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The fluctuation problem in electromagnetic cascades is examined in the light of the 
new approach to cascade theory and it is shown that the method originally proposed 
by JANossY is best suited to deal with it. A method of obtaining explicit expressions 
for the second moment of the distribution is given and the differential equations 
obtained by this method turn out to be simpler and amenable to numerical compu- 
tation. 

1. Introduct ion 

The f luc tua t ion  p rob lem of e l e c t r o n - - p h o t o n  cascades  has  been s tu-  
d ied  ex t ens ive ly  in the  p a s t  few years .  Methods  of s tochas t ic  t h e o r y  
have  been app l i ed  in var ious  ramif ica t ions  to  ob ta in  the  m o m e n t s  of 
the  n u m b e r  d i s t r i bu t ion  a t  a n y  pa r t i cu l a r  th ickness  1. Recen t ly  i t  has  
been found 2' 3 t h a t  i t  is more  convenien t  to dea l  wi th  the  d i s t r ibu t ion  
of the  n u m b e r  of pa r t i c les  p roduced  be tween  0 and  t wi th  reference to  
the  energy  at  the  po in t  of p roduc t ion  (herein af te r  referred to as p r imi t ive  
energy).  Thus  i t  is possible  to  define 7ri(nl, ha, E,  E0; t) as the  p rob -  
ab i l i t y  ~1 electrons and  n,  pho tons  are p roduced  be tween  0 and  t in 
a shower  exc i t ed  b y  a p r i m a r y  of i - th  t y p e  of energy  E 0 (i = t , 2  refer  
r e spec t ive ly  to  an e lec t ron and  a photon) ,  the  p r imi t ive  energy  of each 
of the  e lect rons  and  pho tons  be ing  above  E.  In  an ear l ier  con t r ibu t ion  a 
RAMAI~RISHNr and  the  au tho r  have  discussed the  m e t h o d  of ob ta in ing  
express ions  for the  m o m e n t s  of zr i us ing p roduc t  de ns i t y  techniques .  
The mean  number s  for large and  smal l  th icknesses  have  been ob t a ined  
on the  bas is  of these  solut ions ~-6. I t  was observed  in reference 5 t h a t  
the  theore t i ca l  mean  number s  are less t h a n  those  ca lcu la ted  on the  bas is  
of recent  expe r imen t a l  d a t a  on high energy cascades  and  as a p laus ib le  

1 For a comprehensive review on the subject see ~RAMAKRISHNAN, A., and P.M. 
IV~ATHEWS: Progr. Theor. Phys. 11, 95 (1954). 

2 FAY, H. : Private communication. 
a RAMAKRISHNAN, A., and S.K. SRINIVASAN: Proc. Ind. Acad. Sci. A 44, 263 

(t956). 
4 SRINIVASAN, S.K., and N.R. RANGANATHAN: Proc, Ind. Acad. Sci. A 45, 69, 

268 (t957). 
5 SRINIVASAN, S. ~ . j  J .C.  BUTCHER, B .A.  CHARTRES and H. 1ViESSEL: 1NUOVO 

Cim. 9, 77 (1958). 
SRI~IVASAI% S. K. : Unpublished. 
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argument it was pointed out that  at such high energies 7 tridents may 
play a role. However the fluctuations about the mean must also be 
studied before we could draw any inference regarding the role of tri- 
dents. In this paper we shall discuss a convenient method of calculation 
of fluctuations 

In reference 3, it was shown that  the mean square number of elec- 
trons produced between 0 and t can be expressed as a double Mellin 
integral where the integrand contMns terms involving Melling trans- 
forms of the product density of degree two of photons and a mixed 
second order product density of electrons and photons at t. NIellin 
transform solution of these product densities have been explicitly ob- 
tained by BHABHA and RAMAKRISHNAN 8. However the number of terms 
occuring in these expressions is enormously large and the numerical 
evaluation of the Mellin integral is quite a difficult task. In fact the mean 
square number of electrons and photons based on the results of reference 8 
have been calculated only for fairly large thicknesses L 9 where a number 
of terms which differ by  an order magnitude can be neglected so that 
evaluation for small thicknesses is still a problem in spite of fast modern 
computing devices. We wish to show in this paper that the difficulty 
could be overcome by  dealing with ~r i directly rather than connect its 
moments with the so called density functions of different orders. 

2. Differential equation for ~i 
Let ai (~, E, Eo; t) be the probability that  ~ electrons are produced 

between 0 and t by  a primary of energy E 0. .ks usual, we shall assume 
that the probability per unit thickness of matter that (i) an electron of 
energy E radiates a quantum and drops to an energy between E' and 
E'+ dE' is R I (E'IE) dE' and (ii) a photon of energy E annihilates into 
an electron positron pair one of which has an energy between E' and 
E'+dE' is R~(~ ' IE  ) dE'. 

When screening is complete, R1 and R 2 are given by 10 

(a) 

R~(E' I E) = t - -  + c~ E E2 ]j E (2) 

We shall take only these two processes into account and neglect collision 
loss. In view of the homogeneous nature of the cross sections (1) and (2), 

7 See for example FAY, H.: 2~uovo Cim. 5, 293 (1957). 
8 ~BHABttA, H.  J. ,  and A. I~AMAKRISHNAN: Proc. Ind. Acad. Sei. A 32, 141 (1950). 

RAMAKRIS~NAN, A., and S.K. SRINtVASAN: Progr. Theor. Phys. 13, 95 (1955). 
lo BETSE, H.A., and W. HEITLER: Proc. Roy. Soc. Lond. A 146, 83 (t934). 
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zr i (~, E, Eo; t) is a funct ion only of E/E o and denot ing it b y  ~i (3, e; l) 
(e =E]Eo) we obta in  (see for example ,  reference 11) 

1 

a~(~,~;t)0t - ~l(n,e;t) f R~(e')de' + 
0 

1 (3) ~o 

+ X  R~(e')~(~,-~;t /~.( . -~,~.~ de', 
s ] \ t - - s '  

1 

ao*~ (n, e, t) f at -= - -  :~(n,  e, t) Rl(e'  ) de'  + 

0 

+ 

0 1--s (4) 

Oo f t 8 8 t + v :  + 
1 

§ 

with the  initial  conditions 

=1(-, e,o) =~.(~,  e,o) = ~ .  (~) 

(4) 
equat ion * 

0 1--e 
1--e 

+ f R , ( ~ ' / . l ( ~  t, ~ .  ,,Ide' + l - - e  ] 
o 

1 

+ f R,(e').l ( . -  t, ~. ,,) de'. 
8 

We observe t h a t  (3) holds good for the  entire range 0 ~  e--<t, while 
is val id only for the  range 0--<e--<�89 For  e > � 8 9  ~2 satisfies the 

(4') 

Comparing equat ions (3) and (4) wi th  the corresponding ones in 
reference 11, we find (3) is identical  with the equat ion of JMvossY. The 
difference is b rought  out b y  (4) where linear t e rms  are in tegra ted  over  

* This has been observed by Professor G. MOLII~RE ill a private communication 
and the author is grateful to him for supplying the correct equation for the special 
case e -->_ �89 

11 JANOSSY, L . :  P r o c .  P h y s .  Soc.  L o n d .  A 63, 241 (1950). 
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part ial  ranges. This is due to the si tuation tha t  at the regeneration point  
one or two electrons with energy above e are produced. If  e '=E' /E o 
falls in the interval (e, t - -e)  then both  the electrons produced have 
an energy above e and the second term on the right and side of (4) 
corresponds to this situation. If  however  e' falls outside the interval  
(e, I - -e) ,  only one of the electrons have an energy above e and this is 
taken care of by  the last two terms in (4). 

Defining Gi(u, e, t) as 

3. Moments of ~, 

oo  

c;~ (~, ~, t) = y ,  ~" ~(., ~, t) (6) 

we obtain 
1 

a G, (~., ' ') - < (u. e, ,) f R, (< d e' + 
0 

8 

, f ( ~ - , ) . , ( r / . r +  U i - 1  Ga i u ,  I e" ' 

0 
1--e 

+ u  2i-2 G 1 u, d ' t  Ga_ i u, e 

+u'-~ f G,(u,@,t) R,(g)dg. 

, t) �9 R~ (g) d e' + 

(7) 

(7) is again valid for the entire range of e only for i = t. When i = 2, 
(7) covers only the region 0 < e <= �89 For  e > �89 G 2 (u, e, t) satisfies the 
equation 

1 

~G.(~,~,,)~, - G.(u,e,~) f R.(g)dg + 
0 

e l - -e  

f f ( e t) d e ' +  (7') + R2(e ' )de '+u R2(e')G1 u, t - e  ~ '  
l--s 0 

1 

+. f ..(.')G.(., :.,,)a.'. 

The m-th moment  of the number  of electrons produced between 0 and t 
is given by  

E {En,/(~, ~)] rga} = (q~ @U) r G, (q//~, ~, t)IU=I . (~) 
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Diffe ren t ia t ing  bo th  sides of (6) wi th  respect  to u a t  u = 1, we obta in  
1 

~ n i ( e , t )  __ n i ( g , l  ) f Ri(e')de'-/ 
a t  .~ 

o 
J_-~: 

0 " 
I 

+ f R,(='/,~1 (=4,,) u~' + 
8 

+ f R,(<"=-, ( ~ _-57,') d~'- 
Wri t ing  0 

o~ G~,,~(~,, =, t) ,,= 1 = Ni (e, t) (t 0) 

we ob ta in  b y  double  d i f ferent ia t ion  of (6) a t  u = 1 
1 1 

~N~(e,t) Nl(e,t ) R~(d) d d +  fR l (d )  Nt(-~, t  ' 
a t  , 

o = ( t l )  1--E 

+ f RI(< N=(, 2, ,,)u~'+ L,(~,,), 
0 

1 1 

o * ( t 2 )  1--e 

0 

where L[(e, t) and  L~(e, t) are given b y  
1 

5~(=,~) = 2.f  . , (~  ,t)=,(737,,t)R~(g)e=', (,3) 
0 

1 

0 
1 

e e R 
+ 2  f [,,~ (7 '  *) + ~'* (w='~' ")1 = (*') '~*' + 

8 ~_= (t4) 
+ 2 f [ ~ ( ~ , t ) + . ~ ( ~  _ - ~ , t ) ]  R~ (~') d,' + 

0 
1 - g  

# 

�9 F o r  c o n v e n i e n c e  of n o t a t i o n  w e  sha l l  d r o p  t h e  e x p e c f a t i o n  s y m b o l  E. 

(9) * 
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where H(Z) is the Heaviside unit function. (9) can be easily solved by 
Mellin transform technique. Defining 

1 

&(s, t) = f s~-lni(e, t) de 
0 we obtain 

(t6) 

(t7) 

A (s) h (s, t) + c (s) t)2 (s, t) . at 

ap2(s,t ) _ D p 2 ( s , t )  + B ( s ) p l ( s , t )  + B(s) 
at s 

where A, B, C, D are given by (see for example reference 11) 
1 1 

A(s)----fRl(6)(t--~')a~, B(s) = 2fR~(~) e~d~ / 
0 ~ (18) 1 1 

C(s) = f R x ( e ) ( t  --e)'d6, D =fR2(e) de. ] 
0 0 

A, B, C, D have been explicitly obtained by t3I-IABHA and CItAKRABART112 
and tabulated numerically by JANOSSY and MESSEL 13. 

(t6) and (17) can be solved by the use of matrix calculus (see for 
example LEFCHETZ14). The explicit solution is given by 

B(s) C(s) [.1--e -z(s)t 1--e -l~(s)t ] (19) 
pl (s , t ) -  s{~(~-z(s)} L~(s) #(~) 

where 2 (s) and # (s) are eigen values of the matrix 

B (s) 

The mean number of electrons produced between 0 and t is given by 
a + i o o  

(6, t) 2 ~  d S ~ ( s )  --,~(s)] t ,~(s) ~(s) ) d s .  (21) 
r -- ~oo 

a + i e o  

2~i S[~(s)- ~(s)] X 
, , -~o~ (22) 

D--Z(s) (t - -e  -~u)t} ds  x lf"(~)~(~)-D (I e-'~('l~) + ,.(4 

in agreement with tile results obtained earlier by the author using 
product density techniques. The numerical evaluation of n 1 (6, t) for small 
values of t has been discussed in reference 5. 

12 BI~ABHA, H .  J . ,  a n d  S. I f .  CHAKRAI3ARTI: P r o c .  R o y .  Soc.  181, 267 (1942).  
la J A N o s s Y  LI~ONIE, a n d  H.  2r : P r o c .  R o y .  I r i s h  A c a d .  Sci .  54 A, 217 (1951).  
11 LEFCHETZ S., L e c t u r e s  on  D i f f e r e n t i a l  E q u a t i o n s  : P r i n c e t o n  U n i v e r s i t y  P r e s s  

(1947). 
Z. Physik. Bd. 16t 23b  
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where M and A are 

A(s, t) 

Final ly  the  mean  
can be expressed as 

4. Evaluation of mean square 
To obta in  the mean  square number  we mus t  deal wi th  (1t) and (12). 

Defining P, (s, t) as the Mellin t rans form ofN~ (e, t) with respect  to e we have  

~P,(s,t) _ A(S) Pl(S,t ) +C(s)  P2(s,t) +Ll (S , t )  ' (23) at 
a P~ (~, t) 

--  D P2 (s, t) + B (s) P1 (s, t) + L 2 (s, t). (24)* at 

We observe tha t  (23) and  (24) are similar to (16) and (d 7), the difference 
being only in the inhomogeneous terms.  The complete  solution for P1 
and  P2 can be wri t ten  in the ma t r ix  nota t ion  as 

' {P1 (s, t) = M(s)A(s,  t) f A -1 (s, t') M -1 (s) \L2 (s, t')] (25) 
(s, t) 0 

defined b y  

--A(,) (26) 

(27) 

square number  of electrons wi th  energy above e 

a + i ~  

f P,(s,t)sds. (28) 
a - - i o o  

As has been pointed out in section I, the first term offers no difficulty 
in numerical computation and it has been evaluated for small and fairly 
large thicknesses. To evaluate the second term, we can adopt the follow- 
ing procedure. First a table of mean numbers for various e and t can 
be formed. This can be done even with the help of desk machines. Once 
we are in possession of these tables L I (s, t) and L2 (s, I) can be tabulated. 
Using these it is not very difficult to tabulate the right hand side of (25) 
against s and t. The contour integral on the right hand side of (28) can 
be calculated either directly Esee for example reference (4) or by the 
method of steepest descents. For fairly small thickness it is also woth- 
while dealing with equations (11) and (12) directly especially when one 
has access to a digital computer. We propose to evaluate the Mellin 
integral oecuring in equation (28) and the numerical mean square num- 
bers for various values of e and t will be presented in a subsequent con- 
tribution wherein the contributions from multiple processes like tridents 
and double brelnmstrahlung will also be estimated. 

* W e  h a v e  used  the  s ame  s y m b o l  L i(s ,  t) for t he  Mellin T r a n s f o r m  of L i(~, t). 


