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Summary. In this paper, the uncoupled version of Aifantis bilinear stress-assisted theory of diffusion through 
a linear elastic solid is considered. In analogy to thermoelasticity the basic equations and certain special 
representations of the general problem are presented. The general three-dimensional problem is reduced to 
a problem of body and surface forces and the reciprocal diffuso-elastic theorem is established. Analytical 
solutions of particular diffusion problems are derived and a complex formulation of the two-dimensional 
elastodiffusion problem is given. A crack elastodiffnsion problem is considered as an application of the 
complex representation. 

1 Introduction 

Theoretical and experimental studies on the diffusion problem in solids have shown the 
significant effect of the stress state of bodies on the diffusion process [1]-  [10]. The proposed 

theories are based on the extension and/or the modification of the first Fick law for pure 

diffusion. In these theories, the effect of the stress field is introduced by considering that the mass 
flux of the diffusing substance is a linear function of the trace gradient of the stress tensor, exactly 

as occurs with the gradient of concentration. The additional assumption of the linear dependence 

of the coefficient of concentration gradient from the trace of stress tensor from the concentration 
leads to a generalized consideration of the problem. Such a consideration is proposed by Aifantis' 

theory [6] - [9], which is based on the principle of rational mechanics and generalizes and unifies 

all previous theories. 
According to previous theories, the mathematical model of an elastodiffusion theory is 

represented by the equation of diffusive flux, the equation of conservation of mass and the 

equations of the stress and strain states of the body. A general form of diffusion equations is given 

by [9] 

J = (D + N a )  grad p - (L + M p )  grad cr (1.1.1) 

t) + div J = 0 (1.1.2) 

where Jis the diffusive flux vector, a is the trace of the stress tensor aij due to mechanical loading 
and diffusion, p is the concentration of the substance, D, N, L and M are scalar constants and 

grad, div are the gradient and divergence operators. 
In the framework of linear elasticity of an isotropic and homogeneous medium an alternative 

process will be adopted for the derivation of equations of previous theories related to the strain 

and stress state of the body. We consider a that the strains eij due to diffusion are introduced into 

the body as initial strains and we assume that they have the form 

e~j = )~dD~ij (1.2) 
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where yd is the coefficient of linear diffusion expansion and 6~j is the Kronecker delta (6~j = 1 

when i = j and 6~j = 0 when i =# j). The introduction of the initial strain e~j into the body produces 

an elastic strain state e}j and a stress state a~j. Thus, the elastodiffusion problem has now been 
reduced to a distortion problem of elasticity whose basic equations are [12] 

a~j = 2ea~j + 2#eij - "/pg~z~ (1.3.1) 

1 
e i j =  ~ (uio + uj,i) (1.3.2) 

ari d = 0 (1.3.3) 

where u~ represent the displacement components, e is the volume strain (e = ekk), 2 and # are the 

Lain6 constants and 7 = (32 + 2#)7e. Equation (1.3.1) expresses the stress-strain relations, 
Eq. (1.3.2) the usual relations of strains and displacements and Eq. (1.3.3) the equations of 
internal equilibrium. In this work, all the tensor quantities are related to a system of rectangular 

axes xl and depend on the vector position x and the time t. The Latin indices will take the values 1, 

2 or 3, the indices after the comma will denote differentiation with respect to the corresponding 
coordinates and the dot differentiation with respect to time t. The usual summation convention is 

used (ekk = ell  + e22 + e33). 

The unknown quantities aij, el j, u~ and p are determined by solving the system of Eqs. (1.1) and 
(1.3) using the appropriate boundary and initial conditions. It is obvious that Eqs. (1.1) and (1.3) 

are coupled and that the coupling of concentration and stresses is due to the last term of the right 
side of (1.1.1). As a first approximation we will subsequently consider the uncoupled problem, in 

which we assume that the concentration field is only affected by the stresses of mechanical 

loading. 
The failure analysis of a body immersed in a corrosive or hydrogen environment taking into 

account the mechanical stress-assisted diffusion theory constitutes an important  research locus 
with a great practical interest. The foundation of a failure criterion according to the modern 

considerations of fracture mechanics requests extensive theoretical and experimental studies on 
the suitable mechanical crack models. Such a criterion based on the maximum concentration of 

the corrosive species in the vicinity of the crack tips has been proposed by Aifantis [16]. 

Concentration solutions of specific crack problems under steady state conditions have been 
presented in [16] and [18]. 

In this work the uncoupled problem of diffusion through an isotropic, homogeneous and 
linear elastic matrix is theoretically studied. In Section 2 the uncoupled problem is described and 
its basic equations are presented. The elasto-diffusion problem is reduced to a problem of body 

and surface forces and the reciprocal diffusoelastic theorem is established. In Section 3, the 

concentration field is derived for particular boundary value problems using Aifantis' equations. 
In Section 4, the two-dimensional problem is formulated in terms of two holomorphic complex 

functions and an application to a crack problem is given. 

2 Basic equations of the uncoupled problem 

Following Aifantis [9], we consider an isotropic, homogeneous and linear elastic body, whose 
elastic state due to a mechanical loading is described by the strains e ~ and stresses cr ~ The 

+ and strains e~, presence of a diffusion process in the solid induces an extra state of stresses crij 
which are not negligible with respect to the initial elastic strains e~ ~ In the uncoupled problem we 
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assume that the extra state is effected only by the initial elastic state depending on 
the mechanical loading of the body. The superscripts (0) and ( + )  will denote quantities 
characterized by the mechanical state and the extra state due to diffusion, respectively. 
Thus, from Eqs. (1.1) it follows that 

Y = - ( D  + N~; ~ grad p + (L + M p )  grad rr ~ (2.1.1) 

D = (D + N a  ~ 172p _ ( M  - -  N )  grad p grad cr ~ (2.1.2) 

where 172 is the Laplace operator. The concentration field is completely determined by (2.1.2), 
when appropriate  initial and boundary  conditions are given. Of course, the initial elastic state of 
the body e ~ cr ~ has previously been obtained by solving the relative mechanical problem. The 
boundary  condition of the form 

Op 0a ~ 
J"  n = - ( D  + Ncr~ ~nn + (L + M p )  ~ n  = s(x' t)' x ~ A ,  t > O (2.2) 

represents the normal  diffusive flux on the surface A of the body V, where n is the outward unit 
normal  to surface A of the body and S(x,  t) is a given function. When the body is insulated on A, 
then S(x,  t) = 0. If the concentration is given on A, the boundary  condition is expressed by the 
formula 

p = h(x, t), x ~ A, t > 0 (2.3) 

where h(x, t) is a given function. The initial condition determines the concentration field at t = 0 
and has the form 

p = g(x), x E V, t = 0 (2.4) 

where g(x) is a given function. 

When the concentration field is determined by the solution of the relative boundary  value 
problem, the secondary state expressed by cr~, e + and ui § is obained by solving the following 
differential system [17]: 

ai + = 2e + fiii + 21~ei + - 7pfii~ 

1 bl + Ig + 
e,~ : ~ ( i,j + j,~) 

(2.5.1) 

(2.5.2) 

~+,j = 0. (2.5.3) 

The system of Eqs. (2.5) should be completed by the boundary  conditions. Thus, if surface 
A consists of two parts As and Ad, the boundary  conditions are 

~i+nj = O, X E As (2.6.1) 

ui + = Ui(x, t), x ~ Aa, t > 0 (2.6.2) 

where n / shows  the direction cosines of n. The system (2.5) can be reduced in terms of the 
displacements in the form 

(2 + #) Uk+,ki + I~V2ui + = 7P,~ (2.7) 
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or, in terms of the stresses in the form of the Beltrami-Michell equations 

% / 

where 

(2.8) 

32 + 2# 2 
E - -  - - 7  V - -  - -  

2 + ~ 2(2 + #) 

It is assumed that the diffusion-induced state of strain is "coherent" and that the derived strains 
+ should satisfy the compatibility conditions e l i  

ei+.kt + ek+l,ij efl,ik + + = e i k , j  I . (2.9) 

2.1 The ordinary problem 

The uncoupled problem can be reduced to an equivalent problem of body and surface forces 
(ordinary problem)  which are specified in terms of the concentration p of the original problem. 
Writing Eq. (2.5.1) in the form 

a~j = 2e + ~ii + 2#ei+j (2.10) 

where 

a}j = ~i+i + YP~ij (2.11) 

and considering that the stress and strain state of the ordinary problem is expressed by a~2 and e~-, 
respectively, we are seeking body forces X~ and surface forces )~i which satisfy the equations 

a~3,i + X j  = O, x ~ V (2.12.1) 

~7'ijn i = . f . j ,  X C A .  (2.12.2) 

These equations express the equilibrium and boundary condition of the body for the ordinary 
state. Introducing Eq. (2.11) into (2.12) we obtain 

Xi = -TPi,  x c V (2.13.1) 

Xi  = "?pni, x ~ A .  (2.13.2) 

Therefore, the theorems and the methods which have been established for the ordinary problems, 
can be used directly for the diffuso-elastic problems. Thus, a direct result is the uniqueness of the 
solution of the diffuso-elastic problem. Using the fact of existing solutions for the ordinary 
problems as well as the diffuso-elastic reciprocal theorem which will be established below, 
immediate solutions for the diffuso-elastic problem can be obtained. 

2.2 The reciprocal theorem 

The reciprocal theorem of classical elasticity will now apply [11]. As the first state of the theorem 
is taken to be the previous ordinary problem, the second state is a set of surface and body forces 
X/ '  and X/' ,  respectively, which produce elastic strains e}}, stresses or}) and displacements u~". 
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From the application of the theorem we obtain 

X i  ui dA + X i  ul pa" d V  (2.14) 

A V V 

where a" is the trace of the stress tensor of the second state and K is the bulk modulus 

We will now consider an interesting application of the preceding theorem. Let the second 

state be that which is induced by a uniform normal (tensile) loading p" over the whole surface of 
the body. Then, at any point in the body, we have 

0"11 . . . . . .  = ( 7 2 2  = ( 7 3 3  = p", (7" = 3p" (2.15) 

and the theorem yields 

A V + = K T A m  + (2.16) 

where Am + and A Iv + are the changes of mass and volume of the body due to diffusion. Thus, the 

coefficient of linear expansion 7 can be calculated from (2.16), when changes Am + and A V + are 
measured experimentally. 

3 Concentration distributions 

In this Section particular cases of the diffusion problems are studied and analytical solutions of 

these problem for various initial and boundary condition are presented. Specifically, the 

one-dimensional diffusion in a sheet plane, the diffusion in a cylinder and the diffusion in an 
infinite plate are examined. 

3.1 The one dimensional problem 

Consider the case of diffusion through a plane sheet of thickness l, whose surfaces Xl = 0 and 
xl = I are maintained at constant concentrations Pl and P2, respectively. The initial concentra- 

tion is taken to be g(xl)  = 0, while the initial stress state is given by means of the trace of the stress 

tensor (7o(Xl). Since the trace of the stress tensor in the linear elasticity with zero body forces is 
a harmonic function, it follows that 

~ro(Xl) = p l x l  + Po (3.1) 

where Pl and Po are given real constants. In the one-dimensional case the diffusion equation 
(2.1.2) can be written 

(xl + e) ~2p _ (c~- 1) 0p _ ~2p (3.2) 
gx l Ox l gr 2 

with 

D Po M 
= - - + - - ,  z = N p l t ,  ~ = - -  

N p l  Pl N 
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when pl is a non-zero constant. In the steady state (@/Sz = 0) from (3.2) it is easy to deduce that 
the solution p~ is given by 

p~s(x~) - p~ ~ - ( x l  + ~)~ 
- ( 3 . 3 )  

P2 -- Px e c~ -- (1 + e) ~ 

By using the method of separation of variables the derived solution of (3.2) has the form 

p(X1, T) = Pss(XJ.) -]- (X 1 ~- ~)a/2 ~ exp (--~mZT) AmC~(2,,ro, 2mr) (3.4) 
m=l 

with 

rl l/ rl 
A,,, = f rf(r) C~(2,,ro, ).~r) dr/ I r[C~(2mro, )~mr)] 2 dr 

ro ! ~o 

ro=2 , 
where the function C,~(~c~, ~b) is defined by 

C,~(~c~, ~b) = J~(~c 0 Y~(~b) - J~(~b) Y~(~c~) (3.5) 

and 2~ is a positive root of 

C,~(2~,ro, 2mr) = 0. (3.6) 

In (3.5) J,(dc~) and Y~(~b) are Bessel functions of the first and second kind of order # and v, 
respectively. When the initial concentration is a non-zero function g(x ~), then the functionf(r) has 

the form 

(2). 
f (r)  = [g(r) -- p~(r)]. (3.7) 

3.2 Diffusion in a cylinder 

We consider a circular cylinder with inner and outer radii a and b, respectively, which is subjected 
to hydrostatic pressure P1 on the internal and P2 on the external surface. We suppose that the 

initial concentration is g(r) (a < r < b) and the internal and external surfaces are kept at the 
constant concentration p~ and P2, respectively. In this case the trace of initial stress tensor [11] is 

p l a  2 - P2b 2 
a ~ = 2 b2 _ aa (3.8) 

The solution of Eq. (2.1) in cylindrical polar coordinates r, 0 (xl -- r cos 0 and x2 = r sin 0) is 
different from that of Carslaw and Jaeger [14] only in the diffusion coefficient D, which is 

substituted by 

D* = D + 2 N  Pla2 -- P2b2 
b2 _ a~ (3.9) 
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3.3 Diffusion in an infinite and a semi-infinite plate 

From the theory of two-dimensional elasticity it is known that the trace of the stress tensor can be 

expressed in the form [14] 

~r ~ = a~ + a~ = Wo(z) + 17Vo(~) (3.10) 

where Wo(z) is a holomorphic function defined in the region of the z-plane (z = xl + ix2) 
corresponding to material. 

Setting 

1 
W(z) = ~ + flWo(z), (3.11) 

Eq. (2.1.1) in terms of variables z and ~ in steady state is written 

2[W(z) + ITV(~)] 02p (~3p dITV @ ~ + ~ ~_z ~ + ( 1 - c  0 = 0 .  (3.12) 

The holomorphic function W(z) can be used to map conformally the region of the z-plane 
corresponding to material onto a region of the W-plane. Thus, in the W-plane, Eq. (3.12) is 

written 

2(W+ 17() ~?2p ( @ @ )  O W ~  + ( l - a )  ~ + ~  = 0  (3.13) 

whose one obvious solution is 

p ( W ,  ~V) = C l ( W  Ji - ~V) a -]- C 2 (3.14) 

where C~, C2 are constant coefficients. The previous complex formulation will now be used to 
determine the concentration field in two interesting problems of mechanics. 

Infinite plate with crack. Consider an infinite plate on z-plane containing a rectilinear crack of 
length 21. The crack is symmetrically located on the x~-axis and its edges are maintaining at 
a constant concentration Po. When the plate is subjected to infinity with stresses cr~, a~2 the 
function Wo(z) has the form 

_ a T 2 z  1 

W0(z) 1 / ~  ~ 12 + g (a11 - ~2~). (3.15) 

(3.14) whose unknown coefficients are calculated The concentration is determined from Eq. 
from the boundary condition of the concentration on the crack edges and from the reasonable 
assumption that the diffusive flux must be bounded along the crack boundary including the end 
points. The derived solution is 

p(z, Z) = po(1 + AX(z, z-)) ~ 

where 

X ( z ,  e) - 

A = 

(3.16) 

z z 
+ (3.17.1) 

/7cr~2 . (3.17.2) 
1 + P ( ~ I  - 0%) 



44 M.A. Kattis 

Considering the asymptotic behaviour of (3.16) in the neighbourhood of the crack tip we obtain 
the solution of Unger and Aifantis [16]. In the case where the crack opened by uniform internal 

pressure p the solution is given by (3.16) with 

A - (3.18) 
1 - /~p  

Half-plane wi~h concentrated force. When the elastic material occupies the half-plane x2 > 0 of 

z-plane and a tensile concentrated force P is applied along x2-axis at the origin of the axis, then 
the complex potential has the form [14] 

iP 
Wo(z) = - - .  (3.19) 

g Z  

If the boundary x2 = 0 is kept at a constant concentration Po and there is no initial 
concentration then in the same manner as previously, we find 

p(z, Z) = Po 1 + - -  (3.20) 
z \ z  f f / j  

or, in polar coordinates r, 0 (z = t" exp (iO)) 

p(r, 0) = Po 1 + sin 0 (3.21) 
7"CY 

4 Complex representation of the two-dimensional problem 

By using the ordinary problem of Section 3 and according to Muskhelishvili [15] the 

two-dimensional problem uncouples in terms of two holomorphic functions W + (z) and w + (z) as 

well as of the concentration p(z, i). The components of stresses and displacements in terms of 
these functions are given by 

~ 1  -~- Gf2 = W+(Z) ~- [ T v + ( s  - nyp(z, ~) (4.1.1) 

~-~ - ~ + 2 i~2  = ~W+"(z)  + w +'(z) -- n~ ~ dz (4.1.2) 

4#(u + + iv +) = x ~ W+(z) dz -el7V+(s - ~  ~ +(~)de + n7 ~ p dz (4.1.3) 

where n = 2(x - 1)/(1 + z), z = 3 - 4v for plane strain and z = (3 - v)/(1 + v) for generalized 

plane stress, v is Poisson's ratio. Thus, the problem has been reduced to a well known expression 

and for its solution the equally well known methods of complex elasticity can be used. In the 
following the previous formulation will be applied to a crack problem. 

4.1 Infinite plate with straight collinear cracks 

Consider an elastic plate, which occupies the z-plane and has a finite number of straight cracks 

Sm along the xl-axis with end points a,,, b,, (m = 1, 2 . . . . .  n). We will now introduce a new function 
f2(z) instead of W(z) defined by 

Q+(z) = -- 17V+(z) - zlTV+'(z) - ~ +(z). (4.2) 
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F r o m  Eqs. (4.1) and  (4.2) we ob ta in  

2(a~2 - i a h )  = W+(z) - f2+(i) + (z - ~) W+'(~) - n7 Uz dz (4.3.1) 

4/~(u + + iv +) = x ~ W+(z) dz + ~ f2+(i) d i  - (z - ~) 17V+(i) + n7 S p(z, i) dz. (4.3.2) 

The  fo l lowing b o u n d a r y  cond i t ion  mus t  ho ld  on the edges of the crack:  

( 0 " ~ 2  - -  iG+2) L = ( 0 " 2 2  - -  i(7+2) R = 0 ,  O- on S (4.4) 

where  S is the un ion  of S,, and  L,  R denote  the b o u n d a r y  values of the funct ion for y -* + 0, 

y - - * - 0 ,  respectively.  Us ing  the re la t ionsh ips  (4.3.1) and  (4.4), we arr ive at  the fol lowing 

b o u n d a r y  value p r o b l e m s  to de te rmine  the u n k n o w n  sect ional ly  h o l o m o r p h i c  funct ions:  

[W+(x)] L -[ f2+(x)]  L = n?RL(x, x) (4.5.1) 

[ W + (x)] L - [f2+(x)] R = n?RR(x, x) (4.5.2) 

where 

R(z, s = p(z, ~) + ~ dz. (4.6) 

A d d i n g  and  subs t rac t ing  Eqs. (4.5) we have 

[W+(x)  - f2+(x)] L + [W+(x)  - ~2+(x)] R = 2nTq~(x ) (4.7.1) 

[W+(x)  + f2+(x)] R - [W+(x)  + g2+(x)] n = 2n7q2(x) (4.7.2) 

where  

q,(x) = RL(x, x) + RR(x, x) (4.8.1) 

qz(X) = RL(x, X) -- RR(x, X). (4.8.2) 

If  the funct ions  ql(x), q2(x) satisfy the H61der cond i t ion  [151 on S and  are b o u n d e d  at  infinity, then  

the genera l  so lu t ion  of the b o u n d a r y  p rob l ems  is given by  Muskhel i shv i l i  [15]: 

W+(z ) +  ~2+(z)=2n7 ~ q2(t) dt + R~  
~zi J ( t  - z) 

S 

2nTx(z) ql(t) 
w +  - - ~; J xL(t) (t -- 2) + 2P,(z) x(z) 

S 

where  

x(z) = {(z -- a l ) ( z  -- az).- .(z -- a , ) ( z  -- b l ) ( z  - b2)-..(z - b,,)} -1/2 

P(z) = c~ o + ~lz + " "  + ~,z". 

(4.9.1) 

(4.9.2) 

x(z) is the Plemel i  funct ion def ined on S and  tha t  b r anch  for which l im z"x(z) = 1 is considered.  
z ~ o o  

The cons tan t  Roo and  the p o l y n o m i a l  coefficients C~o, cq, ..., c~, are ca lcu la ted  by  using the 
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one-va lued  cond i t ion  of displacements  and  the behav iour  of complex potent ia l  at infinity. The 

behav iour  of W+(z), f2+(z) at infinity can be de te rmined  from Eqs. (4.1.1), (4.3.1) t ak ing  into 

account  the behav iour  of concen t ra t ion  p at infinity. 
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