Mh. Math. 111, 137-145 (1991)

Monatshefte für Mathematik © by Springer-Verlag 1991 Printed in Austria

On the Hahn-Banach Extension Property in Hardy and Mixed Norm Spaces on the Unit Ball

By

Miroljub Jevtić and Miroslav Pavlović, Beograd

(Received 12 March 1990; in revised form 12 November 1990)

Abstract. For a nonempty set E of nonnegative integers let $H_E^{p,q,\alpha}$ and H_E^{ρ} be the closed linear span of

$$\{z_1^{a_1} z_2^{a_2} \dots z_n^{a_n} \colon (a_1, a_2, \dots, a_n) \in (\mathbb{Z}_+)^n, a_1 + a_2 + \dots + a_n \in E\}$$

in the mixed norm space $H^{p, q, a}(B_n)$ and in the Hardy space $H^p(B_n)$, respectively. In this note we prove that the Hahn-Banach Extension Property (HBEP) of $H_E^{p, q, a}$ is independent of q. As an application, we show that if $0 and <math>H_E^{p, q, a}$ or H_E^p has HBEP then E must be thick in the sense that if $E = \{m_n: n = 1, 2, ...\}$, where $m_1 < m_2 < ...$, then $m_n \leq c n$ for some constant c. This result is an extension over those obtained in [2] and [4].

1. Introduction

Let B_n denote the unit ball in C^n , $n \ge 1$, S_n its boundary, σ_n the positive rotation invariant measure on S_n , with $\sigma_n(S_n) = 1$. By $H(B_n)$ we denote the class of all functions holomorphic in B_n .

The Hardy space H^p , $0 , is defined on <math>B_p$ by

$$H^{p} = H^{p}(B_{n}) = \{f \in H(B_{n}): \|f\|_{p} < \infty\}$$

where

$$||f||_p = \sup_{0 < r < 1} M_p(r, f), \quad M_p(r, f) = \left\{ \int_{S_n} |f(r\eta)|^p \, d\sigma_n(\eta) \right\}^{1/p}.$$

If 0 < p, q, $\alpha < \infty$, define

$$H^{p, q, a} = H^{p, q, a}(B_n) = \{f \in H(B_n) \colon ||f||_{p, q, a} < \infty\}$$

where

$$||f||_{p,q,\alpha} = \left(\int_0^1 (1-r)^{q\,\alpha-1} M_p(r,f)^q \, dr\right)^{1/q}.$$

For a nonempty set E of nonnegative integers we let

$$H_E = H_E(B_n) = \{ f \in H(B_n) : f_k \equiv 0, k \notin E \},\$$

where $f_k(z)$ is the homogeneous polynomial of degree k in the Taylor expansion $f(z) = \sum_{k=0}^{\infty} f_k(z)$.

In this paper we consider the Hahn-Banach Extension Property (HBEP) of the closed subspaces $H_E^{p, q, a} = H^{p, q, a} \cap H_E(B_n)$ and $H_E^p = H^p \cap H_E(B_n)$ of the spaces $H^{p, q, a}$ and H^p , respectively. We recall that $H_E^{p, q, a}$ (resp. H_E^p) has HBEP if every continuous linear functional on $H_E^{p, q, a}$ (resp. H_E^p) can be extended to a continuous linear functional on $H^{p, q, a}$ (resp. H_E^p).

Our main result is the following theorem which shows that HBEP of $H_E^{p, q, \alpha}$ is independent of q.

Theorem 1. Let p, q, s, α be positive real numbers. Then $H_E^{p, q, \alpha}$ has HBEP if and only if $H_E^{p, s, \alpha}$ has HBEP.

If $1 \le p, q < \infty$, $H^{p, q, a}$ is a Banach space. Therefore, the following result is an immediate consequence of Theorem 1 and the Hahn-Banach theorem.

Corollary. If $1 \le p < \infty$, 0 < q < 1, then $H_E^{p, q, \alpha}$ has HBEP for any subset E of nonnegative integers.

As a further application of Theorem 1 we prove

Theorem 2. Let $0 and <math>E = \{m_k : k = 1, 2, ...\}$, where $m_1 < m_2 < ...$. If i) $H_E^{p, q, a}$ has HBEP, or ii) H_E^p has HBEP, then there is a constant C > 0 such that $m_k \leq Ck$, k = 1, 2, ...

The one variable case 0 < q < p < 1 of Theorem 2 (i) follows from the case 0 , that was proved in [2], and from Theorem 1.For the special case <math>n = 1 Theorem 2 (ii) is due to N. KALTON and D. TRAUTMAN [4]. The rest of Theorem 2 (a several variables version) will be proved in Section 4.

To show that $H^p(B_n)$, $0 , and <math>H^{q, q, n/p - (n/q)}(B_n)$, $0 , are not locally convex, SHI JI-HUAI [9] constructed closed subspaces of <math>H^p(B_n)$ and $H^{q, q, n/p - (n/q)}(B_n)$ that fail HBEP. It follows from Theorem 2 that H^p_E and $H^{p, q, \alpha}_E$ fail HBEP if, for example, $E = \{n^2: n = 1, 2, ...\}$, for any $0 , <math>0 < q < \infty$, $0 < \alpha < \infty$.

Throughout this paper we will use the convention of denoting by C

any positive constant which is independent of the relevant parameters in the expression in which it occurs. The value of C may change from one occurrence to the next.

We will use the notation $A \cong B$ to mean $C^{-1}A \leq B \leq CA$.

2. Preliminaries

Let $g(z) = \sum_{k=0}^{\infty} \hat{g}(k) z^k$ be holomorphic in the unit disc B_1 and $f(z) = \sum_{k=0}^{\infty} f_k(z)$ holomorphic in the unit ball B_n . We define $(g \times f)(z) = \sum_{k=0}^{\infty} \hat{g}(k) f_k(z), \quad z \in B_n$.

$$(g \times f)(z) = \sum_{k=0}^{\infty} \hat{g}(k) f_k(z), \quad z \in B$$

If $f \in H(B_1)$ we write g * f instead of $g \times f$.

In [3] we have proved that if w_n , n = 0, 1, 2, ..., are polynomials defined by $w_0(z) = 1 + z$, $w_n(z) = \sum_{k=2^{n-1}}^{2^{n+1}} \varphi\left(\frac{k}{2^{n-1}}\right) z^k$, $z \in B_1$, n = 1, 2, ...,where $\varphi(t) = \omega(t/2) - \omega(t)$, and $\omega: R \to R$ is any infinitely differentiable function satisfying

 $0 \le \omega(t) \le 1$ and $\omega(t) = \begin{cases} 1, & t \le 1 \\ 0, & t > 2 \end{cases}$

then

$$f = \sum_{n=0}^{\infty} w_n * f, \text{ for all } f \in H(B_1),$$

and

$$\|w_n * f\|_p \leq C \|f\|_p, \quad f \in H^p(B_1), \quad 0$$

It follows immediately from the representation

$$(w_n * f)(z) = \frac{1}{2\pi} \int_0^{2\pi} w_n(e^{it}) f(z e^{-it}) dt, \quad f \in H(B_1),$$

that if $1 \le p < \infty$, then $||w_n * f||_p \le ||w_n||_1 ||f||_p$, $f \in H^p(B_1)$. In [3] we also proved that $||w_n||_1 \leq C$, n = 0, 1, 2, ..., where C is a constant independent of *n*. Thus, if $1 \le p < \infty$, then $||w_n * f||_p \le C ||f||_p$ for $f \in H^{p}(B_{1})$. Now it follows by a slice integration that

$$\|w_n \times f\|_p \leq C \|f\|_p, \quad f \in H^p(B_n), \quad 0 (2.1)$$

Since $\sum_{n=0}^{\infty} \hat{w}_n(k) = 1$, k = 0, 1, 2, ..., we have $f = \sum_{n=0}^{\infty} w_n \times f$ for any polynomial f. From this it follows easily that

$$f(z) = \sum_{n=0}^{\infty} (w_n \times f)(z), \ z \in B_n, \quad \text{for all} \quad f \in H(B_n).$$
(2.2)

If
$$f(z) = \sum_{k=n}^{m} \hat{f}(k) z^{k}, z \in B_{1}, 0 \leq n \leq m$$
, then
 $r^{m} ||f||_{p} \leq M_{p}(r, f) \leq r^{n} ||f||_{p}$ (see [5]).

From this it follows by slice integration that if $g(z) = \sum_{k=n}^{m} g_k(z), 0 \le \le n \le m$, where g_k are homogeneous polynomials of degree k, then

$$r^{m} \|g\|_{p} \leq M_{p}(r, g) \leq r^{n} \|g\|_{p}, \quad 0 (2.3)$$

Lemma 2.1. ([5], [6]). A measurable function $F: (0, 1) \rightarrow (0, \infty)$ satisfying

$$\sup_{n \ge 0} |b_n| r^{2^n} \le (1-r)^{(1/q)-\alpha} F(r) \le \sum_{n=0}^{\infty} |b_n| r^{2^n}, \quad \alpha > 0,$$

belongs to $L^{q}(0, 1)$, $0 < q \leq \infty$, if and only if $\{2^{-na}b_n\}$ belongs to the sequence space l^{q} .

Lemma 2.2. Let 0 < p, q, $a < \infty$. A function $f \in H(B_n)$ belongs to $H^{p,q,a}(B_n)$ if and only if the sequence $\{2^{-na} \| w_n \times f \|_p\}$ belongs to l^q .

Proof. Without loss of generality we may suppose f(0) = 0. Since

$$\sup_{n \ge 0} \|w_n \times f\|_p r^{2^{n+1}} \le C M_p(r, f), \text{ by (2.1) and (2.3)},$$

we have $\{2^{-n\alpha} \| w_n \times f \|_p\} \in l^q$, by Lemma 2.1.

Conversely, if 0 , then using (2.2), (2.3) and Lemma 2.1 we find that

$$\|f\|_{p, q, a}^{q} \leq C \int_{0}^{1} \left(\sum_{n=1}^{\infty} \|w_{n} \times f\|_{p}^{p} r^{2^{n-1}} \right)^{q/p} (1-r)^{qa-1} dr \leq C \|\{2^{-na} \|w_{n} \times f\|_{p}\}\|_{l^{q}}.$$

If $1 \le p < \infty$, then using (2.2), Minkowski's inequality and (2.3) we obtain

140

On the Hahn-Banach Extension Property

$$\|f\|_{p, q, a}^{q} \leq C \int_{0}^{1} (1-r)^{q \alpha - 1} \left(\sum_{n=1}^{\infty} \|w_{n} \times f\|_{p} r^{2^{n-1}} \right)^{q} dr \leq \leq C \|\{2^{-n \alpha} \|w_{n} \times f\|_{p}\}\|_{l^{q}}, \text{ by Lemma 2.1.}$$

Let $f(z) = \sum_{|\alpha|=0}^{\infty} f_{\alpha} z^{\alpha}$ and $g(z) = \sum_{|\alpha|=0}^{\infty} g_{\alpha} z^{\alpha}$ be holomorphic in B_n . We define

$$(f \circ g)(z) = \sum_{k=0}^{\infty} \left(\sum_{|\alpha|=k} f_{\alpha} g_{\alpha} \right) z^k, \quad z \in B_1.$$

Let $H^{\infty} = H^{\infty}(B_1)$ be the space of holomorphic bounded functions in B_1 with the sup-norm. A function $g \in H(B_n)$ is said to be a multiplier from $H^{p, q, \alpha}(B_n)$ to H^{∞} if the map $f \to f \circ g$ acts as a bounded linear operator from $H^{p, q, \alpha}(B_n)$ to H^{∞} . The set of all such multipliers will be denoted by $(H^{p, q, \alpha})^*$. Analogously, we define $(H_E^{p, q, \alpha})^*$.

It is easily seen that $(H^{p, q, a})^*$ is a quasi-normed space with the quasi-norm

$$\|g\|_{(H^{p,q,a})^*} = \|g\|_{p,q,a;\infty} = \sup\{\|f \circ g\|_{\infty} \colon f \in H^{p,q,a}, \|f\|_{p,q,a} \le 1\}$$

The next lemma shows that the dual of $H^{p, q, a}$ (denoted by $(H^{p, q, a})'$) may be identified with the space $(H^{p, q, a})^*$.

Lemma 2.3. If $g \in (H^{p, q, a})^*$ and if we define $\lambda_g(f) = \lim_{r \to 1} (f \circ g)(r)$, $f \in H^{p, q, a}$, then $\lambda_g \in (H^{p, q, a})'$ and $\|\lambda_g\| = \|g\|_{p, q, a; \infty}$. Conversely, given $\lambda \in (H^{p, q, a})'$, then there is a unique $g \in (H^{p, q, a})^*$

Conversely, given $\lambda \in (H^{p, q, a})'$, then there is a unique $g \in (H^{p, q, a})^*$ such that $\lambda_g = \lambda$. Also, $\|g\|_{p, q, a; \infty} \leq C \|\lambda\|$.

Proof. Define λ_z , $z \in B_1$, by $\lambda_z(f) = (f \circ g)(z)$, $f \in H^{p, q, a}$. Then $\{\lambda_z : z \in B_1\}$ is a bounded subset of $(H^{p, q, a})'$. On the other hand if f is a holomorphic polynomial in *n*-variables and $a \in S_1$ then the limit of $\lambda_z(f)$, as $z \to a$, exists. From this we conclude that the above limit exists for all $f \in H^{p, q, a}$. Thus, λ_g is well defined. It is easily seen that $\lambda_g \in (H^{p, q, a})'$ and $\|\lambda_g\| = \|g\|_{p, q, a; \infty}$.

Conversely, define $g_{\alpha} = \lambda(z^{\alpha}), \ \alpha \in (Z_{+})^{n}$. Since $(f \circ g)(z) = \lambda(f_{z}), \ z \in B_{1}$, for all $f \in H^{p, q, \alpha}$, where $f_{z}(w) = f(zw), \ w \in B_{n}$, and $\lim_{r \to 1} \lambda(f_{r}) = \lambda(f_{1})$, we have $\lambda_{g} = \lambda$. The function $g \in (H^{p, q, \alpha})^{*}$ because $\|(f \circ g)(z)\| = |\lambda(f_{z})| \leq \|\lambda\| \|f\|_{p, q, \alpha}$, for $z \in B_{1}$. The uniqueness of g is obvious.

10 Monatshefte für Mathematik, Bd. 111/2

As a consequence of (2.3) we have $||w_n \times f||_{p,q,a} \cong 2^{-na} ||w_n \times f||_p$, $f \in H(B_n)$. Using this and Lemma 2.2 we find that

$$\|f\|_{p, s, a} \cong \|\{\|w_n \times f\|_{p, q, a}\}\|_{l^s}.$$
(2.4)

Lemma 2.4. Let $g \in H(B_n)$. Then

$$\|g\|_{p, s, a; \infty} \cong \|\{\|w_n \times g\|_{p, q, a; \infty}\}\|_{l^{s'}},$$

where $s^{-1} + (s')^{-1} = 1$, if $1 < s < \infty$, and $s' = \infty$, if $0 < s \le 1$.

Proof. Define $P_n = w_{n-1} + w_n + w_{n+1}$, $n \ge 0$ ($w_{-1} = 0$). Since

$$w_n * w_k = 0$$
, for $|n - k| \ge 2$, (2.5)

we have

$$P_n * w_n = w_n, \quad n \ge 0, \tag{2.6}$$

and

$$w_n * P_k = 0, \text{ if } |k - n| \ge 3.$$
 (2.7)

Let $||f||_{p, s, a} < \infty$ and $||\{||w_n \times g||_{p, q, a; \infty}\}||_{l^{s'}} < \infty$. If $z \in B_1$, then using (2.2) and (2.6) we get

$$|(f \circ g)(z)| = \left| \sum_{n=0}^{\infty} (w_n * (f \circ g))(z) \right| =$$

= $\left| \sum_{n=0}^{\infty} ((P_n * w_n) * (f \circ g))(z) \right| =$
= $\left| \sum_{n=0}^{\infty} ((P_n \times f) \circ (w_n \times g))(z) \right| \le$
 $\le \sum_{n=0}^{\infty} \|P_n \times f\|_{p, q, a} \|w_n \times g\|_{p, q, a; \infty} \le$
 $\le \|\{\|P_n \times f\|_{p, q, a}\}\|_{l^s} \|\{\|w_n \times g\|_{p, q, a; \infty}\}\|_{l^{s'}}$

by Hölder's inequality. It is easily seen that $\|\{\|P_n \times f\|_{p, q, a}\}\|_{l^s} \cong \|f\|_{p, s, a}$, by (2.4). Thus, we have proved that $\|g\|_{p, s, a; \infty} \leq \|C\|\{\|w_n \times g\|_{p, q, a; \infty}\}\|_{l^s}$.

Conversely, let $||g||_{p, s, a; \infty} < \infty$. Fix $0 < \varepsilon < 1$. Since $||w_n \times g||_{p, q, a; \infty} < \infty$, n = 0, 1, 2, ..., for each *n* there exists f_n , $||f_n||_{p, q, a} = 1$, so that

$$((w_n \times g) \circ f_n)(1) = \|(w_n \times g) \circ f_n\|_{\infty} \ge \varepsilon \|w_n \times g\|_{p, q, \alpha; \infty}.$$
 (2.8)

If $\{b_k\} \in l^s$, $b_k \ge 0$, using (2.4), (2.5) and (2.1) we conclude

$$\left\|\sum_{k=0}^{\infty} w_k \times b_k f_k\right\|_{p, s, a} \cong \left\|\left\{\left\|w_n \times \sum_{k=0}^{\infty} w_k \times b_k f_k\right\|_{p, q, a}\right\}\right\|_{l^s} \leqslant C \|\{b_k\}\|_{l^s},$$

since $||f_n||_{p, q, \alpha} = 1$, for all $n \ge 0$.

By hypotheses $||g||_{p, s, a; \infty} < \infty$. Therefore

$$\left\|\sum_{n=0}^{\infty} w_n \times b_n f_n \circ g\right\|_{\infty} \leqslant C \|g\|_{p, s, \alpha; \infty} \|\{b_n\}\|_{l^s}.$$
(2.9)

On the other hand, $w_n \times b_n f_n \circ g = b_n (w_n \times g) \circ f_n$, and by (2.8)

$$\left\|\sum_{n=0}^{\infty} (w_n \times b_n f_n) \circ g\right\|_{\infty} = \sum_{n=0}^{\infty} b_n \|(w_n \times g) \circ f_n\|_{\infty} \ge$$

$$\ge \varepsilon \sum_{n=0}^{\infty} b_n \|w_n \times g\|_{p, q, \alpha; \infty}.$$
 (2.10)

Combining (2.9) and (2.10) we obtain

 $\|\{\|w_n \times g\|_{p, q, \alpha; \infty}\}\|_{l^{s'}} \leq C \|g\|_{p, s, \alpha; \infty}.$

In the same way we prove that if $g \in H_E(B_n)$ then

$$\|g\|_{(H_E^{p,s,a})^*} \cong \|\{\|w_n \times g\|_{(H_E^{p,q,a})^*}\}\|_{l^{s'}}.$$
(2.11)

3. Proof of Theorem 1

Set $X = H^{p, s, a}$, $Y = H^{p, s, a}_{E}$, $A = H^{p, q, a}$, $B = H^{p, q, a}_{E}$. Suppose now that B (as a subspace of A) has HBEP. Let $g \in Y^*$. By Lemma 2.3 it is sufficient to prove that there exists a $G \in X^*$ such that $G \circ f = g \circ f$, for all $f \in Y$.

Since $w_n \times g \in B^*$, $n \ge 0$, and B has HBEP, there are functions $g_n \in H(B_n)$ so that

$$g_n \circ f = w_n \times g \circ f, \quad f \in B \tag{3.1}$$

and

$$\|g_n\|_{p, q, \alpha; \infty} \leq C \|w_n \times g\|_{p, q, \alpha; \infty}, \qquad (3.2)$$

where C is a positive constant independent of n (a consequence of the open mapping theorem).

Define the function G by $G(z) = \sum_{n=0}^{\infty} (P_n \times g_n)(z)$, $z \in B_n$. One can easily show that $G \in H(B_n)$. We claim that G satisfies the conditions cited above.

Using Lemma 2.4 and equations (2.7), (2.1), (3.2) and (2.11) we obtain

$$\begin{split} \|G\|_{p, s, a; \infty} &\cong \|\{\|w_n \times G\|_{p, q, a; \infty}\}\|_{l^{s'}} = \\ &= \left\|\left\{\left\|w_n \times \sum_{k=0}^{\infty} P_k \times g_k\right\|_{p, q, a; \infty}\right\}\right\|_{l^{s'}} \leqslant \\ &\leqslant C \,\|\{\|w_n \times g_n\|_{p, q, a; \infty}\}\|_{l^{s'}} \leqslant C \,\|\{\|g_k\|_{p, q, a; \infty}\}\|_{l^{s'}} \leqslant \\ &\leqslant C \,\|\{\|w_n \times g\|_{p, q, a; \infty}\}\|_{l^{s'}} \cong C \,\|g\|_{T^*} < \infty. \end{split}$$

It follows that $G \in X^*$.

From (3.1), (2.6) and (2.1) it follows that if $f \in Y$, then

$$G \circ f = \sum_{n=0}^{\infty} (P_n \times g_n) \circ f = \sum_{n=0}^{\infty} P_n * (g_n \circ f) =$$
$$= \sum_{n=0}^{\infty} P_n * ((w_n \times g) \circ f) = \sum_{n=0}^{\infty} w_n * (g \circ f) = g \circ f.$$

This completes the proof of Theorem 1.

4. Proof of Theorem 2

i) Note that we proved the case n = 1 in the Introduction. Thus, to finish the proof of Theorem 2 (i), by Theorem 1, it is sufficient to show that if $H_E^{p, p, \alpha}(B_n)$, n > 1, has HBEP than $H_E^{p, p, \alpha + (n-1)/p}(B_1)$ has HBEP. Let $\psi \in (H_E^{p, p, \alpha + (n-1)/p}(B_1))'$. Define $\varphi(g) = \psi(\varrho g)$, $g \in H_E^{p, p, \alpha}(B_n)$,

Let $\psi \in (H_E^{p, p, a + (n-1)/p}(B_1))'$. Define $\varphi(g) = \psi(\varrho g), g \in H_E^{p, p, a}(B_n)$, where ϱ is a restriction operator defined by $\varrho g(z) = g(z, 0, ..., 0)$, $z \in B_1, g \in H(B_n)$. The proof of Lemma 2.2 ([1]) shows that ϱ is a bounded transformation from $H_E^{p, p, a}(B_n)$ into $H_E^{p, p, a + (n-1)/p}(B_1)$. Hence, $\varphi \in (H_E^{p, p, a}(B_n))'$. Since $H_E^{p, p, a}(B_n)$ has HBEP, there exists $\Phi \in (H^{p, p, a}(B_n))'$ such that $\Phi(g) = \varphi(g)$, for all $g \in H_E^{p, p, a}(B_n)$. Now define $\Psi(f) = \Phi(\tau f), f \in H^{p, p, a + (n-1)/p}(B_1)$, where τ is an

Now define $\Psi(f) = \Phi(\tau f), f \in H^{p, p, a + (n-1)/p}(B_1)$, where τ is an extension operator defined by $\tau f(z_1, ..., z_n) = f(z_1), (z_1, ..., z_n) \in B_n, f \in H(B_1)$.

It follows from Fubini's theorem that $\|\tau f\|_{p, p, \alpha} = \|f\|_{p, p, \alpha+(n-1)/p}$ (see [8], pp. 127—128). Thus, the extension τ is a linear isometry of $H^{p, p, \alpha+(n-1)/p}(B_1)$ into $H^{p, p, \alpha}(B_n)$. Hence, $\Psi \in (H^{p, p, \alpha+(n-1)/p}(B_1))'$. If $f \in H_E^{p, p, \alpha+(n-1)/p}(B_1)$, then $\Psi(f) = \Phi(\tau f) = \varphi(\tau f) = \psi(\varrho \tau f) = \psi(f)$, since $\tau f \in H_E^{p, p, \alpha}(B_n)$ and Φ is an extension of φ from $H_E^{p, p, \alpha}(B_n)$ to $H^{p, p, \alpha}(B_n)$. ii) The proof is the same as in i), since ρ is a bounded transformation from $H_E^{\rho}(B_n)$ into $H_E^{p, p, (n-1)/p}(B_1)$ and τ is a linear isometry of $H^{p, p, (n-1)/p}(B_1)$ into $H^{\rho}(B_n)$.

References

[1] AHERN, P., BRUNA, J.: On holomorphic functions in the ball with absolutely continuous boundary values. Duke Math. J. 56, 129-142 (1988).

[2] JEVTIĆ, M.: Sous-espaces $H_E^{p, q, a}$ des espaces $H^{p, q, a}$ de fonctions holomorphes. C. R. Acad. Sci. Paris **300**, serie I, 221–224 (1985).

[3] JEVTIĆ, M., PAVLOVIĆ, M.: On the multipliers from H^p to l^q , 0 < q < p < 1. Archiv Math. (to appear).

[4] KALTON, N., TRAUTMAN, D.: Remarks on subspaces of H^p when 0 .Michigan Math. J. 29, 163–170 (1982).

[5] MATELJEVIĆ, M., PAVLOVIĆ, M.: L^{ρ} -behaviour of the integral means of analytic functions. Studia Math. 77, 219–237 (1984).

[6] MATELJEVIĆ, M., PAVLOVIĆ, M.: Duality and multipliers in Lipschitz spaces. Proc. Internat. Conf. Complex Analysis, Varna. 1983. pp. 153-161.

[7] PAVLOVIĆ, M.: An inequality for the integral means of a Hadamard product. Proc. Amer. Math. Soc. 103, 404-406 (1988).

[8] RUDIN, W.: Function Theory in the Unit Ball of Cⁿ. Berlin-Heidelberg-New York: Springer. 1980.

[9] JI-HUAI SHI: The spaces $H^{p}(B_{n})$, $0 , and <math>B_{pq}(B_{n})$, 0 , are not locally convex. Proc. Amer. Math. Soc. 103, 69–74 (1988).

M. JEVTIĆ and M. PAVLOVIĆ Matematički fakultet Studentski trg 16 11000 Beograd, Yugoslavia