the phone 
is in the service area of base station i, let S be the random 
variable denoting the number of stages in the search for 
the phone, and let M be the random variable denoting 
the total number of query messages sent in locating the 
phone. We define the uniform case as a situation in which 

a mobile phone is equally likely to be in any cell in the 
location area. Furthermore, we divide the location area 
into NG equal-sized paging groups, each containing k 
cells. In terms of our notation, we have for the uniform 
case, 

1 
for all l<~i<<,N~, Pi -- N8 

and 

N~ 
kj = k - NG for all I <~ j <~ NG . 

Two important quantities we study in this paper are 
the delay and the number o f  messages transmitted in 
searching for a mobile phone. In this paper we assume 
that the number of messages transmitted is equal to the 
number of base stations that page before the phone is 
located. In general, the delay (or time taken in locating 
the phone) is a function of the number of paging groups, 
the delay in the wireless channel, the timeout variable 
(i.e., the amount of time a station waits before deciding 
that the phone is not present in its paging area), the delay 
in the wired network, and the computational time at 
each base station and the switching network. Typically, 
the delay in the wired network and the computational 
delays are comparatively negligible. 

3. Analysis of  search techniques 

In this section, we study the uniform case in detail. 
This corresponds to the situation when the customer 
with the phone moves randomly and hence pi = 1 INs ,  
for all i. We discuss in section 4 the situation when the 
pi's are all not necessarily 1/N~ and the probability vec- 
torp is known beforehand. Some more discussion of the 
non-uniform case appears in Appendix A. 

3.1. Basic sequential and parallel search techniques 

The primary quantities of interest in analyzing a search 
strategy are the expected and maximum number of 
stages (denoted by E(S)  and max(S) respectively), and 
the expected and maximum number of query messages 
(denoted by E(M)  and max(M), respectively). 

It is obvious that max(S)=N~ = N s / k ,  and 
max(M) = NB. Clearly E(S)  = ~;=~/gj. (1/NG), since 
with probability lING, we will have j stages. Hence, 
E(S)  = (Ns + k ) /2k  = (Na + 1)/2. Since in each stage 
kmessages are sent, E(M)  = k .  E(S)  = (Ne + k)/2.  

Table 1 summarizes this information, with the values 
of E(S),  max(S), E(M) ,  and max(M), for general fixed 
k, and for polling and flooding. The tradeoffs are easy to 
notice: if the delay in finding a phone is proportional to 
the number of stages, flooding finds the phone quickly 
with more messages, while polling takes longer but sends 
fewer messages. 
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Table 1 
The expected and maximum number of search stages and messages 
for the uniform case when k stations page in a stage, and the phone is 
equally likely to be found by any of N~ stations. The maximum number 
of paging groups is NG. 

Method E(S) max(S) E(M) max(M) 

Generalk Na + 1 N~ NB + k N~ 
2 2 

Polling (k = 1) NB + 1 NB Ne + 1 NB 
2 2 

Flooding (k = Na) 1 1 N~ Na 

3.2. Analysis o f  search techniques with queuing delays 

The tradeoff observed from the analysis in section 3.1 
assumes that the delay in finding a phone in any stage is 
O(1). However, in practice, paging messages will get 
queued at a station before being broadcast, because of 
the volume of calls. This implies that the response time 
delay associated with finding a mobile phone is not pro- 
portional to the number of stages anymore. We now ana- 
lyze search techniques taking into account the effect of 
queuing delays at the stations. Our analysis sheds light 
on important design issues related to the number of sta- 
tions that must page at each stage. 

Our goal in this section is to determine an expression 
for the delay for the uniform case; this relationship will 
shed light on how to organize the paging. In Theorem 1, 
we determine an expression for the expected queue 
length at a station that is relevant for delay analysis. In 
Theorem 2, we derive an expression for the expected 
delay in paging based on our expression for the expected 
queue length. We then use this expression for the 
expected delay to derive in section 3.3 an interesting 
result that affects the design of paging systems. 

To obtain our expression for the queue length, we 
make some simplifying assumptions about the system, 
which are reasonable in our current setting. 

Assumpt ion  1. We assume the uniform case as 
described in section 2. We assume that the entire delay 
bottleneck in any stage is in the radio channels. Each 
channel is an M / M / 1  queue with average capacity of # 
messages per unit time (i.e., each channel services broad- 
cast requests at an average rate of # messages per trait 
time). We assume that call arrivals are Poisson with 
aggregate arrival rate of ~b calls per unit time. We assume 
that the k stations in each paging group are chosen at 
random from stations that have not yet paged. In other 
words, the paging groups are not fixed I Assuming that 
the call arrivals are uniform over the NB base stations, 
the arrival rate on each paging channel is r  The 

1 We make this assumption for mathematical simplicity. In prac- 
tice, the paging groups may be fixed before-hand, which introduces a 
mathematical dependency between the queue lengths at different 
stations. 

average arrival rate on each paging channel is A(NG) 
= ~.  E (S ) /Nc .  From Table 1, A(Na) = qS. (N~ + I ) /  
2Na. (Notice that in flooding A(NG) = A(1) = ~, while in 
polling A(Na) = A(NB) = ~b. (NB + 1)/2N~.) 

We denote by p(Na) the quantity A(NG)/#. For nota- 
tional convenience, we denote A(Nc) by A and p(NG) by 
p; it should be borne in mind that for any fixed ~b, the 
quantities A and p are functions of  Na. 

Let Qi be the random variable denoting the queue 
length at base station (paging station) i. The delay 
induced by a queue that has g outstanding paging 
requests is s Assume without loss of generality that in 
the j th  stage we request stations 1, 2 , . . . ,  k to broadcast 
paging messages. Intuitively, the delay Dj in thej th  stage 
is closely related to the maximum queue length amongst 
the k base stations that page in that stage; i.e., Dj, for 
t~<j < S is related to the random variable Gj 
= max(Q1, Q2, . . . ,  Qk). To get an expression for the 
expected delay, we would like to derive an expression for 
E(Gj). We proceed to determine E(Gj) from an expres- 
sion for Pr(Qi <<- g) as follows. 

By M / M / 1  queuing theory, the queue length Qi at 
base station i is a random variable with geometric 
distribution having parameter p = A/#; i.e., Vi, 
Vr(Qi = g) = (1 - p)pe. Hence, 

Pr(Qi <~ g) = 1 - pe+l . 

By Assumption 1, the Qi are i.i.d. Therefore, 

Pr(Gj<~g) = (Pr(Qi<~g)) k = (1 -pe+l)k.  (1) 

Further, 

P (2) E(Qi) - 1 - p 

Since E(Gj) = ~-~4>>.o g" Pr(Gj = g) = }-~e~>0 Pr(Gj > g), 
we have from (1) that 

E(Gj) = E ( 1  - (1 - pe+l)k). (3) 
g~>0 

Expanding (1 - pe+l )k in (3) and interchanging the order 
of summation, we get 

e(aj) = Z (-1) m-' 
m=l g>O 

which yields the following theorem. 

Theorem 1. Under the conditions listed in Assumption 
1, E(Gj), the average maximum queue length amongst 
the k stations that page in thej th stage is given by 

E(Gj) = E (-1)m-'  1 -pm (4) 
m=l 

We are now ready to derive an expression for E(D), 
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the expected delay in locating a mobile phone. We 
denote the expected delay of thejth stage by E(Dj). Since 
the k stations to page in thejth stage are chosen at ran- 
dom, it implies that E(Gj) is the same for all j ,  where 
1 ~<j < S; with a slight abuse of notation, we will denote 
this average by E(G). Similarly, by Assumption 1, since 
the Qi's are i.i.d., we will use the notation E(Q) to denote 
the expected queue length at any base station. 

When a call arrives at a switch, the system sends mes- 
sages to the paging group. The request eventually finds 
its way to the front of the queue and is broadcast. The 
station either gets a positive acknowledgement (say, 
immediately), or waits a fixed amount of time W before 
it times out and assumes the mobile phone is not found, 
We now compute the delay for the search strategy. 

Let us assume the mobile phone is eventually found. 
(The case when the phone cannot be located is less 
interesting; the analysis is similar, and is omitted.) If 

the mobile phone is found in stage s, the expected delay 
in this stage is E(Ds) = E(Q)/#, where E(Q) = E(Qi) 
is as in (2). (If station i locates the mobile phone, the 
expected delay is E(Qi)/# = E(Q)/tz.) For an unsuc- 
cessful stage j ,  for 1 ~<j < s, the expected delay is 
E(Dj) = E(G)/# + W, since it takes E(G)/# time to 
exhaust the queue, and the last station that broadcasts 
the requests waits W units of time before timing out. 
Hence the average delay is 

E(D)=E(Q--) + ( E ( S ) -  I)" (E(y) + W) 

where S is the number of stages�9 Substituting for E(S) 
from Table !, and for E(Q) from (2) we get the following 
theorem�9 

Theorem 2. For any given load p = p(NG) = A(N6)/#, 
under the conditions of Assumption 1, the expected 
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Fig. 1. Average delay vs. the maximum number  of paging groups Na for four different values of load p(1) - ~b/#. The number  of base stations is 
N8 = 64. The four different curves in each graph correspond to different values of the waiting time w. The x axis is logarithmic to better illustrate 
the interesting portions of the graph corresponding to small Na. Portions of the graph corresponding to a high delay have been cropped. As seen 

from (a) and (b), the delay reduces dramatically in going from one to two paging groups in the presence of substantial load. 
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delay E(D) in locating a mobile phone in the presence 
of queuing delays is given by 

.(1-./ f f +  E(D) 

when the phone is eventually found, where Na is the 
number of paging groups, E(G) = E(Gj) is as in Theo- 
rem 1, and W is the maximum waiting time for a 
response from the phone. 

Theorem 2 gives us an analytical handle for the 
paging delay in the presence of queuing delays. To better 
understand the design implications of this analysis, we 
now study how the average delay varies with the number 
of search stages and the system loading factor 
p(1) = qS/#. 

3.3. Design implications of queuing delay analysis 

In this section we look at numerical results based on 
the analysis in section 3.2. The channel loading variable 
p(N6) is a dimensionless quantity, and is the ratio of the 
total call arrival rate A(NG) to the service rate # on each 
paging channel. The aggregate arrival rate of calls is ~b 
messages per unit time. Recall from Assumption 1 that 
A(NG) -=- 4" (NG + 1)/2NG. 

We study the quantity E(D) x # (rather than just 
E(D)). The rationale behind this is simple: the quantity # 
is fixed for the system by the deployed hardware, and 
multiplying by # only scales the units. Our delay is there- 
fore measured in the number of messages; we call our 
unit of delay a clock, where one clock is the time required 
to send one message on the paging channel. Similarly 
the waiting timeout w = Wt~ is the number of clocks 
spent waiting for a response. 

In Fig. 1, for a fixed load qS/# < 1, we plot the average 
delay as a function of the number of paging groups NG. 
(In all four subfigures of Fig. 1, the number of base sta- 
tions NB = 64. The subfigures differ in the amount of 
congestion on the paging channel.) The graphs show 
that when the paging channel is not heavily loaded 
(~b/# < 0.95, for example), flooding (corresponding to 
Na = 1) results in the shortest delay. However, when 
paging channels face congestion, flooding places a high 
volume of messages on the paging channels. This results 
in very high queuing delays. In going from flooding to a 
two-stage search, we add to the average waiting time. 
However, this is more than compensated by the reduc- 
tion in queuing time. Adding further stages beyond two 
is generally counter-productive. The increased waiting 
time is more significant than further reductions in queu- 
ing. When considered along with the total number of 
messages sent (see Table 2), perhaps NG = 4 is a good 
value for the number of paging groups - this reduces the 
total number of messages (relative to NG = 1) from Ne 
to 0.625NB in addition to providing small delay. 

Fig. 2 graphs the average delay as a function of chan- 

Table 2 
Average number  of  messages E(M) vs. the number  of  paging groups 
Na, based on equations from Table 1. 

Na k = N~/Na E(M) = (NB + k)/2 

1 NB N ,  
2 NB/2 0.75NB 
3 NB/3 0.66N, 
4 N, /4  0.625N8 
5 Ns/5 0.6NB 
1 

NB 1 ~ 0.5N~ 

nel load q~/#. The graph illustrates dramatically that 
while the delay blows up for single stage paging, it 
remains manageable for two or more stages. Although 
not obvious, this is not surprising, since in a one stage 
search, the paging channels get inundated with messages 
which blows up the delay, while having two search stages 
reduces the messages more than linearly, as given by the 
expression for E(G) in Theorem 1. 

An alternative way of looking at the problem is to 
see what is the maximum single stage loading (~b/#) that 
can be supported for a specific value of expected delay 
for different values of Na. Fig. 3 plots for different values 
of d, the minimum 4/#  such that the average delay 
exceeds d vs. Na. As we see from the graph, for a fixed d, 
the sustainable load increases with NG, but beyond 
a point, the delay introduced by multiple stages 
predominates. 

4. Minimizing E(M) when probabilities are known 

In this section we consider the general (non-uniform) 
case when the phone is not necessarily equally likely to 
be found in any of the NB paging cells. Instead, we are 
given a probability vectorp = (P I  ,P2, �9 �9 �9 ,PN~) such that 
Pi is the probability that the phone is in the paging area 

200 N a = 1 
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-~ 100 

50. 
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0.0 
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Channel loading for single stage 

Fig. 2. Average delay vs. ~b/iz. The curve for Na = 1 has been cropped 
at a delay of 200. The number  of  base stations is Ns  = 64. 
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Fig. 3. The minimum single channel loading ~/# such that delay 
exceeds d plotted against No, for four different values of d. The waiting 

timeout w = 4, and the number of base stations N~ = 64. 

of  base station i. (These probabilities could be estimated 
in practice by using the technique from [6], for example.) 
In this scenario, our goal is to find an efficient algorithm 
that groups the N~ stations into at most NG paging 
groups to minimize E(M), the average number of broad- 
cast messages 2. 

For  this problem, we study two cases: We first study 
the special case when Na = 2 in detail and develop an 
algorithm Divide2 that partitions the N6 stations opti- 
mally and efficiently into two paging groups. Algorithm 
Divide2 is based on "Algori thm 2" from [6], with a cou- 
ple of simple enhancements. The NG = 2 case is particu- 
larly interesting since our delay analysis from section 
3.3 suggests that we gain a lot in going from N~ = 1 to 
NG = 2 with respect to queuing delay at high loads. It is 
also of  great interest to practitioners given its simplicity. 
We then develop a polynomial time algorithm Group 
that minimizes the expected number of messages for the 
general case when NG is arbitrary. 

Without loss of generality, assume pl >~p2 ~>P3 ~> "" 
>~ PNB. Since the pi 's are not necessarily equal, each paging 
group neednot have k = Nn/NG elements. Let paging set 
Bj be the set ofkj base stations that page in the j th  stage. 
We denote ~i~BjPi by Pj. By the definition of  expecta- 
tion, it follows that 

e ( M )  = . (5)  
j=i  

We make some interesting observations that form 
the basis for our algorithms Divide2 and Group. We first 
show that there is a configuration that minimizes E(M) 

2 The queuing delays would depend on modeling how the probabil- 
ity vectors over different calls interact. We do not tackle the queuing 
delay problem in this general setting. 

such that for any 1 ~< i ~< Ns - 1, stations i and i + 1 are in 
the same paging set Bj or in consecutive paging sets 
(i.e., station i is in set Bj and station i + 1 is in set Bj+l). In 
other words, we will never have a station g page later 
than station i if pe > Pi. (This fact is also noted in 
[6,10].) 

L e m m a  3. Let the sets B1, B2 . . . .  BN~ be a partition of 
the N~ stations into NG sets such that E(M) is mini- 
mized. If  station i E By, then no station g such that 
Pg > Pi can be in set B~, where n > j.  

Proof. The proof  is by contradiction. If  a station g as 
described in the lemma exists, we show that moving g to 
Bj and moving i to Bn strictly reduces E(M):  by writing 
out the expressions for E ( M ) i n  the two cases, we see 
that E(M) changes by (Pi -P g ) "  (Bj+I + Bj+2 + ... +Bn), 
which is < 0, sincepi < Pc. [] 

We now show that in the configuration that mini- 
mizes E(M), there are indeed N6 paging sets (and not 
N~ < NG paging sets). 

L e m m a  4. Let the sets B1, B2, . . .  BN~ be a partition of 
the N~ stations into NG _< Nz~ sets such that E(M) is 
minimized. Then kj > 0, for 1 < j <_ N6. 

Proof. The proof  is by contradiction. Let B1, B2, . . . ,  Bn 
be a partit ion that minimizes E(M), and let n < No, 
where [Bj[ > O, 1 < j  <_ n. LetBm = {il, i2 , . . . ,  Jr}, where 
km > 1. (Trivially, such a set exists.) It is easy to verify 
that leaving Bj, l <_ j < m unchanged, renaming Bj to be 
Bj+~ for a l l j  from n down to m + 1, setting Bm = {is}, 
and Bm+~ = {i2, . . . ,  it}, gives us m + 1 sets and E(M) is 
reduced. [ ]  

Notice from Lemmas 3 and 4 that by setting 
Na = N~, we essentially want to sort the probability vec- 
tor; hence the lowerbound of  f~(Ne log NB) operations 
on sorting NB numbers (in the comparison model) holds 
for our problem too. 

4.1. Algorithm Divide2." The case when Na = 2 

When the number of paging groups is 2, we want to 
divide the Arc stations into two sets B1 and B2 so that 
E(M) is minimized. Based on Lemmas 3 and 4, we see 
that we can first sort the NB probabilities, and "test"  the 
NB - 1 possible positions to determine which position 
gives us two sets that minimize E(M). We can do this by 
iteratively calculating the value of E(M) for each k, for 
1 ~< k ~< NB - 1, when the first k stations are in set B1, and 
choosing the k that minimizes E(M). 

"Algorithm 2" from [6] computes B1 and B2 by obser- 
ving the following property: 

I f  B1 has the first k - 1 stations, and P = }-~/k-ll Pi, 
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by adding the kth station to set B1, we have AE(M),  
the change in E(M), as 

AE(M) = P - (NB -- k) "Pk. (6) 

We need to increase k only as long as AE(M) < O. 

Since E(M) when taken as a function of k, the number 
of elements in set B1, is convex, the above technique pro- 
vides us with an optimal partitioning of the stations 
into two paging groups. 

We make two simple observations below that can be 
used in conjunction with "Algorithm 2" from [6]. 

1. In our iterative process of computing the sets B1 and 
B2, let [BI[ = k -  1, and let P = ~-~k--:p i be the sum 
of the probabilities of the k - 1 elements in Bj. If  
P + pg ~< 1/2, the kth station can be added to set B1. 
This is because pk<<,pk_l<,P/(k--1), since p is 
sorted. By virtue o fp  being sorted, and P +Pk ~< 1/2, 
we have pk. (NB-k)>~ ~N~+lPi)l/2.  Hence, 
AE(M) <~ O. 

2. The convexity of E(M) as a function of k combined 
with our knowledge that p is sorted implies that in 
the optimal breakup, k ~  (NB + 1)/2. This is because 
we know that pk~P1,-1/(k- 1); from (6) it follows 
that AE(M) ~ 0  for k ~  (NB + 1)/2. 

The above observations provide us with algorithm 
Divide2 described in Table 3. Notice that Observation 2 
does not improve the time complexity of the strategy, 
but helps us in getting a better bound for the maximum 
amount of time it will take to do the partitioning; in par- 
ticular, the algorithm takes at most (No + 1)/2 itera- 
tions after sorting the vectorp. 

Table 3 
Algorithm Divide2 based on "Algorithm 2" from [6] to partition NB 
stations into two paging groups to minimize E ( M ) .  

Algorithm Divide2 

begin 
P :=Pl;  
j : = 2 ;  
w h i l e ( P + p j  < 1/2)do 
begin 

P := P + p f i  
j : = j + l ;  

end 
for i  = j  . . . . .  (NB + 1)/2do 
begin 

A E ( M )  = P - (NB -- i) "Pi; 
if(AxE(M) > 0) then 

Bl :~ { 1 , 2 , . . . , i -  1}; 
B2 :~  { i , i  + 1,. . . ,NB}; 
exit; 

else 
P = P +Pi;  

endif  
end 

end 

An interesting question in this case is: How unba- 
lanced in terms of probability can sets B1 and B2 be in the 
optimal partitioning? We discuss this issue briefly in 
Appendix A. 1. 

4.2. Algorithm Group 

In this section we look at the case when No is arbi- 
trary. Intuitively, Lemmas 3 and 4 say that to get an opti- 
mal partitioning, we can sort the probabilities in p and 
then put No - 1 "marks"  into this sorted list. There 
exists (at least) one set of marks which minimizes E(M). 
The question now is one of determining this optimal set 
of marks efficiently. 

An obvious generalization of algorithm Divide2 to 
the case when NG > 2 is a greedy method that moves ele- 
ments between adjacent sets as long E(M) decreases; an 
orderly way to do this is via "Algorithm 3" from [6]. 
Unfortunately, this greedy method is not always opti- 
mal; in particular, we can get "stuck" in a local mini- 
mum. (An example showing this situation is presented in 
Appendix A.2 under "A greedy strategy".) 

We can divide the N~ elements into No groups in poly- 
nomial time using the following dynamic programming 
method. Recall that we assumed the elements inp  to be 
in non-increasing order. (This can be ensured by sorting 
p.) Let T(i,j, k) be the minimum expected number of 
messages possible by concentrating only on stations 
{i, i + 1, . . .  ,j} and partitioning this set of stations into 
k >~ 1 paging groups, for j ~> i + k - 1. Algorithm Group 
wants to find the partition corresponding to 
T(1,NB, Nc). 

Clearly, T(i,j, 1) can be computed, for all i, j .  Itera- 
tively compute T(i,j, k) as follows: from Lemmas 3 and 
4, the best way to partition (i, i + 1 , . . . , j )  into k sets is to 
find a station u such that {i, i + 1, . . . ,  u} is the first set and 
{u + 1, u + 2, . . . ,  j} is divided into k - 1 sets. In parti- 
cular, by using the formula for E(M) given in (5) we get 

T(i,j,m+ l )= min Z(i,u,j,m , 
i <~ u <. j -m 

where Z ( i, u,j, m) equals 

T(i,u, 1)+ T(u+ l,j ,m)+(u-i+ l) ~ pq. 
q=u+l 

Algorithm Group first sorts the NB probabilities, if 
required, and precomputes for all 1 ~< i,j <~ NB the partial 
sums ~ i P , .  It then computes the values T(i,j, k) for 
all I<~i<~NB--NG, i<~j<~NB, and l<~k<~N~ in 
O(N2NG + NB log NB) time. (Precomputing the 
~-'~=ipu's helps in determining T(i,j, k + 1) iteratively in 
0(1) time.) The partition corresponding to each 
T(i,j, k) can be maintained implicitly by storing the cor- 
responding value of u with each T(i,j, k). 

4.3. Can the gap be closed? 

There is a gap between our upperbound of O(NgNa) 
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and the sorting lowerbound (as mentioned below 
Lemma 4) of f~(N~logNB) we have for this problem. 
Certain optimizations can be done for specific values of 
NG; for example, in section 4.1 we looked at the impor- 
tant case when Nc = 2. 

The following lemma helps in cutting down the com- 
putation for general Nc by a constant factor. (The big- 
oh bound still remains O(N~N~).) 

L e m m a  5. Amongst all possible partitionings of the N~ 
stations into Nc paging groups that minimize E(M), 
there is one partitioning into sets B~, B2, . . .  BN~ such 
thatVj > 1,kj_l <_ kj. 

Proof Lemma 3 implies that there is a configuration 
that minimizes E(M) such that for any 1 < i < Ns - 1, 
stations i and i + 1 are in the same paging set Bj or in con- 
secutive paging sets. Consider such an optimal partition- 
ing. Let i be the station with the smallest probability in 
set Bj_~. It can be verified that we can move station i 
from Bj_I to Bj without increasing E(M) if 

and efficiently partitions the states into N6 = 2 paging 
groups, an important case as suggested by our delay 
analysis. For general NG, our algorithm Group takes 
worst case time proportional to O(NZNc + NB logNB) 
to determine the optimal partitioning. It would be inter- 
esting to close the gap between our known lowerbound 
of f~(NB log N~) and the upperbound of Group. Another 
open issue is to derive an appropriate model for analyz- 
ing the effect of queuing delays when the probability vec- 
tor is given. Some discussion related to these open 
issues appears in the Appendix. 
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Appendix 

Pi" (kj + 1) <~Pj-1. (7) 

If  i is the station with smallest probability Pi amongst 
stations in Bj_t, it implies that every station in Bj has an 
associated probability at most Pi. If  in the optimal parti- 
tioning kj_l ~>kj + 1, thenpi  �9 (kj_l) >~Pi" (kj + 1). Since 
Pj-a >~Pf" kj-1, it follows that Pi" (kj + 1) ~<Pj-1. From 
(7), station i can be moved from Bj-1 to Bj. This argu- 
ment can be repeated until the desired configuration is 
attained. []  

5. Conclusions 

In this paper we have looked at important issues in 
searching for a mobile phone. We have looked at the 
question of queuing delays and derived the result that 
parallel search may not reduce the delay in searching for 
a phone if the system is heavily loaded. In particular, 
our analysis sheds light on important design issues in 
paging in cellular telephone networks. We find that at 
high loads, the delay decreases significantly in going 
from one to two paging groups. When considered along 
with the number of messages sent, perhaps 2-4 paging 
groups is a good value; e.g., having four paging groups 
reduces the expected total number of messages (relative 
to flooding) from Ne to 0.625Ne. The minimum is 
0.5Nm achieved with flooding which leads to a high 
delay. It would be interesting to study the impact of 
queuing delay on other results in the literature. 

We have also presented an efficient method to group 
stations into paging groups when a probability vector 
defining the likelihood of finding a phone in any paging 
area is given, and the goal is to minimize the expected 
number of messages. Our algorithm Divide2 optimally 

Possible future work 

In this appendix, we present some facts that shed 
more light on possible future work. 

A. 1. Minimizing E(M) for N6 = 2 

We continue here with the question we posed at the 
end of section 4.1: How unbalanced in terms of probabil- 
ity can sets B1 and B2 be? Can AE(M) be negative if 
P~-I > 1/2? In other words, do we always exit the second 
loop in Table 3 when the first set has cumulative prob- 
ability > 1/2. The following example shows that we may 
not. 

Consider p = (5/8, 1/3, 1/240, 1/240, . . . ,  1/240), 
for example. Although 5/8 > 1/2, the optimal partition- 
ingis: {5/8, 1/3}, {1/240, . . . ,  1/240}. 

A.2. Minimizing E(M) for general NG 

In this section, we discuss ideas towards developing a 
better-than-O(NZNG) solution to the problem of group- 
ing base stations into paging groups when the probabil- 
ity vector is given. (This continues the discussion from 
section 4.3.) We present counter-examples for two intui- 
tive ideas. 

The balanced probability idea. The first idea says that 
there exists a configuration that minimizes E(M) such 
that "the paging groups have roughly the same cumula- 
tive probability". (We need to ensure that Lemma 3 is 
obeyed.) The following example shows, however, that 
the probabilities of the paging groups could be fairly 
different. 



D. Goodman et al. / Mobile phone location 47 

Consider the situation with N~ = 12 stations and the 
probability vector p = (1/3, 1/3, 1 /30 , . . . ,  1/30). The 
most "balanced" partitioning (in terms of probability) is 
into paging groups B I = { 1 } ,  B 2 = { 2 } ,  and 
B3 = { 3 , 4 . . . ,  12}, with P1 = P2 = P3 = 1/3, and 
E(M) = 5. However, the partitioning into paging 
groups B1 = {1,2}, B2 = {3,4,5,6,7},  and 
B3 = {8,9, 10, 11, 12} has P1 = 2/3, P2 --- P3 = 1/6, and 
E(M) = 4.5. 

A greedy strategy. A more intuitive idea (e.g., "Algo- 
ri thm 3" from [6]) is a simple greedy strategy. That  is, 
along the lines of  (6), we can derive a condition under 
which E(M) does not increase by moving the highest 
probability station i from set j to set j - 1. Such condi- 
tions suggest that we might get an optimal partitioning 
of  the stations into sets by locally moving elements 
across "adjoining" sets. 

More precisely, if we start with a partitioning of  the 
N8 stations into Na sets obeying the property stated 
before Lemma 3 (that for any 1 ~< i ~< NB - I, stations i 
and i + 1 are in the same paging set Bj or in consecutive 
paging sets), and move stations between adjacent sets if 
E(M) decreases (i.e., greedily), will we reach a config- 
uration that minimizes E(M)? I f  so, we can generate 
optimal partitionings in O(NBNa) time [6]. 

The following example shows that we may not. For  
our counter-example, we use N~ = 23 stations with 
p = (1/3, 49/150, 1/60, 1 /60 , . . . ,  1/60, 1/150). Let 
N6 = 3. The optimal partitioning is into sets {1,2}, 
{3, 4 , . . . ,  13}, {14, 15, . . .  23} wi thE(M)  = 1096/150. 

If  we start with a parti t ion of  stations into sets {1}, 
{2}, { 3 , 4 , . . . ,  23} and use the greedy method (or "Algo- 
ri thm 3" from [6]), we will end up with a final parti t ion 
of stations into sets B1 ={1} ,  B 2 =  {2,3}, and 
B3 = {4 ,5 , . . . , 23}  with E ( M ) =  1320/150, which we 
know is not optimal. That  is, we get "s tuck" in a local 
minimum. The basic problem here is that to get out of 
the local minimum, we need to make two changes simul- 
taneously; i.e., move station 2 to set B1 and station 4 to 
set B2. 

We are currently looking at variants of the balanced 
probability and greedy heuristics to get a better-than- 
O(NgNa) optimal strategy. 

A.3. Minimizing delay when queue lengths are known 

In this section, we look at the simple case when the 
queue length at each station is known prior to choosing a 
paging order, and we want to minimize the delay. This 
is a first step towards analyzing queuing delay for gen- 
eral non-uniform cases. 

When the request to locate the phone arrives, let the 
queue length for the ith station be qi. We assume qi is 
independent of  time; in other words, the time for station 
i to broadcast a paging message after it receives a request 
to page is proportional  to qi, independent of when the 
request is received. Our goal is to group the stations into 
N~/k sets o f k  stations each so that the expected time to 
locate the phone is minimized. As in section 3.2, the 
expected delay at any stage is proportional  to the maxi- 
mum queue length amongst the k stations that page in 
the stage. 

Without loss of generality, assume ql ~< q2 ~<"" ~< qNB. 

We show that the algorithm A in which stations j ,  where 
(i - 1)k + 1 <<.j<<.ik are requested to page for the phone 
in the ith stage, for 1 <<. i <<. NB/k, is optimal. 

L e m m a  6. When each station is equally likely to find 
the phone, Algorithm A has minimum expected delay. 

Proof. (Sketch) The proof  follows directly by convexity 
arguments. For  any algorithm, let rj, t <_ j < Ns /k  be 
the maximum queue length amongst stations that page 
in the j th  stage. The expected delay is proportional  to 

Ns/k k J ~j=l /NB(~m=I rm). Let B be the algorithm that 
incurs minimum expected delay. It follows that for algo- 
rithm B, rj <_ rj+l, Vj. By simple induction, there are at 
least kj stations with queue lengths at most rj. The above 
two facts imply that algorithm B incurs at least as much 
delay as algorithm A. [ ]  
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