INTERNAL ROTATION IN THE HYDRODYNAMICS OF WEAKLY
CONDUCTING DIELECTRIC SUSPENSIONS
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Hydrodynamic phenomena in weakly conducting single-phase media due to inter-
phase electric stresses are reviewed in [1]. 1In the present paper, a model
is constructed of a dielectric suspension with body couples due to the field
acting on free charges distributed on the surface of the particles of the
suspension. Averaging of the microscopic fields yields macroscopic equa-
tions for the field and the polarization of the dielectric suspension with
allowance for the finite relaxation time of the distribution of the free
charge on the phase interface. The developed model is used to consider the
occurrence of spontaneous rotation of a dielectric cylinder in a weakly
conducting suspension in the presence of an electric field; compared with
the case of single-phase media [2], this is characterized by a significant
reduction in the threshold intensity of the electric field with increasing
concentration of the particles [3]. In the.present model of a dielectric
suspension, the destabilization of the cylinder is due to the occurrence of
rotations of the particles of the suspension due to the interaction between
the polarization and the motion of the medium. The relaxation equation for
the polarization for the given model is analogous to the corresponding
equation for media which can be magnetized [4-6].

1. The equations describing a many-phase medium on a macroscopic scale are obtained
by averaging the microscopic fields [7]. Under the assumption that surface and volume
averaging of microscopic fields are equivalent [7], the macroscopic field equations in
a weakly conducting suspension are obtained by averaging the microscopic fields over areas
with a characteristic dimension appreciably greater than the mean distance between the
particles of the suspension. For this, one considers the problem of the perturbation of
a homogeneous field by an isolated spherical particle of radius R rotating with angular
velocity Q=(RQ,0,0) in a liquid whose permittivity and conductivity are, respectively,
€; and v;. The permittivity and conductivity of the solid phase are, respectively €y
and Y, - '

The Laplace equations for the potential ) of the electric field in the solid and
liquid phases are solved in a spherical coordinate system whose polar axes is along the
z direction. The system of boundary conditions for the problem is obtained from the con-
dition of continuity of the potential, the relation for the jump of the normal component
of the electric displacement D on the surface of the particle, and the condition that the
perturbations of the field vanish far from the particle:

'lp1='¢’2,. Dni“"Dnz‘——énG, EIT—>w~>E0=(09 Eoy, EOZ) (1.1)

Here, the indices 1 and 2 refer, respectively, to the liquid and solid phases.

The law of conservation of the charge 8p/di=—div(pv+j) under the assumption that free
charge is localized on the boundary between the phases gives, after integration along the
direction normal to the interface, a relaxation equation for the surface density of the
free charge in a coordinate system fixed relative to the particle [1]:
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Here, j is the conduction current determined in the solid and liquid phases by Ohms
law Ji,2=7s,:Ey s ov is the convective current due to the rotational motion of the particles
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v=[QXr], and ¥ and ¢ are the angles of the spherical coordinate system.

The solution of the Laplace equations with allowance for (1.1) and (1.2) gives

qh=—E0r+Ar/r3, 'l|)2=Bl", A': (01 Alh AZ) » B= (0’ B!/v BZ) ’ A=AU+A1

. - . Yoo (1.3)
Eio= Yool Yia= m , A=(g,"—e")ER?
The surface density of the charge is
o= EZ_;?_{ An (1.4)
For Al' we obtain from (1.2) the relaxation equation
dA /dt=[QXA,]-17'(A—AL), A=3(e,"1. —e."Y°)ER®, 1=(2e,te,) /4:5(2_'7;[-*{2) (1.5)

Here, T is the relaxation time of the surface charge density in a suspension of
spherical particles.

The equations of the macroscopic field are obtained by surface averaging of the
microscopic fields (1.3). The averaging is made for the case of weakly concentrated
systems, when the volume fraction of the inclusions is small. The averaging over an
area with normal n = (0, 0, 1) and area S with allowance for the circumstance that the

part of the averaging surface Sg=i§:n(Rl—zf) (the summation is over particles at dis-

tance Izi| < R from the averaging shrface) passes through the solid phase, and the part
S — S, through the liquid phase, gives for the intensity Sn{E>={nEdS of the macroscopic
field

S(Eyn=—8.Bu+(S—S.) [Em— dZSZdepn(nV),‘f_:_ { a § znpdpn(nv)%]
Iz|=R o IZI<KR  yE=3:

Here, n is the number of particles of the suspension in unit volume, and the z and
p are the coordinates of a cylindrical coordinate system with polar axis at the considered
point of the surface S — S, directed along the z axis.

Calculations with allowance for (1.3) in the case of a spatially uniform distribu-
tion of particles, when S = S¢, gives to terms of first order in ¢
n{E>=nE,—3¢An/R* (1.6)
Similar relations hold for the other components of the field intensity. Averaging
of the displacement gives
S = [ eBdS, (D> —e Byt (e:—e.) PEo— (2e,+2.) QA/R® (1.7

For the macroscopic field (D*) Gauss’s theorem holds:
j {D*>ndS=4nq
5

where q is the free charge in the volume V surrounded by the surface S.

Because, in accordance with (1.4), the total free charge on the inclusions is zero,
the contribution to g due to particles within V is partial. Calculation with allowance
for (1.4) gives

g=-—V div[ (2e,+¢,) pA,/4nR®]

It follows that the equation div D = 0 in the absence of external charges in the
dielectric suspension is satisfied by <(D)>=<D*>+(2e,+&,)pA,/R? which plays the part of the
displacement in the macroscopic equations. From (1.6) and (1.7) we then obtain

D =g;,*<E>+4aP, &,°=¢,(1+3¢(e,°—¢,°)) (1.8)

246



Here, 8?2 is the instantaneous permittivity of the suspension, and P=3e,0A,/4nR"

For P there follows from (1.5) the relaxation equation

dP/di=[QXP]—1~YP—P,), Po=x(E>, un=9,9(e."y,"—&."Y,")/4n (1.9)

Here, %, is the inertial part of the dielectric susceptibility of a suspension of
particles of conductivity

Note that in the case when the field frequency satisfies w <« t=! and there is no
rotation of the particles, P=P, and (D>=¢,,°(E>, where g&,,°=e,*+4nx, is the known expression
for the dielectric susceptibility of a suspension of particles of conductivity Yo in a
medium with conductivity vy, [8].

Equations (1.8) and (1.9) are the basis of the electrostatics of weakly conducting
dielectric suspensions and are analogous to the corresponding equations of the model of
media which can be magnetized with internal rotation [4-6]. However, the case of di-
electric suspensions has a number of important differences. First, in contrast to mag-
netic liquids, %, may be negative (Y:°<<e;°y.°/e,° is the case of weakly conducting particles);
second, the corresponding relaxation time may be significantly longer than in magnetic
liguids.

Thus, for a suspension of nonconducting particles with ¢_ = 3.75 (quartz) in a
medium with €, = 2.1 (transformer o0il) and conductivity 10~ 11! 5’1 cm~! we obtain the re-
laxation time T = 3.5+1072 sec, which is appreciably longer than the relaxation time of
the magnetization of a magnetic liquid based on a comparatively viscous carrying medium
with n = 1 p (mineral oil), which is 4.5:10~" sec [9].

2. The hydrodynamic equations of magnetic and polarizable media [10] obtained in
the case of nonequilibrium polarization of the medium show that when one is describing
this class of motions the stresses due to body couples must also be taken into account
as well as the ordinary viscous and electric stresses. The complete system of equations
of motion and the field of an incompressible polarizable liquid with allowance for the
relations (1.8) and (1.9) obtained in the first section has the form (the ponderomoctive
forces due to the instantaneous dielectric susceptibility are potential forces and are
therefore included in the pressure)

pdv/dt=—Vp+nAv+ (PV)E+!/, rot [PXE]

. . (2.1)
divD=0, rotE=0, D=¢,,"E+4aP, dP/dt=[QXP]—1"'(P—P,)
The system of equations (2.1) is closed by the equation of the balance of the
couples acting on a particle:
—a(Q—Q,) +F[PXE]=0, Q,=!,rotv (2.2)

Here, o is the coefficient of rotational friction of the particles, and in the case
of spherical particles is equal to SnunR'n.

On the basis of the equations of motion and the field (2.1)-(2.2) we can consider
the rotational motion of a cylinder in an unbounded suspension in the presence of a homo-
geneous electric field at right angles to the axis of the cylinder. The problem is solved
in a cylindrical coordinate system with axis parallel to the cylinder axis. The case of
a single-phase liquid corresponds to the assumption D=g.°E.

The perturbation of the homogeneous field by a cylinder of radius R rotating with
angular velocity @:=(0, 0, ;) is found by solving the Laplace equations for the potential
of the electric field under the boundary conditions (1.1)-(1.2) for the case of cylindri-
cal symmetry. In the region exterior to the cylinder, the potential of the electric field
is given by

11)1=—‘Er+2Kol'/81207'2+2K11'/812°r2, Ko=%1mRizE, %100:‘/28120(8“8120)/(8+8le) (2- 3)
Here, ¢ and y are the permittivity and conductivity of the cylinder, respectively.

For Kl’ we have the relaxation equation

0K1/5t=[91XK1]—’ri"’(Ki—Kio), Ti=(8+8120)/4ﬂ(7+7120) (2.4)
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Kio=(%"—%,")RE, %,°—n,"=¢.," (e12"Y—€T02) [ (eF&12") (Y+7u2) (2.4)

Integrating the electric stresses Iu='/n(E:D,—'/.E*8;) over a distant cylindrical
surface, we obtain for the moment of the electric forces acting in the stationary case on
unit length of the cylinder [taking into account (2.3) and (2.4)] the expression [1]

T‘Q il

g ) B (2.5)
1849

M. =[KXE],=

The equation of the balance of the moments of the electric and viscous forces acting
on the cylinder when (2.5) is taken into account, M,—4nnR.*Q,=0, shows that the state of

rest of a cylinder with %,°<0 is unstable at field intemsities E’=E2=—4nn/T,(%,"—%,").

For the angular velocity of stationary rotation of the cylinder when E >=EC we

obtain
Tig‘-'—'-v(E/Ec) 2—1 (2. 6)

The linearity of the dependence (2.6) of Q. on E for E >» Ep corresponds to the
experimental results for the case of single-phase liquids [2].

The features of the phenomenon of spontaneous rotation of a cylinder in a dielectric
suspension can be described on the basis of the model (2.1)-(2.2) when rheo-electric
phenomena [3] are ignored, i.e., under the assumption that the perturbation of the
electric field by the cylinder has the form (2.3)

== V'l,pd, 1.'3¢=2Kr/812°r2, K=K0+K1

Further, we find the solution of (2.1) and (2.2) for the case of motion of the di-
electric suspension in the electric field Eg of a rotating cylinder. The solution is
found for %,tEf0~'<<1, when the nonlinear term in the polarization equation can be ignored.
In this case, the relaxation equation for the polarization for TQl < 1 gives

P=P0+Pb, P0=M0(Ed+Eb) N Pb=—TKo(vV)E¢+T%o[QoXE¢] (2 . 7)
The equation of motion (2.1) with allowance for (2.7) takes the form
—V (p—"/,P:Es) +1Av—/,{[E;Xrot P, ] +E, div P,} =0 (2.8)

With allowance for the azimuthal symmetry of the problem v=(0, f(r), 0), the relations
(2.7) and (2.8) for the azimuthal velocity of the dielectric suspension give the differ-

ential equation
(r*+ar?)d*f/dr*+ (r*—3ar) df/dr+ (—r*+-3a) f=0 (2.9)

Here, the parameter a/R/‘=1u,K*/[e,,°]’nR,* measures the ratio of the rotational and
shear viscosities, and is negative in the case of nonconducting inclusions.

Equation (2.9) is solved for no-slip boundary conditions on the cylinder, f(R,)=Q.R, ,
and the absence of motion at infinity. The change of the independent variable r‘=|a|z
reduces Eq. (2.9) to the form

162*(z—1) d*f/dz*+16z*df/dz— (3+3) f=0

The general solution of this equation is the function

f=C.z"+Cyz" In [ (Yz—1)/ (Yz+1) ]

which can be written with allowance for the boundary conditions in the form

_ Qrln[(—lal*/r)/ (4+]al®/?)] (2.10)
In[ (1~lal™/R®/(1+]al™/R?)]
With allowance for the asymptotic behavior of (2.10) as r - oo, for the moment of
the viscous forces on the cylinder in the presence of internal rotations we obtain

8nmlal*Q,

- (2.11)
n[ (1—lal*/Rz2)/(1+]al*/R ) ]

M-
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On the basis of (2.5) and (2.11) we can investigate the influence of internal
rotations on the stability of rest and the angular velocity of spontaneous rotation
of a dielectric cylinder. In the case Q; - 0, we have K=K,+K;,=x,°R’E, which for the
determination of the threshold at which the stability of rest of the cylinder is lost
gives the equation

Ecl=_ 2(EC/E*)2 s _ 7][312012
Fx Il (1—E./Ex)/ A+EE)] " *

= (2.12)
Tl [%,°]?

As is shown by the relation (2.12), the interaction between the polarization and
the motion reduces the instability threshold of the cylinder in the field. Graphically,
Eé/EC is shown as a function of the parameter (EC/E*)Z, which is determined by the prop-
erties of the suspension, in Fig. 1. The reduction of the instability threshold for
the dielectric cylinder can be clearly represented as follows: the nonconducting particles
of the suspension, which are polarized in the dipole field of the cylinder, are carried
as a result of the drag of the medium by the cylinder to a different point of space, where,
due to the finite relaxation time of the polarization of the particles, the field of the
cylinder causes them to rotate with respect to the carrier medium, this producing a moment
of the viscous forces in the direction of rotation of the cylinder.

It should be noted that the destabilization of the state of rest of the cylinder by
the nonconducting particles is not determined by the specific properties of the field E,
pbut is due to the rotational instability of the state of rest of the particles with x,<0
themselves in electric fields with field intensity E*=E,’=—a/tx,.

As an example of such a situation when instability of the particles leads to in-
stability of the medium as a whole, we can give the example of a coaxial cylindrical
condenser with a narrow relative gap and inner electrode which is not fixed. In this
case, analysis of the stability of the combined system of equations (2.1) and the equation
of rotational motion of the inner cylinder shows that the system becomes unstable against
rotations of the electrode which is not fixed when E?=E,*/{(1-+a/4n). The rotations of the
particles of the suspension then occur in one direction.

In the limit of high velocities of the cylinder (Q,1,>>1), when the retarded part of
the polarization K, of the cylinder is small, we can take for the parameter |a|/R;*, be-
cause of (2.3), the value T|%|[%,"]°E*/n[e,°]%, which for the rate of rotation of the
cylinder when E > Eé gives on the basis of the balance for the couples and with allowance
for (2.5) and (2.11) .

E«\*1 E [ (I—_bEJE L
nsz‘=]/-—i(_-i) —————ln[—(——-——/—*—)—]—i, L i (2.13)
2 \E. | b Ex " L(IT0B/Ex) PRE

The dependence (2.13) for b = 0.176, which corresponds to an ebonite cylinder with
e =38 and vy = 0 in a medium with g€; = 2.1 (transformer oil), is shown in Fig. 2. Curves
1 and 2 correspond to the values (EC/E*)2 = 0.5 and 1.0. As is shown in the figure, the
function (2.13), in contrast to (2.6), is nonlinear, which corresponds to the experimental
results of the investigation of the spontaneous rotation of a cylinder in a dielectric
suspension [11].

3. We now estimate the part played by rheo-electric phenomena in the spontaneous
rotation of a dielectric cylinder in a field. The perturbation of the field by the motion
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of the dielectric suspension can be taken into account by the method of perturbations. For
|a|*/R*<1, the expansion (2.10) in the zeroth order in |a|"/R, gives

=Q.R>r (3.1)

The perturbation of the polarization of the medium introduced by motion with the ve-
locity field (3.1) is in accordance with (2.7)

Lt QR K brn Q. RK
( Txosii sing, — o :; cosw,O), Pyx=u»,E,+P, (3.2)

€y I €12 I

Here, the angle ¢ is measured from the direction of the dipole moment K of the di-
electric cylinder.

The perturbation of the field in the stationary case can be found by solving the
problem
A'\pib=_‘4ﬂ div Pb/s,z" , A\pzb=0 _ (3.3)

len—Dzbn=4nob, Qlaob/aq)=—'jlbn+j2bﬂ (3.4)

The density of the macroscopic current in the dielectric suspension can be found by
the method of averaging described in the first section. A corresponding calculation gives

. j=’YiD/Bi+[(281+82)/381]0P/¢9t (3,5)

We note that (3.5) in the stationary case yields results [12] which show that in a
dielectric suspension there is an analog of the Hall effect in a shear flow.

Solution of the problem (3.3)-(3.4) with allowance for (3.2) and (3.5) for the
moment of the electric forces acting on the cylinder and due to the rheo-electric effect
gives

My=—4ntneQ . |°E°R*/ [ e,,°]

It can be seen that in the case %,<0 the perturbation of the field due to the rheo-
electric effect has, like internal rotation, a destabilizing influence on the state of
rest of the dielectric cylinder. At small |a|*/R*, it follows from (2.11) that

M_=Q,(—4nnR *+4nt|%,| [x,°]2E23‘2/3[s,2°]2)

For the threshold of instability of rest of the cylinder when simultaneous allowance
is made for internal rotation and the rheo-electric effect we obtain

[Ec' *=Ec*| (1+4E:*/3E+?)

Finally, it should be noted that the problem considered above is analogous to the
problem of the translational motion of an ion in a polar liquid [10] with allowance for
the dielectric friction due to the finiteness of the polarization relaxation time. We
also mention that in [10] the coefficient in front of the dielectric friction term is
incorrect; the correct value 17/420, which also agrees with [13], is given in the author’s
dissertation.*

On the basis of the obtained results it can be concluded that the model of a di-
electric suspension which takes into account internal rotation and finiteness of the time
of relaxation of the inter-phase density of free charge describes some gqualitative features
of the phenomenon of spontaneous rotation of a dielectric cylinder in a dielectric sus-
pension. The proposed system of equations of motion and the field leads to a class of
problems of the mechanics of polarizable media in which the field equations and the equa-
tions of motion are interconnected, the coupling being due to transport of the polariza-
tion of the medium by the translational and rotational motions of the particles of the
suspension.
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INITIAL STAGE OF REFLECTION OF A PLANE SHOCK WAVE FROM
A CYLINDER, SPHERE, AND ELLIPSOID OF REVOLUTION

N. I. Nosenko, N. N. Sysoev, and F. V. Shugaev UDC 533.6.011.72

The stage of regular reflection of a plane shock wave from a blunt body
(cylinder, sphere, and ellipsoid of revolution) is considered. At the
point of intersection of the reflected shock wave and the surface of the
bedy, analytic expressions are found for the derivative of the Mach number
of the wave with respect to the time, the curvature of the wave, the normal
derivatives of the density and the pressure, and the derivative of the Mach
number along the wave front. It is shown that the flow has a singularity
at 0 = 0y < Oyy {(Oxx 1S the limiting angle [1] of regular reflection of a
shock wave from a rigid surface). The distribution of the parameters in
the region between the reflected shock wave and the surface of the body is
found up to terms of third order in the time. The density distribution
behind the reflected shock wave was measured experimentally, and also the
shape of the reflected wave at different instants of time.

The reflection of a plane shock wave from blunt bodies was investigated experimen-
tally in [2-4]. 1In [4, 5], semi-empirical expressions were proposed for the motion of
the reflected shock wave on the symmetry axis. In [6, 7], the results are given of a
numerical calculation of the initial stage of reflection of a shock wave from a sphere.

Below, using the conditions of consistency of second and third order [8-10], we
obtain analytic expressions for various characteristic quantities of the flow behind a
shock wave reflected by a blunt body. We make an expansion in the time t to terms of
third order in the neighborhood of the point of intersection of the reflected wave and
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