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Peristaltic transport of a power-law fluid: 
application to the ductus efferentes of the reproductive tract 
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Abstract: The problem of peristaltic transport of a non-Newtonian (power-law) fluid 
in uniform and non-uniform two-dimensional channels has been investigated under 
zero Reynolds number with long wavelength approximation. A comparison of the 
results with those for a Newtonian fluid model shows that the magnitude of pressure 
rise, under a given set of conditions, is smaller in the case of the non-Newtonian fluid 
(power-law index n < 1) at zero flow rate. Further, the pressure rise is smaller as n 
decreases from i at zero flow rate, is independent of n at a certain value of flow rate 
and becomes greater if flow rate increases further. Also, at a given flow rate, an 
increase in wavelength leads to a decrease in pressure rise and increase in the influence 
of non-Newtonian behaviour. Pressure rise in the case of non-uniform geometry, is 
found to be much smaller than the corresponding value in the case of uniform 
geometry. Finally, the analysis is applied and compared with observed flow rates in 
the ductus efferentes of the male reproductive tract. 
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1. Introduction 

The study of the mechanism of peristalsis, in both me- 
chanical and physiological situations, has recently be- 
come the object of scientific research. Since the first in- 
vestigation of Latham [1], several theoretical and 
experimental attempts have been made to understand 
peristaltic action in different situations. All such investi- 
gations seem to differ in various details. A review of much 
of the early literature is presented in an article by Jaffrin 
and Shapiro [2] and in a monograph by Rath [3]. A 
summary of most of the experimental and theoretical 
investigations reported so far, with details of the geome- 
try, fluid, Reynolds number, wavelength parameter, wave 
amplitude parameter, and wave shape, has been present- 
ed in a recent paper by Srivastava and Srivastava [4]. 

Most of these theoretical investigations have been carried out 
by assuming that the blood and other physiological fluids be- 
have like Newtonian fluids. Although this approach provides a 
satisfactory understanding of the peristaltic mechanism in the 
ureter, it fails to give a good understanding of the peristaltic 
mechanism in small blood vessels, lymphatic vessels, intestine, 
ductus efferentes of the male reproductive tract, or in transport 
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of spermatozoa in the cervical canal. It is known that most of 
physiological fluids behave like non-Newtonian fluids, but it 
appears that no rigorous attempt has been made to understand 
the problem of non-Newtonian fluids since the inital investiga- 
tion by Raju and Devanathan [5, 6]. Recently, some research on 
non-Newtonian fluids are reported in the literature [3, 7-10]. It 
has been pointed out that the flow behaviour of blood in vessels 
of small diameter (0.02 cm) and at low shear rates (< 20 s- t) can 
be represented by a power-law fluid [11, 12]. Lew et al. [13] 
suggested chyme as a non-Newtonian material having plastic- 
like properties. In addition, physiological organs are generally 
observed to be a non-uniform duct [14-16]. In particular, vas 
deferens in the rhesus monkeys is in the form of a diverging tube 
with a ratio of exit to inlet dimensions of approximately four 
[17]. Hence, peristaltic analysis of a Newtonian fluid in a uniform 
geometry cannot be applied when explaining the mechanism of 
transport of fluid in most bio-systems. Recently, Gupta and 
Seshadri [18], Srivastava and Srivastava [19] and Srivastava 
et al. [20] studied peristaltic transport of a Newtonian fluid in 
non-uniform geometries. 

With the above discussion in mind, we propose to 
study the peristaltic transport  of a power law fluid in 
uniform and non-uniform two-dimensional channels. 
The applicability of the results to the flow rates observed 
in the ductus efferentes of the male reproductive tract is 
discussed. 
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2. F o r m u l a t i o n  and A n a l y s i s  

Consider the flow of a power-law fluid through a two- 
dimensional channel of non-uniform thickness with a 
sinusoidal wave travelling down its wall. The geometry of 
the wall surface (cf. figure 1) is described as 

2re , 
H (x', t') = a(x') + b sin ~ -  (x -c t ' )  , (1) 

with 

a(x') = a o + k x ' ,  (2) 

where a(x')  is the half-width of the channel at any axial 
distance x' from inlet, a o is the half-width at inlet, k( < 1) 
is a constant whose magnitude depends on the length of 
the channel and exit and inlet dimensions, b is the ampli- 
tude of the wave, 2 is the wavelength, e is the propagat ion 
velocity, and t' is the time. 

Using the long wavelength approximat ion and neglect- 
ing the inertia terms, the appropriate  equations describ- 
ing the flow in the laboratory frame of reference are 

~P' ~ Zy, x, - (3) 
~x'  ~y' ' 

~p' 
- 0 ,  (4) ~y' 

where p'  is the pressure, y' and x' are the radial and axial 
coordinates respectively, and zy, ,, the shear stress normal  
to y' in the x'  direction, 

In the case of a power-law fluid model, zr, x' is given as 

( 
"or, x, = m t - -  ~yTy,) , (5) 

where m is the consistency and n the power-law index. 
(When n = 1, then m = # is the Newtonian viscosity of the 
fluid). In view of eq. (5), eq. (3) assumes non-dimensional 
form as 

dp ~ ( ~u'~" 
dx - ~yy \ -  ~-fy,] ' (6) 

I x I 

~ . . . . . .  -IH(x:t,)v~j,=X, I a(x') 

Fig. 1. Peristaltic transport in a non-uniform channel 

where 

Y' x = ~,x' u' ct '  = p, a"o + l 
y=--,ao u = - - , c  t=-2- - ,  p m2c""  (7) 

The dimensionless boundary  conditions are: 
8u 
- - = 0  at y = 0 ,  (8) 
8y 

) . k x  
u = 0  at y = h = l +  +~bsin2zc(x- t ) ,  (9) 

a o 

with h = H/a  o and ~b (amplitude ratio) = b/a o < 1. 
Integrating eq. (6) and using the boundary  conditions 

(8) and (9), one finds the expression for the velocity profile 
a s  

n / . \ I t -  n + l  n_~l] 
_ a p  . 

The instantaneous volume flow rate Q (x, t) is given by 

Q(x, t) = ~ u d y  = n dp 
o 2 n + ~  - d x x J  h " (11) 

o r  

dx  ha,+ t " (12) 

The pressure rise ApL (t) and the friction force F L (t) (at the 
wall) in the channel of length L, in their non-dimensional 
forms, are given by 

kdx) ' 

FL(t ) = h - d x x  d x .  (14) 
0 

Use of eqs. 

ApL(t ) = 

FL(t) 

(9) and (12) in eqs. (13) and (14) yields 

LIZ Q" (x, t) 

" ! [ 1 +  '~kx 
d x ,  (15) 

a o 

LIA 

- -  + ~b sin 2 r c ( x - t ) l  2" + 1 

Q" (x, t) 

ao + ~b sin 2re ( x - t ) l  2" 

dx . (16) 

Setting k = o in eqs. (15) and (16), we obtain expres- 
sions for the pressure rise and friction force in a uniform 
channel. In addition, with n = 1, the expressions reduce to 
the same results as those of Shapiro et al. [21] and 
Lardner  and Shack [22], when the eccentricity of the 
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elliptical motion of cilia tips is zero in their analysis. 
Further, with n---1, eq. (15) reduces to that obtained by 
Gupta  and Seshadri [18] for a Newtonian fluid of con- 
stant viscosity. The analytical interpretations and com- 
parisons of our analyses with other theories are difficult 
to make at this stage, as the integrals in eqs. (15) and (16) 
are not integrable in closed form, neither for non-uniform 
nor for uniform geometry (k = o). Thus, further studies of 
our analysis are only possible after numerical evaluation 
of these integrals. 

3. Numerical results and discussion 

In order to be able to discuss the results obtained 
above quantitatively, we assume the form of instanta- 
neous volume flow rate Q(x,t), periodic in (x-t) as 
[18, 19]. 

Q"(x, t) = (Q)" + ~b sin 2re (x-t), (17) 

where Q is the time-average of the flow over one period 
of the wave. this form of Q (x, t) has been assumed in view 
of the fact that the constant value of Q(x, t) gives ApL(t), 
always negative, and hence there will be no pumping 
action. Using this form of Q (x, t), we now compute the 
dimensionless pressure rise ApL(t) and friction force Fz(t) 
over the channel length for various values of the di- 
mensionless flow average (~, amplitude ratio ~b, and the 
power-law index n. The average rise in pressure Apz, and 
friction force F L are then evaluated by averaging Apz (t) 
and FL (t) over one period. Using the following values of 
the parameters [18, 19]. 

a 0 = 0.012 cm, L =  2 = 20 cm, k = 3ao/L= 0.018, 

the integrals in eqs. (15) and (16) are numerically evalu- 
ated. Figures 2 and 3 represent the variation of dimen- 
sionless pressure rise with dimensionless time for ~b = 0.8 
and power-law indexes n = 1, 2/3, 1/3 for non-uniform 
and uniform channels, respectively. A comparison of the 
results with those of a Newtonian fluid model shows that 
the pressure rise decreases as the power law index n de- 
creases from 1. The difference between two corresponding 
values of the Newtonian and non-Netwonian pressure 
rise becomes greater with decreasing flow rate and be- 
comes maximum at zero flow rate. It is also observed that 
as n tends towards 1, the values for the non-Newtonian 
fluid approach the corresponding values for the New- 
tonian fluid in both uniform and non-uniform geom- 
etries. Figures 2 and 3 further reveal that the magnitude 
of the pressure rise in the case of the non-uniform channel 
is much smaller than the corresponding value in the case 
of the uniform channel. It can also be seen that the effect 
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Fig. 2. Variation of pressure rise over the length of a non- 
uniform channel 
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Fig. 3. Variation of pressure rise over the length of a uniform 
channel 

of increasing the flow rate is to reduce the pressure rise for 
various values of ~b and n. The pressure flow rate relation- 
ship in the non-uniform channel, for various values of ~b 
and n, is shown in figure 4. As expected, the curves show 
a linear relation between pressure rise and flow rate for 
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Fig. 4. Pressure vs flow rate for a non-uniform channel 
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Fig. 5. Pressure vs flow rate for a two-dimensional uniform 
channel. - - ,  two-dimensional theory for R = 0 ,  c~=0; 
. . . . .  , two-dimensional theory corrected for wall ends accord- 
ing to [2]; . . . . .  , two-dimensional theory corrected for wall ends 
and inactive pumping regions [2]. Data points - experimental 
results of Weinberg et al. [24]. 6 represents a viscosity variation 
parameter [23], R is the Reynolds number and c~ the wave num- 
ber 

the Newtonian  fluid (n = 1), and a non-l inear  relation for 
the non-Newtonian  fluid (n = 2/3, 1/3). I t  is clear that  an 
increase in flow rate reduces the pressure rise; thus maxi- 
mum flow rate is achieved at zero pressure rise, and max- 
imum pressure rise occurs at zero flow rate. Also, the 
effect of increasing the ampli tude ratio is an increase in 
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Fig. 6. Variation of friction force over the length of a non- 
uniform channel 

the pressure rise for both  Newtonian  and non-Newtonian  
fluids in uniform as well as in non-uniform geometries. 
Fur thermore ,  the pressure rise becomes smaller as n de- 
creases from 1, at zero flow rate, is independent  of n at 
certain value of flow rate, and becomes greater if the flow 
rate increases further. A comparison of the present analy- 
sis with the theoretical results of Jaffrin and Shapiro [2] 
and Srivastava et al. [23] and with the experimental  re- 
sults of Weinberg et al. [24] is given in figure 5. Finally,  
the friction forces FL(t ) and F are plot ted in figures 6 and 
7 respectively, these shows that  the friction forces have 
the opposi te  behavior  compared  to pressure rise. 

4. Application to transport of semen in the duetus 
efferentes of the male reproductive tract 

In this section, we discuss whether our theoretical anal- 
ysis of peristaltic flow in a uniform two-dimensional  
channel is applicable to an explanat ion of semen trans- 
por t  in the ductus efferentes of the male reproductive 
tract. On the basis of experimental  observations [25-27] 
on the flow rates in the rete testis of rat, ram, and bull, 
Lardner  and Shack [22] est imated the approximate  flow 
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Fig. 7. Friction force vs flow rate for a non-uniform channel 

Table 1. Flow rate versus pressure drop in ductus efferentes of 
the male reproductive tract 

Newtonian Non-Newtonian 
(n = 1) [29] (n = 1/3), this work 

Pressure drop 0 0.05 0.1 0 0.05 0.1 
(-A~) 
Flow rate 0.084 0.18 0.27 0.49 0.68 0.97 
(ml/h • 10- 3) 

Error (%) 98.59 97.07 95 .55  91 .83  88.66 83.83 

rate in human rete testis per ductus efferentes as 
6 .10  -3 ml/h. The approximate  value of various param-  
eters for flow in ductus efferentes, repor ted in Lardner  
and Shack [22], are 

a 0 = 0.005 cm, c = 0.02 cm/s, ,~ = 0.05 cm, ~b = 0.1. 

These values justify the use of long wavelength and zero 
Reynolds number  theory of the present analysis. Lardner  
and Shack [22] calculated the flow rate, assuming that  no 
pressure gradient  exists in the ductus efferentes. But in the 
ductus efferents, water  is known to be pushed into the 
tubes across the membranes,  creating a positive flux [28]. 
Thus, the flux may exceed (~max( = ~), at Aft = 0) and 
hence A/5 < 0. Using these data, (~ is calculated. Finally, 
the various values of flow rate ( =  Q x rc ao 2 c) in ml/h, and 

their differences with observed values are presented in 
table 1. 

The considerable difference between the theoretical 
and the observed values shows that  the peristalsis cannot  
account for the total  flow rate in ductus efferents. There 
must be some other impor tant  factors, responsible for the 
t ranspor t  of semen, one may probably  be the cillia, which 
keeps semen moving towards  the epididymis [30]. Theo- 
retical investigations concerning the effect of cillia on 
fluid t ranspor t  in ductus efferentes and other biological  
organs, include the work of Lardner  and Shack [22], 
Liron [28], Winet  and Blake [31], and Blake and Winet  
[32]. However,  there is no doubt  that  the peristalsis aids 
in moving semen in ductus efferentes. Considerably more 
theoretical and experimental  investigations are however 
necessary to unders tand adequately the mechanism in- 
volved in t ranspor t  of semen in ductus efferentes. 
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