Mh. Math. 111, 137-145 (1991)

Monatshefte für Mathematik 9 by Springer-Verlag 1991 Printed in Austria

On the Hahn--Banach Extension Property in Hardy and Mixed Norm Spaces on the Unit Ball

By

Miroljub Jevtić and Miroslav Pavlović, Beograd

(Received 12 March 1990; in revised form 12 November 1990)

Abstract. For a nonempty set E of nonnegative integers let $H_E^{p,q,q}$ and H_E^p be the closed linear span of

$$
\{z_1^{a_1}z_2^{a_2}\ldots z_n^{a_n}\colon (a_1, a_2, \ldots, a_n)\in (Z_+)^n, a_1+a_2+\ldots+a_n\in E\}
$$

in the mixed norm space $H^{p, q, q}(B_n)$ and in the Hardy space $H^p(B_n)$, respectively. In this note we prove that the Hahn-Banach Extension Property (HBEP) of $H_{E}^{p,q, \alpha}$ is independent of q. As an application, we show that if $0 < p < 1$ and $H_F^{p,q,q}$ or H_F^p has HBEP then E must be thick in the sense that if $E = \{m_n : n = 1, 2, ...\}$, where $m_1 < m_2 < ...$ then $m_n \leq c n$ for some constant c. This result is an extension over those obtained in [2] and [4].

1. Introduction

Let B_n denote the unit ball in C^n , $n \ge 1$, S_n its boundary, σ_n the positive rotation invariant measure on S_n , with $\sigma_n(S_n) = 1$. By $H(B_n)$ we denote the class of all functions holomorphic in B_{n} .

The Hardy space H^p , $0 < p < \infty$, is defined on B_n by

$$
H^p = H^p(B_n) = \{ f \in H(B_n) : ||f||_p < \infty \},
$$

where

$$
||f||_p = \sup_{0 \le r \le 1} M_p(r, f), \quad M_p(r, f) = \left\{ \int_{S_n} |f(r \, \eta)|^p \, d\sigma_n(\eta) \right\}^{1/p}.
$$

If $0 < p$, q , $\alpha < \infty$, define

$$
H^{p, q, a} = H^{p, q, a}(B_n) = \{ f \in H(B_n): ||f||_{p, q, a} < \infty \}
$$

where

$$
||f||_{p, q, a} = \left(\int_0^1 (1-r)^{q a-1} M_p(r, f)^q dr\right)^{1/q}.
$$

For a nonempty set E of nonnegative integers we let

$$
H_E = H_E(B_n) = \{ f \in H(B_n) : f_k \equiv 0, \ k \notin E \},
$$

where $f_k(z)$ is the homogeneous polynomial of degree k in the Taylor expansion $f(z) = \sum_{k=0}^{\infty} f_k(z)$.

In this paper we consider the Hahn-Banach Extension Property (HBEP) of the closed subspaces $H_E^{p,q,q} = H^{p,q,q} \cap H_E(B_n)$ and $H_E^p =$ $= H^p \cap H_E(B_n)$ of the spaces $H^{p, q, a}$ and H^p , respectively. We recall that $H_F^{p,q,\bar{q}}$ (resp. H_F^p) has HBEP if every continuous linear functional on $H_{\kappa}^{p,q,q}$ (resp. H_{κ}^{p}) can be extended to a continuous linear functional on $H^{p, q, \alpha}$ (resp. H^p).

Our main result is the following theorem which shows that HBEP of $H_F^{p, q, \alpha}$ is independent of q.

Theorem 1. Let p, q, s, a be positive real numbers. Then $H_E^{p, q, \alpha}$ has HBEP if and only if $H_{K}^{p,s,a}$ has HBEP.

If $1 \leq p, q < \infty$, $H^{p, q, a}$ is a Banach space. Therefore, the following result is an immediate consequence of Theorem 1 and the Hahn-Banach theorem.

Corollary. *If* $1 \leq p < \infty$, $0 < q < 1$, *then* $H_F^{p,q,a}$ *has* HBEP *for any subset E of nonnegative integers.*

As a further application of Theorem 1 we prove

Theorem 2. *Let* $0 < p < 1$ *and* $E = \{m_k : k = 1, 2, ...\}$, *where* $m_1 <$ $\langle m_1 \rangle$ $\langle m_2 \rangle$ $\langle m_3 \rangle$ *H_E*, *q*, *a* has HBEP, *or* ii) *H_E* has HBEP, *then there is a constant* $C > 0$ *such that* $m_k \leq Ck$, $k = 1, 2, ...$

The one variable case $0 < q < p < 1$ of Theorem 2 (i) follows from the case $0 < p \leq q < \infty$, that was proved in [2], and from Theorem 1. For the special case $n = 1$ Theorem 2 (ii) is due to N. KALTON and D. TRAUTMAN [4]. The rest of Theorem 2 (a several variables version) will be proved in Section 4.

To show that $H^p(B_n)$, $0 < p < 1$, and $H^{q, q, n/p - (n/q)}(B_n)$, $0 < p <$ $q < 1$, are not locally convex, SHI JI-HUAI [9] constructed closed subspaces of $H^p(B_n)$ and $H^{q, q, n/p - (n/q)}(B_n)$ that fail HBEP. It follows from Theorem 2 that H_E^p and $H_E^{p,q,q}$ fail HBEP if, for example, $E =$ $=\{n^2: n = 1, 2, ...\}$, for any $0 < p < 1, 0 < q < \infty$, $0 < \alpha < \infty$.

Throughout this paper we will use the convention of denoting by C

any positive constant which is independent of the relevant parameters in the expression in which it occurs. The value of C may change from one occurrence to the next.

We will use the notation $A \cong B$ to mean $C^{-1}A \le B \le CA$.

2. Preliminaries

Let $g(z) = \sum \hat{g}(k)z^k$ be holomorphic in the unit disc B_1 and $k=0$ $f(z) = \sum f_k(z)$ holomorphic in the unit ball B_n . We define $k=0$

$$
(g \times f)(z) = \sum_{k=0}^{\infty} \hat{g}(k) f_k(z), \quad z \in B_n.
$$

If $f \in H(B_1)$ we write $g * f$ instead of $g \times f$.

In [3] we have proved that if w_n , $n = 0, 1, 2, \dots$, are polynomials defined by $w_0(z) = 1 + z$, $w_n(z) = \sum_{k=2^{n-1}}^{\infty} \varphi\left(\frac{k}{2^{n-1}}\right) z^k$, $z \in B_1$, $n = 1, 2, ...,$ where $\varphi(t) = \omega(t/2) - \omega(t)$, and $\omega: R \to R$ is any infinitely differentiable function satisfying

> $0 \leq \omega(t) \leq 1$ and $\omega(t) = \langle$ $\begin{cases} 0, & t \geq 2 \end{cases}$

then

$$
f=\sum_{n=0}^{\infty}w_n*f, \text{ for all } f\in H(B_1),
$$

and

$$
||w_n * f||_p \leq C ||f||_p, \quad f \in H^p(B_1), \quad 0 < p \leq 1.
$$

It follows immediately from the representation

$$
(w_n * f)(z) = \frac{1}{2\pi} \int_0^{2\pi} w_n(e^{it}) f(ze^{-it}) dt, \quad f \in H(B_1),
$$

that if $1 \leq p < \infty$, then $||w_n * f||_p \leq ||w_n||_1 ||f||_p$, $f \in H^p(B_1)$. In [3] we also proved that $||w_n||_1 \leq C$, $n = 0, 1, 2, ...$, where C is a constant independent of *n*. Thus, if $1 \leq p < \infty$, then $||w_n * f||_p \leq C ||f||_p$ for $f \in H^p(B_1)$. Now it follows by a slice integration that

$$
\|w_n \times f\|_p \leq C \|f\|_p, \quad f \in H^p(B_n), \quad 0 < p < \infty. \tag{2.1}
$$

 $\sum \hat{w}_n(k)=1, k=0, 1, 2, ...,$ we have $f=\sum w_n \times f$ for any $n=0$ Since n=0 polynomial f. From this it follows easily that

$$
f(z) = \sum_{n=0}^{\infty} (w_n \times f)(z), \ z \in B_n, \quad \text{for all} \quad f \in H(B_n). \tag{2.2}
$$

If
$$
f(z) = \sum_{k=n}^{m} \hat{f}(k) z^k
$$
, $z \in B_1$, $0 \le n \le m$, then

$$
r^m ||f||_p \le M_p(r, f) \le r^n ||f||_p \quad \text{(see [5]).}
$$

From this it follows by slice integration that if $g(z) = \sum g_k(z), 0 \leq$ *k=n* $\leq n \leq m$, where g_k are homogeneous polynomials of degree k, then

$$
r^{m} \|g\|_{p} \leq M_{p}(r, g) \leq r^{n} \|g\|_{p}, \quad 0 < p < \infty. \tag{2.3}
$$

Lemma 2.1. ([5], [6]). *A measurable function* $F: (0, 1) \rightarrow (0, \infty)$ *satisfying*

$$
\sup_{n\geq 0} |b_n| r^{2^n} \leq (1-r)^{(1/q)-\alpha} F(r) \leq \sum_{n=0}^{\infty} |b_n| r^{2^n}, \quad \alpha > 0,
$$

belongs to $L^q(0, 1)$ *,* $0 < q \leq \infty$, *if and only if* $\{2^{-n}a b_n\}$ *belongs to the sequence space* l^q *.*

Lemma 2.2. *Let* $0 < p$, q , $\alpha < \infty$. *A function* $f \in H(B_n)$ *belongs to* $H^{p, q, \alpha}(B_n)$ if and only if the sequence ${2^{-n\alpha}\|\mathbf{w}_n \times f\|_p}$ belongs to l^q .

Proof. Without loss of generality we may suppose $f(0) = 0$. Since

$$
\sup_{n\geq 0} \|w_n \times f\|_p r^{2^{n+1}} \leq C M_p(r, f), \text{ by (2.1) and (2.3)},
$$

we have $\{2^{-n\alpha} \, \| \, w_n \times f \|_p\} \in l^q$, by Lemma 2.1.

Conversely, if $0 < p \le 1$, then using (2.2), (2.3) and Lemma 2.1 we find that

$$
||f||_{p, q, \alpha}^{q} \leq C \int_{0}^{1} \left(\sum_{n=1}^{\infty} ||w_{n} \times f||_{p}^{p} r^{2^{n-1}} \right)^{q/p} (1-r)^{q \alpha - 1} dr \leq C ||\{2^{-n\alpha} ||w_{n} \times f||_{p}\}||_{l^{q}}.
$$

If $1 \leq p < \infty$, then using (2.2), Minkowski's inequality and (2.3) we obtain

On the Hahn--Banach Extension Property 141

$$
||f||_{p, q, a}^{q} \leq C \int_{0}^{1} (1-r)^{q} \frac{\left(\sum_{n=1}^{\infty} ||w_{n} \times f||_{p} r^{2^{n-1}}\right)^{q} dr \leq C ||\left(2^{-n\alpha} ||w_{n} \times f||_{p}\right)||_{l^{q}}, \text{ by Lemma 2.1.}
$$

Let $f(z) =$ define $\sum_{\alpha=0}^{\infty} f_a z^{\alpha}$ and $g(z) = \sum_{\alpha=0}^{\infty} g_a z^{\alpha}$ be holomorphic in B_n . We $|a| = 0$ $|a| = 0$

$$
(f\circ g)(z)=\sum_{k=0}^{\infty}\left(\sum_{|\alpha|=k}f_{\alpha}g_{\alpha}\right)z^k,\quad z\in B_1.
$$

Let $H^{\infty} = H^{\infty}(B_1)$ be the space of holomorphic bounded functions in B_1 with the sup-norm. A function $g \in H(B_n)$ is said to be a multiplier from $H^{p, q, a}(B_n)$ to H^{∞} if the map $f \rightarrow f \circ g$ acts as a bounded linear operator from $H^{p, q, a}(B_n)$ to H^{∞} . The set of all such multipliers will be denoted by $(H^{p, q, \alpha})^*$. Analogously, we define $(H^{p, q, \alpha})^*$.

It is easily seen that $(H^{p, q, \alpha})^*$ is a quasi-normed space with the quasi-norm

$$
\|g\|_{(H^{p,\,q,\,\alpha})^*}=\|g\|_{p,\,q,\,\alpha;\,\infty}=\sup\{\|f\circ g\|_{\infty}:f\in H^{p,\,q,\,\alpha},\,\|f\|_{p,\,q,\,\alpha}\leqslant 1\}.
$$

The next lemma shows that the dual of $H^{p,q,q}$ (denoted by $(H^{p,q,q})'$) may be identified with the space $(H^{p, q, q})^*$.

Lemma 2.3. If $g \in (H^{p,q,q})^*$ and if we define $\lambda_g(f) = \lim_{r \to 1} (f \circ g)(r)$, $f \in H^{p, q, a},$ then $\lambda_g \in (H^{p, q, a})'$ and $\|\lambda_g\| = \|g\|_{p, q, a; \infty}$.

Conversely, given $\lambda \in (H^{p,q,q})'$, then there is a unique $g \in (H^{p,q,q})^*$ *such that* $\lambda_{\epsilon} = \lambda$. *Also,* $||g||_{p,q,\alpha;\infty} \leq C ||\lambda||$.

Proof. Define λ_z , $z \in B_1$, by $\lambda_z(f) = (f \circ g)(z)$, $f \in H^{p, q, \alpha}$. Then $\{\lambda_z: z \in B_i\}$ is a bounded subset of $(H^{p,q,q})'$. On the other hand if f is a holomorphic polynomial in *n*-variables and $a \in S_1$ then the limit of $\lambda_z(f)$, as $z \to a$, exists. From this we conclude that the above limit exists for all $f \in H^{p, q, \alpha}$. Thus, λ_{g} is well defined. It is easily seen that $\lambda_g \in (H^{p, q, \alpha})'$ and $\|\lambda_g\| = \|g\|_{p, q, \alpha; \infty}$.

Conversely, define $g_a = \lambda (z^a)$, $\alpha \in (Z_+)^n$. Since $(f \circ g)(z) =$ $= \lambda(f_z)$, $z \in B_1$, for all $f \in H^{p,q,q}$, where $f_z(w) = f(z w)$, $w \in B_n$, and $\lim_{\lambda \to 0} \lambda(f) = \lambda(f)$, we have $\lambda_{g} = \lambda$. The function $g \in (H^{p,q,q})^*$ because $r \rightarrow 1$ $||(f \circ g)(z)|| = |\lambda(f_z)| \le ||\lambda|| ||f||_{p,q,\alpha}$, for $z \in B_1$. The uniqueness of g is obvious.

10 Monatshefte filr Mathematik, Bd. 11 I/2

As a consequence of (2.3) we have $||w_n \times f||_{p,q,q} \cong 2^{-n\alpha} ||w_n \times f||_p$, $f \in H(B_n)$. Using this and Lemma 2.2 we find that

$$
||f||_{p, s, a} \cong ||\{||w_n \times f||_{p, q, a}\}||_{l^s}.
$$
 (2.4)

Lemma 2.4. *Let* $g \in H(B_n)$ *. Then*

$$
\|g\|_{p,\,s,\,a;\,\infty}\cong\|\{\|w_n\times g\|_{p,\,q,\,a;\,\infty}\}\|_{l^{s'}},
$$

where $s^{-1} + (s')^{-1} = 1$, *if* $1 < s < \infty$, *and* $s' = \infty$, *if* $0 < s \le 1$.

Proof. Define $P_n = w_{n-1} + w_n + w_{n+1}$, $n \ge 0$ ($w_{-1} = 0$). Since

$$
w_n * w_k = 0, \text{ for } |n - k| \ge 2,
$$
 (2.5)

we have

$$
P_n * w_n = w_n, \quad n \ge 0,
$$
\n^(2.6)

and

$$
w_n * P_k = 0, \text{ if } |k - n| \ge 3. \tag{2.7}
$$

Let $||f||_{p,s, a} < \infty$ and $||\{||w_n \times g||_{p,q, a;\infty}\}\|_{l^{s'}} < \infty$. If $z \in B_1$, then using (2.2) and (2.6) we get

$$
|(f \circ g)(z)| = \left| \sum_{n=0}^{\infty} (w_n * (f \circ g))(z) \right| =
$$

\n
$$
= \left| \sum_{n=0}^{\infty} ((P_n * w_n) * (f \circ g))(z) \right| =
$$

\n
$$
= \left| \sum_{n=0}^{\infty} ((P_n \times f) \circ (w_n \times g))(z) \right| \le
$$

\n
$$
\leq \sum_{n=0}^{\infty} ||P_n \times f||_{p, q, a} ||w_n \times g||_{p, q, a; \infty} \le
$$

\n
$$
\leq ||\{||P_n \times f||_{p, q, a}\}||_1 \cdot ||\{||w_n \times g||_{p, q, a; \infty}\}||_1 \cdot
$$

by Hölder's inequality. It is easily seen that $\|\{\|P_n \times f\|_{p,q}$ $\}\|_{l^s} \cong$ $\leq ||f||_{p,s,a}$, by (2.4). Thus, we have proved that $||g||_{p,s,a;\infty} \leq$ $\leq C \left\| \{\|w_n \times g\|_{p, q, \alpha; \infty}\}\right\|_{l^{s'}}$.

Conversely, let $||g||_{p,s,\alpha;\infty} < \infty$. Fix $0 < \varepsilon < 1$. Since $||w_n \times g||_{p,q,\alpha;\infty} <$ $< \infty$, $n = 0, 1, 2, \ldots$, for each *n* there exists f_n , $||f_n||_{p,q,q} = 1$, so that

$$
((w_n \times g) \circ f_n)(1) = \|(w_n \times g) \circ f_n\|_{\infty} \ge \varepsilon \|w_n \times g\|_{p, q, \alpha; \infty}.
$$
 (2.8)

If ${b_k} \in l^s, b_k \ge 0$, using (2.4), (2.5) and (2.1) we conclude

$$
\left\|\sum_{k=0}^{\infty}w_k\times b_kf_k\right\|_{p,\,s,\,a}\cong \left\|\left\{\left\|w_n\times\sum_{k=0}^{\infty}w_k\times b_kf_k\right\|_{p,\,q,\,a}\right\}\right\|_{l^s}\leqslant C\,\|\{b_k\}\|_{l^s},
$$

since $||f_n||_{p, q, a} = 1$, for all $n \ge 0$.

By hypotheses $||g||_{p,s,a; \infty} < \infty$. Therefore

$$
\left\|\sum_{n=0}^{\infty}w_n\times b_nf_n\circ g\right\|_{\infty}\leqslant C\left\|g\right\|_{p,\,s,\,\alpha;\,\infty}\|\{b_n\}\|_{l^s}.\tag{2.9}
$$

On the other hand, $w_n \times b_n f_n \circ g = b_n (w_n \times g) \circ f_n$, and by (2.8)

$$
\left\| \sum_{n=0}^{\infty} (w_n \times b_n f_n) \circ g \right\|_{\infty} = \sum_{n=0}^{\infty} b_n \left\| (w_n \times g) \circ f_n \right\|_{\infty} \ge \geq \varepsilon \sum_{n=0}^{\infty} b_n \left\| w_n \times g \right\|_{p, q, \alpha; \infty}.
$$
\n(2.10)

Combining (2.9) and (2.10) we obtain

 $\|\{\|w_n \times g\|_{p,q,\alpha; \omega}\}\|_{l^s} \leq C \|g\|_{p,s,\alpha; \omega}.$

In the same way we prove that if $g \in H_F(B_n)$ then

$$
\|g\|_{(H_E^{p,\,s,\,a})^*} \cong \|\{\|w_n \times g\|_{(H_E^{p,\,q,\,a})^*}\}\|_{l^{s'}}.
$$
\n(2.11)

3. Proof of Theorem 1

Set $X = H^{p, s, a}$, $Y = H^{p, s, a}_E$, $A = H^{p, q, a}$, $B = H^{p, q, a}_E$. Suppose now that B (as a subspace of A) has HBEP. Let $g \in Y^*$. By Lemma 2.3 it is sufficient to prove that there exists a $G \in X^*$ such that $G \circ f = g \circ f$, for all $f \in Y$.

Since $w_n \times g \in B^*$, $n \ge 0$, and B has HBEP, there are functions $g_n \in H(B_n)$ so that

$$
g_n \circ f = w_n \times g \circ f, \quad f \in B \tag{3.1}
$$

and

$$
\|g_n\|_{p,\,q,\,\alpha;\,\infty}\leqslant C\,\|w_n\times g\|_{p,\,q,\,\alpha;\,\infty},\tag{3.2}
$$

where C is a positive constant independent of n (a consequence of the open mapping theorem).

Define the function G by $G(z) = \sum_{n=0}^{\infty} (P_n \times g_n)(z)$, $z \in B_n$. One can easily show that $G \in H(B_n)$. We claim that G satisfies the conditions cited above.

Using Lemma 2.4 and equations (2.7) , (2.1) , (3.2) and (2.11) we obtain

$$
||G||_{p, s, a; \infty} \cong ||\{||w_n \times G||_{p, q, a; \infty}\}\|_{l^{s'}} =
$$

\n
$$
= \left\|\left\{\left||w_n \times \sum_{k=0}^{\infty} P_k \times g_k\right||_{p, q, a; \infty}\right\}\right\|_{l^{s'}} \le
$$

\n
$$
\leq C \|\{\|w_n \times g_n\|_{p, q, a; \infty}\}\|_{l^{s'}} \leq C \|\{\|g_k\|_{p, q, a; \infty}\}\|_{l^{s'}} \leq
$$

\n
$$
\leq C \|\{\|w_n \times g\|_{p, q, a; \infty}\}\|_{l^{s'}} \cong C \|\{g\|_{\gamma} < \infty.
$$

It follows that $G \in X^*$.

From (3.1), (2.6) and (2.1) it follows that if $f \in Y$, then

$$
G \circ f = \sum_{n=0}^{\infty} (P_n \times g_n) \circ f = \sum_{n=0}^{\infty} P_n * (g_n \circ f) =
$$

=
$$
\sum_{n=0}^{\infty} P_n * ((w_n \times g) \circ f) = \sum_{n=0}^{\infty} w_n * (g \circ f) = g \circ f.
$$

This completes the proof of Theorem 1.

4. Proof of Theorem 2

i) Note that we proved the case $n = 1$ in the Introduction. Thus, to finish the proof of Theorem 2 (i), by Theorem 1, it is sufficient to show that if $H_E^{p, p, \alpha}(B_n)$, $n > 1$, has HBEP than $H_E^{p, p, \alpha + (n-1)/p}(B_1)$ has HBEP.

Let $\psi \in (H^{p, p, \alpha + (n-1)/p}_{F}(B_1))'$. Define $\varphi(g) = \psi(gg), \ g \in H^{p, p, \alpha}_{F}(B_n)$, where ρ is a restriction operator defined by $\rho g(z) = g(z, 0, ..., 0)$, $z \in B_1$, $g \in H(B_n)$. The proof of Lemma 2.2 ([1]) shows that ϱ is a bounded transformation from $H_F^{p, p, \alpha}(B_n)$ into $H_F^{p, p, \alpha+(n-1)/p}(B_1)$. Hence, $\varphi \in (H_F^{p,p,q}(B_n))'$. Since $H_F^{p,p,q}(B_n)$ has HBEP, there exists $\Phi \in (H^{p, p, \alpha}(B_n))'$ such that $\Phi(g) = \varphi(g)$, for all $g \in H_E^{p, p, \alpha}(B_n)$.

Now define $\Psi(f) = \Phi(\tau f)$, $f \in H^{p, p, a + (n-1)/p}(B_1)$, where τ is an extension operator defined by $\tau f(z_1, ..., z_n) = f(z_1), (z_1, ..., z_n) \in B_n$, $f \in H(B_1)$.

It follows from Fubini's theorem that $|| \tau f ||_{p, p, \alpha} = || f ||_{p, p, \alpha + (n-1)/p}$ (see [8], pp. 127–128). Thus, the extension τ is a linear isometry of $H^{p, p, \alpha + (n-1)/p}(B_1)$ into $H^{p, p, \alpha}(B_n)$. Hence, $\Psi \in (H^{p, p, \alpha + (n-1)/p}(B_1))'$. If $f \in H_F^{p, p, \alpha + (n-1)/p}(B_1)$, then $\Psi(f) = \Phi(\tau f) = \varphi(\tau f) = \psi(\varrho \tau f) = \psi(f)$, since $\tau f \in H_F^{p,p,q}(B_n)$ and Φ is an extension of φ from $H_E^{p,p,q}(B_n)$ to $H^{p, p, a}(B_n)$.

ii) The proof is the same as in i), since ρ is a bounded transformation from $H_F^p(B_n)$ into $H_F^{p,p,(n-1)/p}(B_1)$ and τ is a linear isometry of $H^{p, p, (n-1)/p}(B_1)$ into $H^p(B_n)$.

References

[1] AHERN, P., BRUNA, J.: On holomorphic functions in the ball with absolutely continuous boundary values. Duke Math. J. 56, 129--142 (1988).

[2] JEVTIĆ, M.: Sous-espaces $H_F^{p,q,a}$ des espaces $H^{p,q,a}$ de fonctions holomorphes. C. R. Acad. Sci. Paris 300, serie I, 221-224 (1985).

[3] JEVTIĆ, M., PAVLOVIĆ, M.: On the multipliers from H^p to I^q , $0 < q < p < 1$. Archiv Math. (to appear).

[4] KALTON, N., TRAUTMAN, D.: Remarks on subspaces of H^p when $0 < p < 1$. Michigan Math. J. 29, 163-170 (1982).

[5] MATELJEVIĆ, M., PAVLOVIĆ, M.: L^p -behaviour of the integral means of analytic functions. Studia Math. 77, 219-237 (1984).

[6] MATELJEVIĆ, M., PAVLOVIĆ, M.: Duality and multipliers in Lipschitz spaces. Proc. Internat. Conf. Complex Analysis, Varna. 1983. pp. 153-161.

 $[7]$ PAVLOVIĆ, M.: An inequality for the integral means of a Hadamard product. Proc. Amer. Math. Soc. 103, 404 406 (1988).

[8] RUDIN, W.: Function Theory in the Unit Ball of $Cⁿ$. Berlin-Heidelberg-New York: Springer. 1980.

[9] JI-HUAI SHI: The spaces $H^p(B_n)$, $0 < p < 1$, and $B_{pq}(B_n)$, $0 < p < q < 1$, are not locally convex. Proc. Amer. Math. Soc. 103, 69–74 (1988).

M. JEVTIĆ and M. PAVLOVIĆ Matematički fakultet Studentski trg 16 11000 Beograd, Yugoslavia