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The fluctuation problem in electromagnetic cascades is examined in the light of the
new approach to cascade theory and it is shown that the method originally proposed
by JaNossY is best suited to deal with it. A method of obtaining explicit expressions
for the second moment of the distribution is given and the differential equations
obtained by this method turn out to be simpler and amenable to numerical compu-
tation.

1. Introduction

The fluctuation problem of electron—photon cascades has been stu-
died extensively in the past few years. Methods of stochastic theory
have been applied in various ramifications to obtain the moments of
the number distribution at any particular thickness®. Recently it has
been found? 2 that it is more convenient to deal with the distribution
of the number of particles produced between 0 and ¢ with reference to
the energy at the point of production (herein after referred to as primitive
energy). Thus it is possible to define m,(m,, uy, E, Ey; £) as the prob-
ability s, electrons and #, photons are produced between 0 and ¢ in
a shower excited by a primary of 7-th type of energy E,(: =1,2 refer
respectively to an electron and a photon), the primitive energy of each
of the electrons and photons being above E. In an earlier contribution?,
RaMAKRISHNAN and the author have discussed the method of obtaining
expressions for the moments of 7; using product density techniques.
The mean numbers for large and small thicknesses have been obtained
on the basis of these solutions? 8. It was observed in reference 5 that
the theoretical mean numbers are less than those calculated on the basis
of recent experimental data on high energy cascades and as a plausible

1 For a comprehensive review on the subject see RAMAKRISHNAN, A., and P. M.
Maruews: Progr. Theor. Phys. 11, 95 (1954).

2 Fav, H.: Private communication.

3 RAMAKRISHNAN, A., and S.K. SriNivasan: Proc. Ind. Acad. Sci. A 44, 263
(1956).

4 SriNtvasaN, S. K., and N.R. RanganaTHAN: Proc. Ind. Acad. Sci. A 45, 69,
268 (1957).

5 SrINIVASAN, S.K., J.C. BUTCHER, B.A. CaarTrRES and H. MEsseL: Nuovo
Cim. 9, 77 (1958).

8 SriNivasaN, S.K.: Unpublished.
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argument it was pointed out that at such high energies? tridents may
play a role. However the fluctuations about the mean must also be
studied before we could draw any inference regarding the role of tri-
dents. In this paper we shall discuss a convenient method of calculation
of fluctuations

In reference 3, it was shown that the mean square number of elec-
trons produced between 0 and ¢ can be expressed as a double Mellin
integral where the integrand contains terms involving Melling trans-
forms of the product density of degree two of photons and a mixed
second order product density of electrons and photons at £ Mellin
transform solution of these product densities have been explicitly ob-
tained by BHABHA and RAMAKRISENANS. However the number of terms
occuring in these expressions is enormously large and the numerical
evaluation of the Mellin integral is quite a difficult task. In fact the mean
square number of electrons and photons based on the results of reference 8
have been calculated only for fairly large thicknesses®® where a number
of terms which differ by an order magnitude can be neglected so that
evaluation for small thicknesses is still a problem in spite of fast modern
computing devices. We wish to show in this paper that the difficulty
could be overcome by dealing with #; directly rather than connect its
moments with the so called density functions of different orders.

2. Differential equation for =;

Let m;(n, E, Ey; {) be the probability that » electrons are produced
between 0 and ¢ by a primary of energy E,. As usual, we shall assume
that the probability per unit thickness of matter that (i) an electron of
energy E radiates a quantum and drops to an energy between E’ and
E'+dE’ is R (E’|E) dE’ and (ii) a photon of energy E annjhilates into
an electron positron pair one of which has an energy between E’ and
E'4-dE’"is Ry(E'|E) dE'.

When screening is complete, Ry and R, are given by 0

R(ENE) ={FF — [t e[ 25 )5, W
Ry(E'|B) = {1 — (4o (2 — E0) £ 2)

We shall take only these two processes into account and neglect collision
loss. In view of the homogeneous nature of the cross sections (1) and (2),

7 See for example Fav, H.: Nuovo Cim. 5, 293 (1957).

8 BuaBua, H. J., and A. RAMAKRISHNAN: Proc. Ind. Acad. Sci. A 32, 141 (1950).
9 RAMAKRISHNAN, A,, and S.K. SriNtvasan: Progr. Theor. Phys. 13, 95 (1955).
10 BernE, H.A., and W. HerrLEr: Proc. Roy. Soc. Lond. A 146, 83 (1934).
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m;(n, E, E,; 1) is a function only of E/E, and denoting it by m;(n, ¢; ¢)
(e =E/[E,) we obtain (see for example, reference 1%

O 2i) n,e;1) flRl de' +
L 5)
N
8“2(gt8t) = netfR &yde +

—}—fRz(e’)nz( , 1j£,,t>d5'+
[

1—¢ (4)
+ R ot — tde +
mzosf 2 (&) 3'51<m )n2<% ) &
1
+ | Ry(e'Yn . tlde
Rt
with the initial conditions
7y (n, &,0) = 7, (n, &, 0) = d7. (5)

We observe that {3) holds good for the entire range 0= e< 1, while
(4) is valid only for the range 0<e< 1. For e¢>3, 7, satisfies the
equation*

6n2(;¢tet) —nznetfR Nde —{—6"[R ede +
+fRz(e')ﬂ1<n~1,~——1jE,,t)de'-{— )
0

1
+ [Rofe) m(n—1,2,1)de.

Comparing equations (3) and (4) with the corresponding ones in
reference !, we find (3) is identical with the equation of Janossy. The
difference is brought out by (4) where linear terms are integrated over

* This has been observed by Professor G. MOLIERE in a private communication
and the author is grateful to him for supplying the correct equation for the special
case & = 3.

11 Jawossy, L.: Proc. Phys. Soc. Lond. A 63, 241 (1950).
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partial ranges. This is due to the situation that at the regeneration point
one or two electrons with energy above ¢ are produced. If ¢'=E'[E,
falls in the interval (g, 1—e¢) then both the electrons produced have
an energy above ¢ and the second term on the right and side of (4)
corresponds to this situation. If however ¢’ falls outside the interval
(e, 1 —¢), only one of the electrons have an energy above ¢ and this is
taken care of by the last two terms in (4).

3. Moments of =;
Defining G;(u, ¢, t) as

Gi(u, &, t) = Z uw” m;(n, €, F) (6)
n=0
we obtain
1
GGl Giu e [ Ri(e) de' +

(7) is again valid for the entire range of ¢ only for ¢ =1. When (=2,
(7) covers only the region 0<<e =<%. For ¢ > 3, G,(#, ¢, f) satisfies the
equation

Gy e t)
S = MatfR yde +

+fR da+ufR ( )dg+ (7

The m-th moment of the number of electrons produced between 0 and ¢
is given by

E{lm(e.0)]") = (u " Gilwet) ., - (8)
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Differentiating both sides of (6) with respect to # at » =1, we obtain

a%g(;’—tL =— n; (e, /}R- (¢yde +
¢—1UR de—}—/R l+
' (9)*
—|—fR ( da -+
—|—fR ) 45 _ 1 ,t)de’.
Writing PG 6(:::,_» 1u=1 — Ni(e,8 (10)
we obtain by double differentiation of (6) at w =1
ANl — (e [R Vde +fR ,t)de’+
(11)
+le(g') N, 1_88,,t)dg’+L1(e,t),
aNz(et = — Ny( 8tfR Yde +fR (;,«,t)de—!—
(12)
+fR2 7\7( )ds+L( )
where L, (¢, ) and L o (&, #) are given by
: 1
Li(e,1) ZZ./%I (%,t)%2<1—_€7,t)R1(8,)d8’, {13)
0
Ly(e, 1) zzfnl(j,t)%1(1j6,,t)R2(s’)de'+
o ,
+2f1[%1(88, ,t) +n1(T_‘fT,,t)]R2 (&) de -
) (14)

+2lf_fnl(§,t) +%1(1_68, ,t)]Rg (¢ de' -+
+2}_;2(8')d8' . [1 »-H(e —%)}

~ * For convenience of notation we shall drop the expectation symbol E.
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where H(A) is the Heaviside unit function. (9) can be easily solved by
Mellin transform technique. Defining

Pi(s, 8) :flgs_l’ﬂi(& f)de (15)

we obtain 0
apg:, D= A(s) py(s, 8) -+ C(s) pols, 1) (10)
9250 Dy (s t) + B s 8) + 2 7)

where A4, B, C, D are given by (see for example reference %)

A(s):flRl(a) (1 — &) de, B(s)zzfle(e) gde
°s ? (18)
C(s) = [Ry(e) (1 —e)°de, D = [Ry(e)de.

A, B, C, D have been explicitly obtained by BHaBHA and CHAKRABARTII2
and tabulated numerically by Janossy and MEsseL!3,

(16) and (17) can be solved by the use of matrix calculus (see for
example LEFCHETZY). The explicit solution is given by

B(s) C(s) 1 — R 1— )

1) = — 1
P =iy | iw ol 19)
_ B(s) pE) =D g, sy D—AS) gy —uls)e
bals )= gy | (e )+ (e ) 20)

where A(s) and u({s) are eigen values of the matrix
—A(s)  C(s)
B(s) —D)
The mean number of electrons produced between 0 and { is given by
1 U+ims—3B(s)C(s) 1—e My e
mie )= 5a | STuls) 4] { AGs) u(s)”} ds. @
o+ico B
1 e78 B (s
(o) = o f STl — At 22)
fpls)—D (  —as)e D—2s) (o _ ,—uls)t
X Mg (e 0 ¢ Bl (1 e }ds

in agreement with the results obtained earlier by the author using
product density techniques. The numerical evaluation of #, (¢, #) for small
values of ¢ has been discussed in referenceb,
12 BuaBna, H. J., and S. K. CHARRABARTI: Proc. Roy. Soc. 181, 267 (1942).
13 Janossy LeoniE, and H. MesseL: Proc. Roy. Irish Acad. Sci. 54 A, 217 (1951).
1 LercHETZ S., Lectures on Differential Equations: Princeton University Press
(1047).
Z. Physik, Bd. 161 23b
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4. Evaluation of mean square

To obtain the mean square number we must deal with (11) and (12).
Defining F, (s, ¢) as the Mellin transform of N (g, ) with respect to £ we have

PRI — 4GB +CO) Bt FLifs. ) (23)
SR6D DR+ BOBR6D+ Lol (24)*

We observe that (23) and (24) are similar to (16) and (17), the difference
being only in the inhomogeneous terms. The complete solution for B
and P, can be written in the matrix notation as

B (s, f e e (S PN L,
(Pzg g) — M(s) A(s, 1) OfA s, #') ML (s) (Zii ’;;) i (23)
where M and A are defined by
G —cw —c@
M) (~A@r+us i) o) 0

6~A(s)t 0
/l(s, t) :( 0 e—u(s)t>'

Finally the mean square number of electrons with energy above ¢
can be expressed as

(27)

G+ioo
E{Dn(e 01 =Efm(e )} + o [ Bldeds. (@)

As has been pointed out in section 1, the first term offers no difficulty
in numerical computation and it has been evaluated for small and fairly
large thicknesses. To evaluate the second term, we can adopt the follow-
ing procedure. First a table of mean numbers for various ¢ and ¢ can
be formed. This can be done even with the help of desk machines. Once
we are in possession of these tables L, (s, £) and L, (s, ¢) can be tabulated.
Using these it is not very difficult to tabulate the right hand side of (25)
against s and . The contour integral on the right hand side of (28) can
be calculated either directly [see for example reference (4) or by the
method of steepest descents. For fairly small thickness it is also woth-
while dealing with equations (11) and (12) directly especially when one
has access to a digital computer. We propose to evaluate the Mellin
integral occuring in equation (28) and the numerical mean square num-
bers for various values of ¢ and ¢ will be presented in a subsequent con-
tribution wherein the contributions from multiple processes like tridents
and double bremmstrahlung will also be estimated.

* We have used the same symbol L;(s, #) for the Mellin Transform of L, (e, £).



