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Phase Transitions in a Probabilistic Cellular 
Automaton: Growth Kinetics and Critical Properties 

F. J. Alexander ,  1, 2 I. Edrei ,  1, 3 p.  L. Garrido,  1, 4 and J. L. Lebowi tz  ~ 

We investigate a discrete-time kinetic model without detailed balance which 
simulates the phase segregation of a quenched binary alloy. The model is a 
variation on the Rothman-Keller cellular automaton in which particles of type 
A (B) move toward domains of greater concentration of A (B). Modifications 
include a fully occupied lattice and the introduction of a temperature-like 
parameter which endows the system with a stochastic evolution. Using com- 
puter simulations, we examine domain growth kinetics in the two-dimensional 
model. For long times after a quench from disorder, we find that the average 
domain size R(t) ~ l 1/3, in agreement with the prediction of Lifshitz-Slyozov- 
Wagner theory. Using a variety of methods, we analyze the critical properties of 
the associated second-order transition. Our analysis indicates that this model 
does not fall within either the Ising or mean-field classes. 

KEY WORDS: Probabilistic cellular automaton; domain growth kinetics; 
critical phenomena. 

1. I N T R O D U C T I O N  

W h e n  a u n i f o r m  b i n a r y  m i x t u r e  is q u e n c h e d  f r o m  h igh  t e m p e r a t u r e  to a 

t e m p e r a t u r e  at  wh ich  the  u n i f o r m  s ta te  is no  l o n g e r  s table ,  it u n d e r g o e s  

phase  segrega t ion .  C o n c e n t r a t i o n  f luc tua t ions ,  e i the r  l o n g - w a v e l e n g t h ,  

s m a l l - a m p l i t u d e  ( s p i n o d a l  d e c o m p o s i t i o n )  o r  s m a l l - w a v e l e n g t h ,  la rge-  

a m p l i t u d e  (nuc l ea t i on ) ,  g r o w  a n d  f o r m  s ing le -phase  doma ins .  (1' 2) I f  there  

are  no  ex te rna l  forces  ac t ing  on  the  sys tem,  t h e n  the  final  s ta te  will  be  one  
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of phase coexistence in thermodynamic equilibrium. Of theoretical and 
practical interest is the domain growth kinetics and morphology following 
a quench in both of these cases. (3) 

While phase segregation is a complicated nonlinear process, it is 
possible to build models with simple microscopic dynamics which give the 
correct and essential physics on the macroscopic level. (4-9) Kinetic Ising 
models have been among the most used in such investigations. These 
models evolve in continuous time according to a stochastic dynamics 
satisfying a detailed balance condition which guarantees that the s.tationary 
state is Gibbsian with respect to the Ising Hamiltonian. 

The model investigated here is a discrete-time probabilistic cellular 
automaton (PCA) which, as we shall show, has some advantages over the 
Ising-type models. It is a variation on the model of Rothman and Keller 
(RK), (6) who studied a lattice gas of the F H P  (Frisch, Hasslacher, and 
Pomeau) (1~ type with two species of particles referred to as A and B. These 
particles evolve following an almost deterministic discrete-time dynamics, 
conserve momentum in collisions, and have a tendency to segregate by 
maximizing the local flux of A's and B's in the direction of their respective 
concentration gradients. 

In our studies we introduce a stochastic element into the particle 
dynamics which mimics the effects of a thermal bath (characterized by an 
inverse temperature-type parameter fl similar to ref. 8). Furthermore, we 
consider the situation where the total density of A's and B's is maximal. In 
this case, the momentum is locally identically zero, and can be effectively 
removed from the problem. This permits us to interpret one of the com- 
ponents as particles and the other as holes. (12) Finally, we consider a 
square lattice model (11) rather than a hexagonal one for ease of simulations. 

1.1. The Model  

We consider a periodic N x N square lattice F having at each site x ~ F 
as many as four particles. The global configuration r/is described locally by 
t/(x), with Boolean components ~/~(x), where de  { +g l ,  -+d2}, the unit vec- 
tors along the lattice axes. r/e(x)= 1 represents the existence and t/e(x)= 0 
the absence of a particle at the site x with unit speed in the d direction. The 
number of particles at site x in configuration q is then given by 

,l(x) = ~ ,7~(x) (1) 

and the number of holes by 4 -  ~/(x). The particle flux vector at each site 
is 

u(x; ,1) = Y ~ ( x ) ~  (2) 
g 
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The system evolves in discrete time by a two-step dynamics with 
simultaneous updating at each node. These steps are propagation and colli- 
sion. In propagation each particle moves one lattice unit in the direction of 
its velocity. Next, in collision, the particles at each site change their 
velocities according to a stochastic rule designed to facilitate particle-hole 
segregation. 

Starting from t/, we choose a new global configuration r/' with 
probability 

1 
P(~'I~) = l-[ Z" ~ r  tx;r/, t/') 

exp[flu(x; r/'). f(x; ~)] 6(r / ' (x)-  q(x)) (3) 

where 

Z(x; r/, t/') = ~ exp[flu(x; q')-f(x; r/)] 6 (q ' (x ) -  q(x)) 
q'(x) 

(4) 

is a normalization factor, and 

f (x ; t / )=  ~ t/(y)(y-x_____)) (5) 
yEAx ly "-xl 

is the particle concentration gradient at x computed in a neighborhood A x 
of "radius" r about each x. For r -- 1, A x is just the set of nearest neighbor 
sites of x. For r = 2, A x extends to next-nearest neighbors, and so on. For 
f l > 0  the rule (3)-(5) gives a preference for particle fluxes to be directed 
toward regions within A with the highest particle density. The parameter fi 
controls the degree of preference to maximize u(x, r/'). f(x; r/); at fl = 0 all 
configurations consistent with local particle conservation have equal 
weight. At the other extreme, fl = oe defines an almost deterministic model 
where u(x; ~/'). f(x; t/') is always maximized. This is precisely the condition 
imposed in the Rothman and Keller model. (6~ 

Qualitatively, our dynamics is similar to that of a ferromagnetic Ising 
model with Kawasaki dynamics satisfying detailed balance with respect to 
a Gibbs measure. For fl ,~ 1 all collision outcomes (consistent with particle 
conservation) have approximately equal weights, while for large fi, 
"favorable" outcomes occur with overwhelming probability. However, since 
our dynamics is not based on a Hamiltonian description with an inter- 
action potential, we do not know the stationary measures of the system 
(for fl ~ 0), and there is no reason to expect them to be Gibbsian with any 
finite range or rapidly decreasing interaction potential. We nevertheless 
refer to fl-~ as the temperature, and to the stationary state as an equi- 
librium state, but this is meant 0nly to be suggestive. 
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The model presented here is thus intermediate between the standard 
kinetic Ising models and the hydrodynamic cellular automata of Rothman 
et aL (6) We have used it in simulations as a means of enhancing the rate 
of segregation (compared to Ising models) without sacrificing temperature 
(common in CA simulations). It provides an alternate method by which to 
simulate ordering processes in quenched alloyes. Here we focus attention 
on the kinetics of domain growth and an analysis of the static critical 
properties. 

In Section 2 we describe the time evolution of our model, giving a 
quantitative description of the segregation kinetics. In particular, we find 
that the average size of the single-phase domains R(t) follows, for times 
long after the quench, the Lifshitz-Slyozov-Wagner (LSW) growth law 
R(t),,~ti/3. ~2'13) At low temperatures the dynamics gives rise to an 
anisotropic ordered phase. In Section 3 we explain the origin of this 
anisotropy, and discuss the ergodic properties of this model. In Section 4 we 
study the properties of the critical point and of the two-phase region. Using 
a variety of techniques, we estimate the critical exponents. Finally, in 
Section 5 we investigate phase segregation in this model when a driving 
field induces a particle flux in a preferred direction. 

2. KINETICS 

A system with 4 p N  2 particles on F, 0 < p < 1, was put in an initial 
disordered state typical of a system at f l=0 ,  i.e., particles randomly 
distributed over the lattice sites. We then studied its evolution under 
the dynamics with some fl > tic ~ 0.32--the critical value determined by a 
number of simulation methods given later--where we know that its final 
stationary state is segregated, resembling a coexistence of two phases. The 
results depended on the values of fl, the concentration p, the interaction 
range r, and the lattice size N. 

Here we concentrate on r = 1 and p = �89 for ease of comparison with 
the known behavior of nearest neighbor Ising systems. We also restrict our- 
selves to N =  128, where the finite-size effects on the dynamics of phase 
separation appear to be small at the values of fl considered. 

We show in Fig. 1 a typical sequence of domain configurations in the 
evolution of the model for various times after a quench from disorder. The 

Fig. 1. Typical sequence of configurations following a quench from disorder. 
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particle density is p = �89 and inverse temperature fi = 0.625. The density of 
particles at a site is proportional to its darkness. As is visually evident, 
single-phase domains form and grow as the impurities within those regions 
decrease. 

The time evolution of segregation processes in physical systems is 
often monitored experinientally through the spectrum of scattered radia- 
tion. Th~s is directly related to the structure function S(k, t), the Fourier 
transform of the density-density correlation function (z ~5). 

1 S(k,t)=~_~l ( L e i k .  ~ 1 (6) 

where the angle brackets ( .  > signify an ensemble average. In computer 
simulations this average is realized by collecting data from several inde- 
pendent runs. The extent of segregation is then determined by the location 
and intensity of the peak, in the structure function. As the system 
segregates, the peak moves to smaller values of Ikl, and S(k, t) narrows 
while increasing in amplitude. (~') 

Although information concerning anisotropy is lost in the integration, 
it is useful to average the structure function S(k, t) over shells of radius k. 
In a wide variety of phase-segregating systems this circularly averaged 
structure function has been observed to follow a scaling relation at late 
times: 

S(k, t)~S(kmax(t), t)F(k-~ax) (7) 

where kma x is the wavevector k at which S(k, t) has its maximum at time 
t. These scaling functions for/~ 1 = 1.6 are shown in Fig. 2. The superposi- 
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Fig.  3. 
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tion is very good for large and small x, but there is a region 1 < x < 3 
where there are deviations from superposition. This may be due to the 
small number of independent runs we averaged. 

Using the structure function computed before as a weight, we can get 
the average wavevector (k(t)), which will characterize the average domain 
size through R(t),.~ (k(t)) -1. We have 

Zk kS(k, t) (k(t))- (8) 
Zk S(k, t) 

The data are presented in Fig. 3. This behavior is consistent with the LSW 
theory of phase domain growth for systems with conserved density2 (2) Note, 
however, that in our model the asymptotic regime appears earlier (fewer 
site updates) than in traditional Ising simulations/TM 

3. A N I S O T R O P Y  A N D  ERGODIC BEHAVIOR 

As is clear in the snapshots of the segregated systems shown in Fig. l, 
there is a predominant alignment of interfaces diagonal to the lattice axes. 
To  understand this, we compare the stability at fl ~> 1 of an interface 
oriented parallel to the lattice axes (Fig. 4a) with one where it is diagonal 
(Fig. 4b). At f l=oe  the state with the largest weight, as given by 
Eqs. (3)-(5), will always be selected in the collision step. Hence both of 
these configurations will be stationary. For fl < 0% however, all possible 
states will be sampled. There is then a small but nonzero probability that 
a flux will be chosen, which will after the interface at the next propagation 
step. 



Phase Transitions in Probabilistic CA 503 

^ 

i 2 
Fig. 4. 

0 0 0 

0 0 0 

1 .1 Jl} 

4 .4 4 

4 .4 4 

4 . 4 4  

.0 0 .0 

~0 0 ,0 

.1 1 .1 

L44 .4 

. 4 4 . 4  

L44 ,4 

!0 0 0 .0 0 ,2 4 

, 0 0  0 0  2 4  4 

L o o  4 
IO 0 2 .4 4 .4 4 

IO 2 4 ,4 4 ,4 4 

~ ,4 4 ,4 4 ,4 4 

Stable configurations at fl = oe. The number associated with each site indicates the 
number of particles at each site. 

Given a particular site on the interface, we calculate the probability 
that such a defect will occur at that site in a given time step. For  large fl, 
this will be determined primarily by the ratio of the weight of the most 
likely defect to the weight of the interface-preserving choice. 

We carry out the calculation for r = 1. Consider the flat interface in 
Fig. 4a. The only place a defect can occur during the collision step is at a 
site occupied by one particle. Choose such a site and label it A. The particle 
concentration gradient at A is f (A)=  -4~2 ,  since the 1-direction compo- 
nent vanishes. The interface-preserving collision has u ( A ) = - e 2 ,  with 
weight W ~ e x p ( u .  f ) =  exp(4fi). The most likely defect will occur with the 
single particle having a velocity parallel to the interface. This yields 
W ~ e x p ( + ~ l . f ) = l .  The rate at which a defect occurs is then 
approximately e x p ( -  4fl). 

For  a diagonal interface defects only occur at the sites on the interface 
with two particles. Choose one and label it B. The particle concentration 
gradient is f ( B ) =  4 ( ~ - ~ 2 ) .  The collision which preserves the interface will 
place the particles in the ~1 and -~2  velocity directions, which gives 
W ~  exp(8fl). The most probable defect will occur when one particle is put 
in a velocity mode aimed at the interface: either ~1 or - d 2 ;  the other is 
placed in the opposite direction. This gives u(B; t/') = 0 and a weight W ~  1. 
Defects then occur at a rate ~ e x p ( - S f i ) .  As e x p ( - 8 f l ) ~  ex p ( -4 f l )  for 
f l>  1, we are led to believe that for r = 1 diagonal interfaces are more 
stable. 

We can generalize these calculations to larger r, finding that for a 
horizontal (vertical) interface, defects occur at a rate 

I !i+j) ] (9) Rate(Horizontal) ~ exp -4/3 ~ (i 2 + j2)l/2j 
Iil + [Jl ~<r ,  i + j > O  
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For a diagonal interface, however, we have that 

i 
Rate(Diag~ l-4filil+ljl~r,i>o (i2 +j2)l/51 (lO) 

On the basis of this we conclude that diagonal interfaces are more stable 
than ones aligned with the lattice axes, for arbitrary choice of r. We 
observe that the anisotropy and flatness of interfaces is pronounced even at 
temperatures not too far below criticality. 

3.1. Ergodic Behavior 

In this section we prove that the final stationary state of this model is 
unique except for one spurious conservation law which we now explain. 
The lattice splits into two sublattices, odd and even, such that the particles 
on the odd (even) sublattice at odd time steps are the same particles which 
are on the even (odd) sublattice at even times. This is a result of the 
deterministic propagation step alone and has nothing to do with random 
collisions. There are thus always two ergodic components. For  large 
enough systems and a random deposition of particles and holes, it is highly 
improbable that there will be a large difference between the densities of the 
two sublattices, and so we do not consider this further. 

We want to show that the system will sample all possible states with 
a fixed sublattice occupation (for any density p < 1 ). To prove this, it is suf- 
ficient to show that all configurations with a specified number of particles 
on each sublattice can evolve into one particular configuration. Then, since 
it is possible for fl ~ ov to retrace any step in the dynamics, they can evolve 
into each other. Ergodicity then follows from general results of finite-state 
Markov processes. 

Let us consider the Q particles which are on the even sublattice at time 
t = 0 .  We label these particles 1, 2,..., Q and assign to each of them a 
"target" site on the even sublattice and a "target" velocity mode at that site. 
These assigned sites are such that the lattice is filled up row by row starting 
from the site at the lower left corner, which will contain particles 1 ..... 4. 
Once the even sublattice sites of a row are filled, we move on to the next 
even row. 

Each site will contain its maximum of four particles, with the final site 
possibly containing less. The velocity modes which each particle will 
occupy are determined by rotations of ~/2 counterclockwise about the 
origin. 

Our goal is to show that at some finite, even time step in the future 
we can find all of these particles at their designated locations. Thus, we 
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must show that there is a nonzero probability of this occurring. This is 
accomplished by first restricting all particles, except particle 1, to a back- 
and-forth motion (oscillating between their site at time zero and the site in 
the direction of their t = 0 velocity). The first particle is then artificially 
moved to its designated site along some path by always selecting the 
collision rule which will accomplish this. If it encounters other particles, 
then it is given preference in any collision step so that it finds the correct 
mode. When it arrives at its designated site, we then lock it into the 
"back-and-forth" motion and move on to particle 2. Each step involved has 
nonzero probability, since /3 is finite. Therefore, the entire process has a 
nonzero (albeit very small) probability of occurring, and we are done. 

4. CRIT ICAL B E H A V I O R  

The analysis and characterization of critical behavior in non-Gibbsian 
particle models is difficult. When the dynamics is conservative (particle 
number remains constant), it becomes even more problematic: we have 
particle conservation, and cannot use the globally averaged particle density 
as the order parameter. Two alternatives are available. Instead of 
considering the global average of the particle density p, we may study the 
probability distribution of densities in subblocks of the entire system. 
Particles will be transferred between these subblocks via diffusion, and in 
this sense the conservation law can be "avoided." Of interest is the statistics 
of densities within these blocks. The other option is to define an order 
parameter which reflects the morphology (boundaries and interna! 
structure) of the single-phase domains. We will use both methods as well 
as the behavior of a short-range order parameter to obtain information 
about the critical behavior of our model. 

4.1. Block Distr ibut ion Functions 

The block spin distribution method outlined here was pioneered by 
Binder and has since been used successfully for a variety of different 
models, including X Y  models, Potts models, and polymers/2~22) While the 
method was originally applied to Ising models without a conservation law, 
Binder has pointed out that it is applicable to conservative systems, 
provided the largest block size considered is much smaller than the overall 
lattice/22) For convenience we rescale the site occupation variable ~/in our 
model to resemble the local spin in the Ising model: 

S(x)= ~(x)-2 (11) 
4 

and hereafter refer to the local variables S(x) as spins. 

822/68/3-4-11 
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Partitioning the N x N lattice into blocks each of size L x L, we define 
the spin of block i to be 

1 
Si- L 2 E S ( x )  ( 1 2 )  

x ~ ith cell 

For  each size L we then determine the probability distribution for the 
rescaled spins of that size block, PL(s). Because of the symmetry between 
particles and holes at density p = 0.5, we have 

PL(S) = PL(--S) (13) 

For  T >  To, these distributions are expected to approach in the limit 
L--* oo, taken after the limit N--* o% a Gaussian with mean zero, (2~ 

( --$2L2~ 
pL(s ) __, L(Z~kBTZL) ~/2 exp \2-~B~-~zjj (14) 

where ZL is a susceptibility. Conversely, for T <  To, these distributions 
should tend toward two Gaussians centered at +m, the spontaneous 
magnetization of the infinite lattice. We have 

L { [ - - ( s - m ) 2 L  2] 
PL(s)-+~(2=kBTzL) 1/2 exp 2-~B~--XL--J+exp 

-(s+m)2L2]~ 

(15) 

This description is valid only in the region near s = + m. As a result 
of phase coexistence, the tails of the two terms near Isl = 0  deviate 
considerably from Gaussian. In any case, we expect that when T < To, one 
can determine m by measuring for large L any of the following quantities: 

(16) 2 1/2 mL~-- (Isl>L~-- (s )L ~--m 

4.2. Simulation of Block Distributions 

As seen from the pictures of the segregation process (Fig. 1), it takes 
the system more than 105 time steps to get into a stationary state at low 
temperatures, when the initial configuration is disordered. We avoid this 
difficulty by working in reverse and heating a completely ordered system, 
rather than quenching a disordered one. Metastability and hysteresis do 
not seem to be a problem here, as we have tested heating and cooling for 
several temperature and found that they tend to the same stationary state. 

On a 128 x 128 lattice with particle density p = 0.5, the particles are 
initially configured in a compact, diamond-shaped domain. We then heat 
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the system to temperature T= 2 and allow it to reach a stationary state. 
Stationarity is determined by monitoring quantities like the "surface area" 
(energy) E and average wavenumber (k(t)) and checking for Gaussian 
behavior in the statistics of these variables. After the system "equilibrated" 
at that temperature, we carried out the following program: We partitioned 
the system into subblocks of size L x L, where L = 1, 2, 4, 8, and 16. At 
specific time intervals (usually 10-50 time steps), we recorded the net spin 
within the blocks. In our simulations it was computationally efficient to 

k record the moments (s L) of the distribution function P(s) rather than P(s) 
itself, 

(SkL)=fdsskpL(S), k = 2 , 4  (17) 

After recording the data, we increased the temperature slightly and then 
allowed for reequilibration. We call this approach Method I. Typically, this 
method has been applied to systems with nonconserved magnetizations. 

To avoid the problems inherent in the restriction that L be small com- 
pared to N, we also carried out a block spin analysis of the region deep 
within one of the segregated domains. This method avoids the conservation 
problems and has the advantage that we could confidently look at blocks 
up to size 16 and perform a better extrapolation [Eq. (16)] for the order 
parameter. The drawback is that there were fewer blocks, and so the 
statistics was not as good. We call this approach Method II. 

We present in Fig. 5 the order parameter determined by Method II 
using various sizes L. The results are consistent with those obtained by 
Method I. In the critical region we expect that this order parameter takes 
the form 
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where fl is the order parameter critical exponent. By plotting m 1/~ against 
temperature for different values of/3, we can estimate the order parameter 
critical exponent to be the/3 which gives the best fit to a straight line. On 
the basis of this we find that fl ~ 0.20. For comparison we also plot m 8 and 
m 2. These correspond to the two-dimensional Ising model critical exponent 
/3 = ~ and the exponent/3 = �89 

From this analysis it appears that our model does not fall into either 
universality class, but we cannot rule out a crossover to /3 = �89 or Ising 
behavior closer to the critical temperature. In Section 4.3 we will offer a 
similar analysis of the morphological order parameter and compare the 
results. 

As noted in Eqs. (14) and (15), the block-spin distribution function 
above criticality will be a Gaussian, while below T c, there will be 
two distinct peaks. A good indication of the Gaussian character of a 
distribution P c ( ' )  is 

4 (SL) 
UL= 1 3 ( s2 )2  (19) 

2 which vanishes for a Gaussian distribution and has the value x for a 
sharply peaked bimodal distribution. We examine whether, as L increases, 
the distribution becomes more Gaussian-like, with UL- ,  0, in which case 
we assume that we are in the one-phase region T >  T~. If, on the other 

2 with increasing L, then we assume that T <  To. At the critical hand, UL ~ 
temperature, UL should not depend on L, since on all scales the block spin 
distribution function will have the same character. 

This makes the block spin analysis of critical phenomena possible 
without any previous knowledge of the magnitude of the correlation length. 
Furthermore, it provides a means by which to estimate the critical tem- 
perature and critical exponents independently of each other. We have 
examined Uc with both methods I and II and indicate the results for II in 
Fig. 6. For  T >  3.10 there are no segregated regions, UL tends to zero, and 
both methods give almost identical results. For  T~<3.05, the cumulant 
tends to 2. We thus conclude that Tc lies between 3.05 and 3.10. 

For  a system of subblocks, Binder has shown that one may estimate 
the correlation length exponent v and the specific heat exponent c~ by 
plotting Ub~ (b is a rescaling factor) versus UL and determining the slope 
at To. The results for Method II are given in Fig. 7. We have 

OUbL ,,~ b o - ~)/v (20) 
~?UL rc 
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Both methods indicate that 
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As a result of the scaling of the distribution function at criticality, one 
also has the estimate 

--Iog( (s2)bL/(S2)L ) "2~ 
log b v 

(23) 

We find from method II, using T~ = 3.05, that 

2fl/v ~ 0.35q3.36 (24) 

This, in conjunction with our previous results by method II, gives an 
estimate v ~ 1.1 and so 0.36 < a < 0.40. 

4.2.1.  A Related Model .  Chan and Liang (8) have recently studied 
the static critical behavior for a related hexagonal lattice model. Instead of 
maximal occupancy, their model contains particles of two types, A and B, 
in addition to holes. Thus, momentum conservation plays a key role in 
determining the possible outcomes of collisions, 

Chan and Liang's analysis, however, consisted of looking at the block 
spin distribution functions only for one small block size. Specifically, they 
considered P(s) for a set of sites consisting-of one site and four of its six 
nearest neighbors. They calculated the distributions P(s) for a number of 
different temperatures, and stated that the critical temperature was the tem- 
perature at which the distribution was no longer Gaussian (single-peaked) 
in shape. What they neglected to do was to consider large L, while having 
L,~ N. Even above the critical temperature, the correlation length will be 
larger than one or two lattice sites and so one would expect that the 
distribution will not be Gaussian. 

For  a comparison of models, we carried out an analysis similar to 
theirs for our model and actually got similar results for the purported order 
parameter exponent, f l~0.3.  Without actually modeling the identical 
system, it is impossible to say whether or not the exponents they quote are 
correct or not, but we believe that the method, as they have presented it, 
is incorrect. 

4.3. Morphologica l  Order Parameter  

Visual examination of system configurations at low temperatures in 
the stationary state achieved at late times after a quench indicates that the 
system is nonuniform. Since we are in a nonequilibrium situation, we can- 
not rely on some thermodynamic principle to characterize the stationary 
state distribution of domain interfaces, such as minimization of the free 
energy. We nevertheless follow a prescription given by Binder and Wang 



Phase Transitions in Probabilistic CA 511 

for calculating an order parameter based solely on the geometry of the low- 
temperature phase. ~23) This assumes that the number of interfaces will be 
minimized and thus that one has some knowledge of how the low- 
temperature phase will manifest itself. Their order parameter consists of 
Fourier transforms of the spin configuration projected onto the individual 

sin cos sin cos lattice axes. The individual order parameters are 7`1 , 7`1 , 7`2 , and 7' 2 , 
and are defined by 

~r in = 2 ~ S ( X ,  y )  sin y ( 2 5 )  
x = l  y = l  

7`~os= Z ~ S(x, y) cos y (26) 
x ~ l  y = l  

~[_l~n = 2 2 S(x, y) sin x ( 2 7 )  
x ~ l  y = l  

7`~os= 2 ~ S(x, y)cos x (28) 
x ~ l  y = l  

where the x axis corresponds to the 1-axis, the y axis corresponds to the 
2-axis, and S(x, y) is the density~zlensity correlation function in the 
stationary state. For periodic boundary conditions the interfaces can 
occur anywhere, and so the individual order parameters are realization- 
dependent. We eliminate this dependence by forming a "mean-square" 
order parameter out of the individual order parameters, 

~ 2  ( ~ i n ) 2  q_ (I//cos'~2 sin 2 cos 2 
= ~ 1  ! "q- ( ~ l r / 2 )  q- ( ~ 2 )  (29) 

Expecting that this order parameter follows the same scaling behavior as in 
Eq. (18) (for method II), we determine its values for large N and plot 7` 
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raised to the various powers corresponding to mean-field and two-dimen- 
sional Ising model exponents. We find (Fig. 8) that the exponent which 
describes these data over the range 2.0~< T~<3.05 is fl~0.22. This is 
consistent with the previous result obtained from Method II. 

4.4. Shor t -Range  Order Parameter  

Recently, Marro et al. have analyzed the critical properties of a num- 
ber of lattice models by using a short-range order parameter. (18) The utility 
of this method is that it can give a qualitative indication of the universality 
class of a phase transition almost by visual inspection. These order 
parameters exhibit different qualitative features for different types of critical 
behavior. The order parameter ~ is defined by 

cr=-(l--e)  -2 [-1(1 +e )2 - - m  2] (30) 

where e is a nearest neighbor "energy" 

1 1 
e -  - I F ~  <~>__: ~ [ ~ / ( x ) - Z ] [ r / ( y ) - 2 ]  (31) 

with summation over nearest neighbor pairs, and m is a long-range order 
parameter such as the ones we have calculated previously. Near the critical 
point (T;-), a is expected to have the form 

= ~c + al e~-~ - a2 e2/~ (32) 

and e = 1 -  T/Tc and the coefficients are nonsingular. For e = 0 and fl = �89 
there is no singularity at To, and a decreases monotonically as a function 
of T. For nonclassical behavior (/3 # �89 a develops a maximum at To. 
Application of the method to our case, using the magnetization given by 
Method II, indicates that the behavior probably does not correspond to 
the mean field value/~ = �89 

5. F IELD-DRIVEN M O D E L  

In addition to phase segregation and critical behavior in "equilibrium" 
systems, there is also a great deal of interest in these topics as they pertain 
to strongly nonequilibrium systems. Here we present of the features of a 
driven version of the model outlined above. 

We modify the dynamics given by Eqs. (3)-(5) by including a field F 
which induces a particle current parallel to F: 

1 
P(q'  l tl ) = x~r  Z (x ;  ~l, q') exp[flu(x; ~/')- f(x; t/) 

+ u(x; q ') .  F ]  6 ( t f ( x )  - t t (x))  (33) 
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Fig. 9. Typical configurations for IF[ - 4  and (left to right) T= 1.2, 1.5, and 1.6. 

where now 

Z(x;  tl, t / ' )=  ~ exp[//u(x; r/ ' ) .f(x; r/) + u(x; ~/ ')-F] ~ ( t / ' ( x ) -  r/(x)) (34) 
~'(x) 

Our analysis consists of simulations for different temperatures on a 
128 x 128 lattice and IF t = 4. Without attempting a precise characterization 
of the critical phenomena, we do observe a number of interesting proper- 
ties. First, the transition to a striped phase in Fig. 9 (the traditional 
ferromagnetic DDS transition) occurs (for these particular parameters) at 
a temperature below Tc(F = 0). This contrasts with the results for the two- 
dimensional KLS model, where T c ( F # O ) ~ I . 3 T c ( F = O  ). There also 
appears to be a second transition at a lower temperature to a phase with 
structures resembling those found for F = 0 (Fig. 9). 

By using a morphological order parameter similar to the one described 
above, we find that the critical temperature To(IF] = 4 ) ~  1.65. The best 
fit of this order parameter to various powers m 1/~ occurs for / ~ 0 . 5 .  
This result is, however, only preliminary. Further analysis needs to be 
performed. 

6. D I S C U S S I O N  

We have presented a new stochastic cellular automaton in order to 
simulate phase segregation in binary mixtures. A temperature-like 
parameter gives us control on the depth of the quench and thus the degree 
of segregation. 

We note that one of the complaints registered against Kawasaki 
exchange dynamics in Ising simulations is that the motion is too restric- 
tive. (5) There is no easy exchange of particles and holes at low tem- 
peratures, and this leads to an apparent reduced growth exponent and has 
hampered the analysis of late-stage domain growth. In the past, analyses of 
such behavior in Ising models have relied on extrapolation schemes (13) or 
concluded that the growth exponent is less than �89 The freedom of move- 
ment in the propagation step may be helpful in overcoming such problems, 
and with relative ease of computation we recover the predicted long-time 
growth behavior. In the same way, we seem to be bothered less by 
metastability effects than in standard Kawasaki dynamics. 



514 Alexander et  al.  

It is interesting to note that our critical exponent fl is in close agree- 
ment with fl measured in two-dimensional simulations of a randomly 
driven diffusive system. (25) These models essentially involve an infinite tem- 
perature exchange along one the lattice axes and a finite temperature 
exchange along the other. It would be interesting to understand if and how 
these models are related. 
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