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Hydrodynamic phenomena in weakly conducting single-phase media due to inter- 

phase electric stresses are reviewed in [I]. In the present paper, a model 
is constructed of a dielectric suspension with body couples due to the field 

acting on free charges distributed on the surface of the particles of the 

suspension. Averaging of the microscopic fields yields macroscopic equa- 

tions for the field and the polarization of the dielectric suspension with 

allowance for the finite relaxation time of the distribution of the free 

charge on the phase interface. The developed model is used to consider the 
occurrence of spontaneous rotation of a dielectric cylinder in a weakly 

conducting suspension in the presence of an electric field; compared with 

the case of single-phase media [2], this is characterized by a significant 
reduction in the threshold intensity of the electric field with increasing 

concentration of the particles [3]. In the present model of a dielectric 

suspension, the destabilization of the cylinder is due to the occurrence of 

rotations of the particles of the suspension due to the interaction between 
the polarization and the motion of the medium. The relaxation equation for 

the polarization for the given model is analogous to the corresponding 
equation for media which can be magnetized [4-6]. 

i. The equations describing a many-phase medium on a macroscopic scale are obtained 
by averaging the microscopic fields [7]. Under the assumption that surface and volume 

averaging of microscopic fields are equivalent [7], the macroscopic field equations in 
a weakly conducting suspension are obtained by averaging the microscopic fields over areas 

with a characteristic dimension appreciably greater than the mean distance between the 

particles of the suspension. For this, one considers the problem of the perturbation of 

a homogeneous field by an isolated spherical particle of radius R rotating with angular 

velocity ~(~, 0~ 0) in a liquid whose permittivity and conductivity are, respectively, 

gl and YI" The permittivity and conductivity of the solid phase are, respectively ~2 

and  Y2" 

The Laplace equations for the potential ~ of the electric field in the solid and 
liquid phases are solved in a spherical coordinate system whose polar axes is along the 
z direction~ The system of boundary conditions for the problem is obtained from the con- 
dition of continuity of the potential, the relation for the jump of the normal component 

of the electric displacement D on the surface of the particle, and the condition that the 
perturbations of the field vanish far from the particle: 

~1=~2, D,i-Dn2=4~a, E [ ~  ~ ~ E 0 =  (0, E0y, E0~) ( 1 . 1 )  

H e r e ,  t h e  i n d i c e s  1 and  2 r e f e r ,  r e s p e c t i v e l y ,  t o  t h e  l i q u i d  and  s o l i d  p h a s e s .  

The law o f  c o n s e r v a t i o n  o f  t h e  c h a r g e  Op/Ot=--div(pv+j) u n d e r  t h e  a s s u m p t i o n  t h a t  f r e e  
c h a r g e  i s  l o c a l i z e d  on  t h e  b o u n d a r y  b e t w e e n  t h e  p h a s e s  g i v e s ,  a f t e r  i n t e g r a t i o n  a l o n g  t h e  
d i r e c t i o n  n o r m a l  t o  t h e  i n t e r f a c e ,  a r e l a x a t i o n  e q u a t i o n  f o r  t h e  s u r f a c e  d e n s i t y  o f  t h e  
f r e e  c h a r g e  i n  a c o o r d i n a t e  s y s t e m  f i x e d  r e l a t i v e  t o  t h e  p a r t i c l e  [ 1 ] :  

].i+]J ( 1 . 2 )  
Ot R s i n ~  Off " ] \  O~ g s i n ~  0 9 

H e r e ,  j i s  t h e  c o n d u c t i o n  c u r r e n t  d e t e r m i n e d  i n  t h e  s o l i d  and  l i q u i d  p h a s e s  by Ohms 
l aw ]~,2=~,2EI, 3, 6v i s  t h e  c o n v e c t i v e  c u r r e n t  due  t o  t h e  r o t a t i o n a l  m o t i o n  o f  t h e  p a r t i c l e s  
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v ~ [ ~ X r ] ,  and 0 and  ~ a r e  t h e  a n g l e s  of  t h e  s p h e r i c a l  c o o r d i n a t e  s y s t e m .  

The s o l u t i o n  o f  t h e  L a p l a c e  e q u a t i o n s  w i t h  a l l o w a n c e  f o r  ( 1 . 1 )  and  ( 1 . 2 )  g i v e s  

~ = - E o r + A r / P ,  ~2=Br ,  A = ( 0 ,  A~, A~), B = ( 0 ,  By, B~), A = A o + A I  

o e~,z ~ ~"~ A o =  ( e z ~  ~ EoR ~ 
~'"--- 2ei+e~ ' 7, z : 2~,+~ ' 

The s u r f a c e  d e n s i t y  o f  t h e  c h a r g e  i s  

2st~-e~ 
o = , A~n 

4~R ~ 

( 1 . 3 )  

(1.4) 

For  A 1 , we o b t a i n  f rom ( 1 . 2 )  t h e  r e l a x a t i o n  e q u a t i o n  

dA/dt=[Q• A,o=3(et~176176176 3, x=(2e~+e~) /4n(27,+7~)  

He re ,  T i s  t h e  r e l a x a t i o n  t i m e  o f  t h e  s u r f a c e  c h a r g e  d e n s i t y  i n  a s u s p e n s i o n  o f  
s p h e r i c a l  p a r t i c l e s .  

The e q u a t i o n s  o f  t h e  m a c r o s c o p i c  f i e l d  a r e  o b t a i n e d  by s u r f a c e  a v e r a g i n g  o f  t h e  
m i c r o s c o p i c  f i e l d s  ( 1 . 3 ) .  The a v e r a g i n g  i s  made f o r  t h e  c a s e  o f  w e a k l y  c o n c e n t r a t e d  
s y s t e m s ,  when t h e  v o l u m e  f r a c t i o n  o f  t h e  i n c l u s i o n s  i s  s m a l l .  The a v e r a g i n g  o v e r  an  
a r e a  w i t h  n o r m a l  n = (0 ,  0, 1) and  a r e a  S w i t h  a l l o w a n c e  f o r  t h e  c i r c u m s t a n c e  t h a t  t h e  

p a r t  o f  t h e  a v e r a g i n g  s u r f a c e  S 2 = ~ l , ~ ( R z - z i 2 )  ( t h e  s u m m a t i o n  i s  o v e r  p a r t i c l e s  a t  dis- 
l 

tance [zil ~ R from the averaging s%rface) passes through the solid phase, and the part 
S -- S 2 through the liquid phase, gives for the intensity Sn<E>=InEdS of the macroscopic 
field 

S<E>n=-S2Bn+ (S-Sz) [E0n- dz 2zpdpn(nV) Ar Ar r3 dz 2zpdpn (nV) - ~ -  
Izl>~R o Izl<R 

( 1 . 5 )  

Here ,  n i s  t h e  n u m b e r  o f  p a r t i c l e s  o f  t h e  s u s p e n s i o n  i n  u n i t  v o l u m e ,  and  t h e  z and  
p a r e  t h e  c o o r d i n a t e s  o f  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  w i t h  p o l a r  a x i s  a t  t h e  c o n s i d e r e d  
p o i n t  o f  t h e  s u r f a c e  S --  S 2 d i r e c t e d  a l o n g  t h e  z a x i s .  

C a l c u l a t i o n s  w i t h  a l l o w a n c e  f o r  ( 1 . 3 )  i n  t h e  c a s e  o f  a s p a t i a l l y  u n i f o r m  d i s t r i b u -  
t i o n  o f  p a r t i c l e s ,  when S = S~,  g i v e s  t o  t e r m s  o f  f i r s t  o r d e r  i n  

n < E > = n E o - 3 ~ A n / R  3 

S i m i l a r  r e l a t i o n s  h o l d  f o r  t h e  o t h e r  c o m p o n e n t s  o f  t h e  f i e l d  i n t e n s i t y .  
o f  t h e  d i s p l a c e m e n t  g i v e s  

S<D*> = ~  eEdS, <D*>=e~Eo+(e~-e~)~Eo-(2e~+e~)~A/R 3 

For the macroscopic field (D*) Gauss's theorem holds: 

( 1 . 6 )  

A v e r a g i n g  

( 1 . 7 )  

" <D*>n dS=4aq 
S 

where q is the free charge in the volume V surrounded by the surface S. 

Because, in accordance with (1.4), the total free charge on the inclusions is zero, 

the contribution to q due to particles within V is partial. Calculation with allowance 

f o r  ( 1 . 4 )  g i v e s  
q=--V div[ (2e,+e2) q~A,/4aR ~ ] 

I t  f o l l o w s  t h a t  t h e  e q u a t i o n  d i v  D = 0 i n  t h e  a b s e n c e  o f  e x t e r n a l  c h a r g e s  i n  t h e  
d i e l e c t r i c  s u s p e n s i o n  i s  s a t i s f i e d  by  <D>=<D*>+(2ei+a2)r  ~, w h i c h  p l a y s  t h e  p a r t  o f  t h e  
d i s p l a c e m e n t  i n  t h e  m a c r o s c o p i c  e q u a t i o n s .  From ( 1 . 6 )  and  ( 1 . 7 )  we t h e n  o b t a i n  

<D>=e~2-<E>+4~p, e iC = e ,  (t+3qo ( e ~ ~  ( 1 . 8 )  
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Here, 612 is the instantaneous permittivity of the suspension, and P=3e~A,/4nR ~ 

For P there follows from (1.5) the relaxation equation 

dPIdt=[flXP]-x-'(P-Po), Po=• •176176 (1.9) 

Here, • is the inertial part of the dielectric susceptibility of a suspension of 

particles of conductivity 

Note that in the case when the field frequency satisfies m << T -I and there is no 

rotation of the particles, P=Po and <D>=8,~~ where 812~ is the known expression 

for the dielectric susceptibility of a suspension of particles of conductivity Y2 in a 

medium with conductivity Y1 [8]. 

Equations (1.8) and (1.9) are the basis of the electrostatics of weakly conducting 

dielectric suspensions and are analogous to the corresponding equations of the model of 
media which can be magnetized with internal rotation [4-6]. However, the case of di- 

electric suspensions has a number of important differences. First, in contrast to mag- 

netic liquids, M0 may be negative (~2~176176176 is the case of weakly conducting particles); 

second, the corresponding relaxation time may be significantly longer than in magnetic 
liquids. 

Thus, for a suspension of nonconducting particles with e - 3.75 (quartz) in a 
medium with el 2.1 (transformer oil) and conductivity i0 -II ~-~ 1 = cm- we obtain the re~ 
laxation time T = 3.5"10 -2 sac, which is appreciably longer than the relaxation time of 

the magnetization of a magnetic liquid based on a comparatively viscous carrying medium 

with ~ = 1 p (mineral oil), which is 4.5.10 -4 sac [9]. 

2. The hydrodynamic equations of magnetic and polarizable media [I0] obtained in 

the case of nonequilibrium polarization of the medium show that when one is describing 

this class of motions the stresses due to body couples must also be taken into account 

as well as the ordinary viscous and electric stresses. The complete system of equations 
of motion and the field of an incompressible polarizable liquid with allowance for the 
relations (1.8) and (1.9) obtained in the first section has the form (the ponderomotive 

forces due to the instantaneous dielectric susceptibility are potential forces and are 

therefore included in the pressure) 

pdv/dt=-- Vp+~Av+ (PV)E+I/~ rot [PXE] 
( 2 . 1 )  

div D=0, rot E~0, D=el2~E+4nP, dP/dt=[~XP]-~-~(P-Po) 
The system of equations (2.1) is closed by the equation of the balance of the 

couples acting on a particle: 

--~(~--~o)+[PXE]=O, ~o=~/2r0tv (2.2) 

Here, ~ is the coefficient of rotational friction of the particles, and in the case 

of spherical particles is equal to 8n~R3n. 

On the basis of the equations of motion and the field (2.1)-(2.2) we can consider 
the rotational motion of a cylinder in an unbounded suspension in the presence of a homo- 

geneous electric field at right angles to the axis of the cylinder. The problem is solved 
in a cylindrical coordinate system with axis parallel to the cylinder axis. The case of 

a single-phase liquid corresponds to the assumption D=e~2~ 

The perturbation of the homogeneous field by a cylinder of radius R 1 rotating with 
angular velocity ~(0, 0, Q~) is found by solving the Laplace equations for the potential 

of the electric field under the boundary conditions (1.1)-(1.2) for the case of cylindri- 

cal symmetry. In the region exterior to the cylinder, the potential of the electric field 

is given by 

~i=--Er+2/~r/e~2~176 Ko=~R~2E, • ~176 ~ (2.3) 

Here, ~ and y are the permittivity and conductivity of the cylinder, respectively. 

For Kl, we have the relaxation equation 

OKJOt=[~XK~]-T~-i(Ki-K~o), T~=(e+e~~ ~ (2.4) 
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K,0= (•176215 • 2 1 5  =e,2o (e,2o~_eTi=)/(e+~ o) (7+~,=) (2.4)  

Integrating the electric stresses T+~=*/+n(E~D~-'/2E~6+~) over a distant cylindrical 

surface, we obtain for the moment of the electric forces acting in the stationary case on 
unit length of the cylinder [taking into account (2.3) and (2.4)] the expression [I] 

M+= [K, XE] ,  t+  (~,Q,) ~ (•176215 Rl~E~ ( 2 . 5 )  

The equation of the balance of the moments of the electric and viscous forces acting 

on the cylinder when (2.5) is taken into account, M+--4n~Rt~=O, shows that the state of 

rest of a cylinder with Mt~ is unstable at field intensities E~>Ec~=-4~/x~(•176215 

For the angular velocity of stationary rotation of the cylinder when E ~ E C we 

obtain 
~,~,=~ (E/Er Z--I (2.6) 

The linearity of the dependence (2.6) of ~i on E for E >> E C corresponds to the 

experimental results for the case of single-phase liquids [2]. 

The features of the phenomenon of spontaneous rotation of a cylinder in a dielectric 

suspension can he described on the basis of the model (2.1)-(2.2) when rheo-electric 

phenomena [3] are ignored, i.e., under the assumption that the perturbation of the 

electric field by the cylinder has the form (2.3) 

E.------V~d, r176 =, K = I G + K I  

F u r t h e r ,  we f i n d  t h e  s o l u t i o n  o f  ( 2 . 1 )  a nd  ( 2 . 2 )  f o r  t h e  c a s e  o f  m o t i o n  o f  t h e  d i -  
e l e c t r i c  s u s p e n s i o n  i n  t h e  e l e c t r i c  f i e l d  E d o f  a r o t a t i n g  c y l i n d e r .  The s o l u t i o n  i s  
f o u n d  f o r  ~0TE~2c~-i<t, when t h e  n o n l i n e a r  t e r m  i n  t h e  p o l a r i z a t i o n  e q u a t i o n  c a n  be  i g n o r e d .  
I n  t h i s  c a s e ,  t h e  r e l a x a t i o n  e q u a t i o n  f o r  t h e  p o l a r i z a t i o n  f o r  ~ 1  < 1 g i v e s  

P=P0+Pb,  P0=• Pb=-~u0(vV)E~+~• ( 2 . 7 )  

The e q u a t i o n  o f  m o t i o n  ( 2 . 1 )  w i t h  a l l o w a n c e  f o r  ( 2 . 7 )  t a k e s  t h e  fo rm 

--V (p-~ /zPbE~)+~Av- l /2  { [E~Xrot Pb] + E ,  div Pb} = 0  ( 2 . 8 )  

W i t h  a l l o w a n c e  f o r  t h e  a z i m u t h a l  s y m m e t r y  o f  t h e  p r o b l e m  v = ( 0 ,  f ( r ) ,  0 ) ,  t h e  r e l a t i o n s  
( 2 . 7 )  and  ( 2 . 8 )  f o r  t h e  a z i m u t h a l  v e l o c i t y  o f  t h e  d i e l e c t r i c  s u s p e n s i o n  g i v e  t h e  d i f f e r -  
e n t i a l  e q u a t i o n  

(r%ar ~) d2]ldr~+ (rS-3ar) dr~dr+ ( - r ~ + 3 a )  ] = 0  ( 2 . 9 )  

H e r e ,  t h e  p a r a m e t e r  a/Rt+-----~•176 m e a s u r e s  t h e  r a t i o  o f  t h e  r o t a t i o n a l  and  
s h e a r  v i s c o s i t i e s ,  and  i s  n e g a t i v e  i n  t h e  c a s e  o f  n o n c o n d u c t i n g  i n c l u s i o n s .  

E q u a t i o n  ( 2 . 9 )  i s  s o l v e d  f o r  n o - s l i p  b o u n d a r y  c o n d i t i o n s  on t h e  c y l i n d e r ,  / ( R i ) = ~ , R ,  , 
and  t h e  a b s e n c e  o f  m o t i o n  a t  i n f i n i t y .  The c h a n g e  o f  t h e  i n d e p e n d e n t  v a r i a b l e  r~-----lalz 
r e d u c e s  Eq.  ( 2 . 9 )  t o  t h e  fo rm 

t 6 z  ~ (z -  i) d ~ l / d z %  i6z~dffdz  - (3+z) ]----0 
The g e n e r a l  s o l u t i o n  o f  t h i s  e q u a t i o n  i s  t h e  f u n c t i o n  

/ = c , z " + c / "  In [ ( r162  i ) ]  

w h i c h  c a n  be  w r i t t e n  w i t h  a l l o w a n c e  f o r  t h e  b o u n d a r y  c o n d i t i o n s  i n  t h e  fo rm 

/ =  ~,r ln[ (i- lal 't ' /~)/(t+lal'~'/r ~) ] (2.  lO) 
ln[ (1-  I al'~'/R?) / ( t+  I al'~'/R?) ] 

With  a l l o w a n c e  f o r  t h e  a s y m p t o t i c  b e h a v i o r  o f  ( 2 . 1 0 )  as  r -.',-c% f o r  t h e  moment o f  
t h e  v i s c o u s  f o r c e s  on  t h e  c y l i n d e r  i n  t h e  p r e s e n c e  o f  i n t e r n a l  r o t a t i o n s  we o b t a i n  

Ill_ = 8 ~ I I a I ' I ' ~  ( 2 . 1 1 )  
In[ ( t--[al't'/R~Z) / ( l + lalV'/R~ 2) ] 
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Fig. 1 F i g .  2 

On the basis of (2.5) and (2.11) we can investigate the influence of internal 

rotations on the stability of rest and the angular velocity of spontaneous rotation 

of a dielectric cylinder. In the case ~i § 0, we have K=K0+K,0----•176 which for the 

determination of the threshold at which the stability of rest of the cylinder is lost 

gives the equation 

Ec' 2 (Ec/E. ) ~ n [~,2 ~ 12 
E ,  2 ( 2 . 1 2 )  

E .  ln[ ( I -Ec~ /E , ) / ( t+Ec~ /E , )  ] ~l• [• 

As is shown by the relation (2.12), the interaction between the polarization and 

the motion reduces the instability threshold of the cylinder in the field. Graphically, 

E~/E C is shown as a function of the parameter (Ec/E.)2 , which is determined by the prop- 
erties of the suspension, in Fig. i. The reduction of the instability threshold for 

the dielectric cylinder can be clearly represented as follows: the nonconducting particles 
of the suspension, which are polarized in the dipole field of the cylinder, are carried 
as a result of the drag of the medium by the cylinder to a different point of space, where, 

due to the finite relaxation time of the polarization of the particles, the field of the 

cylinder causes them to rotate with respect to the carrier medium, this producing a moment 

of the viscous forces in the direction of rotation of the cylinder. 

It should be noted that the destabilization of the state of rest of the cylinder by 
the nonconducting particles is not determined by the specific properties of the field E d 

but is due to the rotational instability of the state of rest of the particles with ~0<0 

themselves in electric fields with field intensity Ea~E~2=-~/T• 

As an example of such a situation when instability of the particles leads to in- 
stability of the medium as a whole, we can give the example of a coaxial cylindrical 

condenser with a narrow relative gap and inner electrode which is not fixed. In this 
case, analysis of the stability of the combined system of equations (2.1) and the equation 

of rotational motion of the inner cylinder shows that the system becomes unstable against 

rotations of the electrode which is not fixed when EZ~E~2/(I+~/4~). The rotations of the 

particles of the suspension then occur in one direction. 

In the limit of high velocities of the cylinder (QiTi>i), when the retarded part of 

the polarization n I of the cylinder is small, we can take for the parameter laI/Ri ~ , be- 

cause of (2.3), the value TIx0][Mi~]aEZ/~[812~ which for the rate of rotation of the 

E >> E~ gives on the basis of the balance for the couples and with allowance cylinder when 

for (2.5) and (2.11) 

V ( t -i. (2.13) 

The dependence (2.13) for b = 0.176, which corresponds to an ebonite cylinder with 

e = 3 and 7 = 0 in a medium with E i = 2.1 (transformer oil), is shown in Fig. 2. Curves 

1 and 2 correspond to the values (Ec/E.)2 = 0.5 and 1.0. As is shown in the figure, the 

function (2.13), in contrast to (2.6), is nonlinear, which corresponds to the experimental 

results of the investigation of the spontaneous rotation of a cylinder in a dielectric 

suspension [ii]. 

3. We now estimate the part played by rheo-electric phenomena in the spontaneous 

rotation of a dielectric cylinder in a field. The perturbation of the field by the motion 
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of the dielectric suspension can be taken into account by the method of perturbations. For 
[al'~/R~z~1, the expansion (2.10) in the zeroth order in [al~/~/R~ 2 gives 

] = ~ R , 2 / r  ( 3.  i) 

The perturbation of the polarization of the medium introduced by motion with the ve- 

locity field (3.1) is in accordance with (2.7) 

( 4Z• 4Z• 
P b =  ' o ~ sin % - , Or ~ 

Et2 r elz 
c0sq), 0) , P*=~oEb+Pb ( 3 . 2 )  

Here, the angle ~ is measured from the direction of the dipole moment K of the di- 

electric cylinder. 

The perturbation of the field in the stationary case can be found by solving the 

problem 
- -  h ~ l b = - - 4 g  div Vb/slz ~ A~2b=O ( 3 . 3 )  

The d e n s i t y  o f  t h e  m a c r o s c o p i c  c u r r e n t  i n  t h e  d i e l e c t r i c  s u s p e n s i o n  c a n  be  f o u n d  by 
t h e  m e t h o d  o f  a v e r a g i n g  d e s c r i b e d  i n  t h e  f i r s t  s e c t i o n .  A c o r r e s p o n d i n g  c a l c u l a t i o n  g i v e s  

j = T ~ D / e , +  [ (2e~+e2)/3e~ ] OP/Ot ( 3 . 5 )  

We n o t e  t h a t  ( 3 . 5 )  i n  t h e  s t a t i o n a r y  c a s e  y i e l d s  r e s u l t s  [12] w h i c h  show t h a t  i n  a 
d i e l e c t r i c  s u s p e n s i o n  t h e r e  i s  an  a n a l o g  o f  t h e  H a l l  e f f e c t  i n  a s h e a r  f l o w .  

S o l u t i o n  o f  t h e  p r o b l e m  ( 3 . 3 ) - ( 3 . 4 )  w i t h  a l l o w a n c e  f o r  ( 3 . 2 )  and  ( 3 . 5 )  f o r  t h e  
moment o f  t h e  e l e c t r i c  f o r c e s  a c t i n g  on t h e  c y l i n d e r  and  due  t o  t h e  r h e o - e l e c t r i c  e f f e c t  

g i v e s  
M+b =- -4~•  [ • o ] ~E2R 2/[ e,2 ~ ]2 

I t  c a n  b e  s e e n  t h a t  i n  t h e  c a s e  M0<0 t h e  p e r t u r b a t i o n  o f  t h e  f i e l d  due  t o  t h e  r h e o -  
e l e c t r i c  e f f e c t  h a s ,  l i k e  i n t e r n a l  r o t a t i o n ,  a d e s t a b i l i z i n g  i n f l u e n c e  on t h e  s t a t e  o f  
r e s t  o f  t h e  d i e l e c t r i c  c y l i n d e r .  At  s m a l l ] a l ' h / R ,  2, i t  f o l l o w s  f r o m  ( 2 . 1 1 )  t h a t  

M_=~,  ( -4=nR?+4=~ I • [ •  ] 2E~R?/3 [ ~ J ] ~) 
F o r  t h e  t h r e s h o l d  o f  i n s t a b i l i t y  o f  r e s t  o f  t h e  c y l i n d e r  when s i m u l t a n e o u s  a l l o w a n c e  

i s  made f o r  i n t e r n a l  r o t a t i o n  and  t h e  r h e o - e l e c t r i c  e f f e c t  we o b t a i n  

[ E c ' I ' = E c 2 / ( I + 4 E c 2 / 3 E ,  ')  

F i n a l l y ,  i t  s h o u l d  be  n o t e d  t h a t  t h e  p r o b l e m  c o n s i d e r e d  a b o v e  i s  a n a l o g o u s  t o  t h e  
p r o b l e m  o f  t h e  t r a n s l a t i o n a l  m o t i o n  o f  an i o n  i n  a p o l a r  l i q u i d  [10] w i t h  a l l o w a n c e  f o r  
t h e  d i e l e c t r i c  f r i c t i o n  due  t o  t h e  f i n i t e n e s s  o f  t h e  p o l a r i z a t i o n  r e l a x a t i o n  t i m e .  We 
a l s o  m e n t i o n  t h a t  i n  [10] t h e  c o e f f i c i e n t  i n  f r o n t  o f  t h e  d i e l e c t r i c  f r i c t i o n  t e r m  i s  
i n c o r r e c t ;  t h e  c o r r e c t  v a l u e  1 7 / 4 2 0 ,  w h i c h  a l s o  a g r e e s  w i t h  [ 1 3 ] ,  i s  g i v e n  i n  t h e  a u t h o r ' s  
d i s s e r t a t i o n . *  

On t h e  b a s i s  o f  t h e  o b t a i n e d  r e s u l t s  i t  c a n  be  c o n c l u d e d  t h a t  t h e  m o d e l  o f  a d i -  
e l e c t r i c  s u s p e n s i o n  w h i c h  t a k e s  i n t o  a c c o u n t  i n t e r n a l  r o t a t i o n  and f i n i t e n e s s  o f  t h e  t i m e  
o f  r e l a x a t i o n  o f  t h e  i n t e r - p h a s e  d e n s i t y  o f  f r e e  c h a r g e  d e s c r i b e s  some q u a l i t a t i v e  f e a t u r e s  
o f  t h e  phenomenon  o f  s p o n t a n e o u s  r o t a t i o n  o f  a d i e l e c t r i c  c y l i n d e r  i n  a d i e l e c t r i c  s u s -  
p e n s i o n .  The p r o p o s e d  s y s t e m  o f  e q u a t i o n s  o f  m o t i o n  and  t h e  f i e l d  l e a d s  t o  a c l a s s  o f  
p r o b l e m s  o f  t h e  m e c h a n i c s  o f  p o l a r i z a b l e  m e d i a  i n  w h i c h  t h e  f i e l d  e q u a t i o n s  and  t h e  e q u a -  
t i o n s  o f  m o t i o n  a r e  i n t e r c o n n e c t e d ,  t h e  c o u p l i n g  b e i n g  due  t o  t r a n s p o r t  o f  t h e  p o l a r i z a -  
t i o n  o f  t h e  medium by t h e  t r a n s l a t i o n a l  and r o t a t i o n a l  m o t i o n s  o f  t h e  p a r t i c l e s  o f  t h e  

s u s p e n s i o n .  
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INITIAL STAGE OF REFLECTION OF A PLANE SHOCK WAVE FROM 

A CYLINDER, SPHERE, AND ELLIPSOID OF REVOLUTION 

N. I. Nosenko, N. N. Sysoev, and F. V. Shugaev UDC 5 3 3 . 6 . 0 1 1 . 7 2  

The s t a g e  o f  r e g u l a r  r e f l e c t i o n  o f  a p l a n e  s h o c k  wave  f r o m  a b l u n t  body  
( c y l i n d e r ,  s p h e r e ,  and e l l i p s o i d  o f  r e v o l u t i o n )  i s  c o n s i d e r e d .  At  t h e  
p o i n t  o f  i n t e r s e c t i o n  o f  t h e  r e f l e c t e d  s h o c k  wave  and t h e  s u r f a c e  o f  t h e  
b o d y ,  a n a l y t i c  e x p r e s s i o n s  a r e  f o u n d  f o r  t h e  d e r i v a t i v e  o f  t h e  Mach number  
o f  t h e  wave  w i t h  r e s p e c t  t o  t h e  t i m e ,  t h e  c u r v a t u r e  o f  t h e  w a v e ,  t h e  n o r m a l  
d e r i v a t i v e s  o f  t h e  d e n s i t y  and  t h e  p r e s s u r e ,  and t h e  d e r i v a t i v e  o f  t h e  Mach 
number along the wave front. It is shown that the flow has a singularity 
at ~ = a. < ~** (~** is the limiting angle [I] of regular reflection of a 

shock wave from a rigid surface). The distribution of the parameters in 
the region between the reflected shock wave and the surface of the body is 

found up to terms of third order in the time. The density distribution 
behind the reflected shock wave was measured experimentally, and also the 
shape of the reflected wave at different instants of time. 

The reflection of a plane shock wave from blunt bodies was investigated experimen- 
tally in [2-4]. In [4, 5], semi-empirical expressions were proposed for the motion of 

the reflected shoc k wave on the s~n~metry axis. In [6, 7], the results are given of a 
numerical calculation of the initial stage of reflection of a shock wave from a sphere. 

Below, using the conditions of consistency of second and third order [8-10], we 

obtain analytic expressions for various characteristic quantities of the flow behind a 
shock wave reflected by a blunt body. We make an expansion in the time t to terms of 
third order in the neighborhood of the point of intersection of the reflected wave and 
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