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Orientation and rheology of rodlike particles with weak Brownian diffusion 
in a second-order fluid under simple shear flow 
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Abstract." An analysis of particle orientation in a dilute suspension of rodlike par- 
ticles in a second-order fluid was performed to examine the effects of the elasticity 
of the fluid and of weak Brownian diffusion of the particle on its orientation. 
Distributions of particle orientation under a simple shear flow with rate of shear 9 
have been obtained as a function of a single nondimensional parameter, 
fl* =fl/r2(D/g), which combines the effects of the particle aspect ratio re, the 
weak fluid elasticity fl, and the weak Brownian rotation diffusion coefficient D of 
the particle. In the limit of large re, when the fluid elasticity is strong enough to 
overcome the rotational diffusion effect on the particle motion, most of the par- 
ticles will orient close to the vorticity axis. A new shear-thinning mechanism of the 
shear viscosity of such systems is predicted by the theory. 

Key words: _Orientation, rodlike particle, weak _Brownian diffusion, s_econd-order 
fluid 

1. Introduction 

Suspension of  rodlike particles in non-Newtonian 
fluids are impor tan t  systems often encountered in poly- 
mer  processing operations.  Glass-f iber-f i l led thermo- 
plastics are typical examples  of  such systems. The 
rheological  behavior  of  the suspension is usually quite 
different from that  of  the suspending matrix.  The 
orientat ion dis t r ibut ion of  particles induced by the 
flow field strongly affects certain macroscopic physical  
propert ies  such as the rheological  behavior  of  the sus- 
pension which plays a crucial role during processing. It 
is therefore desirable to understand the effect of  
various parameters  which may be varied during the 
processing in order  to control f iber or ientat ion [1-4] .  It 
is still, however, a formidable  task to model  the real 
processing situations and obta in  informat ion about  
fiber orientat ion because of  the complicated visco- 
elastic nature of  the po lymer  matr ix  and the complex 
geometry of  a processing situation. Many investigations 
have been reported in the l i terature concerning suspen- 
sions of  rodlike particles in Newtonian  fluids, and only 
a l imited number  of  papers  have addressed the prob-  
lem of  a non-Newtonian fluid matrix. 

Jeffery [5] pioneered the investigation of the motion of 
rodlike particle in a flow field, and obtained the solution for 
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the motion of spheroidal (or rodlike) particles in a Newtonian 
fluid undergoing a simple shear flow. Jeffery's solution indi- 
cated that a rodlike particle in a Newtonian fluid will rotate 
with respect to the vorticity axis periodically and indefinitely 
in one of an infinite family of orbits. The orbit for each par- 
ticle is designated by an orbit constant C, which has a value 
between zero and infinity (0 _-< C -< oo). However, the distri- 
bution of particle orbits depends entirely on the initial distri- 
bution of orientation among the particles in the system. This 
leads to an "indeterminacy" of particle orientation for such a 
system which is the result-of the assumption used in Jeffery's 
theory. Mason and his coworkers have carried out extensive 
theoretical and experimental investigations to search out the 
causes of the "indeterminacy" in Jeffery's solution since such 
"indeterminacy" is seldom found experimentally. They con- 
sidered the following effects on particle orientations that were 
originally neglected by Jeffery: (1) fluid inertia [6]; (2) non- 
uniform shear field [7]; (3) non-uniform particle size distribu- 
tion [8-11]; (4) particle interactions [12]; (5) particle Brownian 
motion [9, 13, 14]. All these investigations show that if any of 
the above effects is introduced, then an intrinsically preferred 
orientation will exist and a steady-state distribution indepen- 
dent of initial conditions will be reached. Aside from the 
extensive work of Mason's group, Leal and Hinch [15] have 
solved for the steady-state orientation distribution function by 
considering the effect of a weak Brownian motion of the 
particles, and Folger and Tucker have [16] recently obtained a 
steady-state orientation distribution function by introducing a 
particle-particle interation coefficient in concentrated fiber 
suspensions. 

By comparison to the work on suspensions in a Newtonian 
matrix, there are relatively few studies concerning the be- 
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havior of rodlike particles in a non-Newtonian fluid. Saffman 
[17] was first to notice that rodlike particles will align along 
the vorticity axis (C = 0) under a Couette flow in a non-New- 
tonian fluid. Mason et al. [18-20] have done more extensive 
investigations for the particle motion in non-Newtonian media. 
Some detailed pictures about particle orbit drifting patterns 
were shown in their works. From their observation, they con- 
cluded also that the equilibrium orientation state for a rodlike 
particle in a non-Newtonian fluid is when the particle orients 
along the vorticity axis, where C = 0. Leal [21] considered the 
motion of rodlike slender particles in a weak viscoelastic fluid, 
the Rivlin-Ericksen second-order fluid, and obtained the 
particle angular velocities, 0 and ~, that describe the particle 
behavior in such a fluid. Brunn [22] has used a different 
approach to obtain similar results for dumbbell-like particles 
in a second-order fluid. From both of these studies, the par- 
ticle motion is clearly affected by the fluid elasticity which 
leads to orbit drifting behavior of particles as was observed by 
Mason's group [19-20] and earlier by Saffman. 

A dilute suspension of  rodlike particles with weak 
Brownian diffusion in a second-order fluid under a 
simple shear flow is the subject of  this paper. The 
orientation distribution of  particles in such systems will 
be obtained from the solution of the generalized 
Fokker-Planck equation by utilizing Leal's result of  
particle angular velocities. The particle orientation 
distribution is affected by the combined effects of  
particle aspect ratio, weak Brownian diffusion of the 
particle, and weak fluid elasticity. When the fluid 
elasticity is strong enough to overcome the diffusion 
effect on the particle motion, most particles will orient 
close to the vorticity axis just as previously discussed 
for the single particle. The rheological properties of  
such a suspension will be calculated by using an 
approximate expression for the stress tensor [23]. A 
new shear-thinning mechanism of the shear viscosity of  
such systems is predicted by the theory. 

The case of  rodlike particles with strong Brownian 
diffusion (e.g. rodlike macromolecules)  in a second- 
order fluid will be considered in a subsequent paper. 

2. Theoretical background 

2.1 R o d l i k e  p a r t i c l e  m o t i o n  in a N e w t o n i a n  f l u i d  

Jeffery [5] has considered the motion of a single 
neutrally buoyant,  spheroidal particle in a Newtonian 
fluid undergoing a simple shear flow. By assuming the 
absence of  Brownian motion and by neglecting inertial 
forces for both the particle and the fluid, Jeffery ob- 
tained the equations of  angular motion of  the particle 
a s  

d = 9(r2e - 1) 
(r~+ 1) sinOcosOsin~bcosqS, (1) 

g (r2e cos~b + sin2~b) , (2) 
$ = (r 2 + 1) 

Z ' /  
Fig. 1. The coordinate system 

, y  

Z 

Fig. 2. 3-D representation of Jeffery orbits with different orbit 
constants (for particle aspect ratio re = 16) 

where 0 and ~b are shown in figure 1, 9 is the velocity 
gradient in the y direction, and r e is the equivalent 
aspect ratio of  the particle. For  particle shape other 
than spheroidal, as for example rods with circular or 
rectangular cross-section, re can be evaluated experi- 
mentally from the actual particle rotation period de- 
fined below [24]. 

Integration of eqs. (1) and (2) yields 

Cre 
tan 0 = (re2 cos2q5 + sin2~b ) 1/2, (3) 

tan~b = re tan ( ~ -  + z ) ,  (4) 

where C and z are integration constants. T is the period 
of one complete rotation of the particle with respect to 
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the vorticity axis (z-axis) and is given as 

2re 
T . . . . . .  (r e + re1). (5) 

g 

According to Jeffery's theory, a single spheroidal 
particle rotates in a periodic manner  described by 
eqs. (3) and (4) for a given orbit constant C, and will 
stay in that orbit  indefinitely as long as Jeffery's 
assumptions are not violated. The orbit  constant C 
defines the three-dimensional  ellipse traced out by the 
end of the particle on the surface of  a sphere (see 
figure 2). The value of  C is zero when the major  axis of  
the particle is parallel to the vorticity axis and infinite 
when it lies in the plane of  shear ( x - y  plane). The 
particle rotates non-uniformly with respect to the z- 
axis (vorticity axis), and, for re >> 1, it spends a t ime of 
order re 9 -1 in the x - y  plane and then flips over in a 
t ime of order g -  ~. 

2.2 Rodlike particle motion in a second-order f lu id  

Among the limited theoretical studies in the litera- 
ture about  rodlike particles in non-Newtonian fluids, 
foremost is that of  Leal [21] who studied the mot ion of  
slender rodlike particle in a Rivlin-Ericksen second- 
order fluid. The second-order fluid has a constant non- 
thinning shear viscosity like a Newtonian fluid, but has 
non-zero first and second normal-stress differences. 
The dimensionless stress expression of this continuum 
model can be written in a codeformational  form as 

T =  - P I  + y(1) + 2[y(1).  y0)  + el y(2)] (6) 

where 

V0) = V U +  (VU) t) (7) 

and 

D 
V(2) = V0) + {(VU) • y0)  + V0). (VU)t}. (8) 

Dt 

The superscript ~ indicates a transpose operation. The 
dimensionless parameter  ). is defined as (~l + ~'2) U/Dls, 
where I and U are the characteristic length and velocity 
of  the system, r/s is the fluid viscosity, and ~ul and ~'2 
are normal-stress coefficients defined below. The pa- 
rameter  2 is a measure of  the intrinsic relaxation time, 
(~vl + ~2)D1s, of the viscoelastic fluid relative to the 
convective t ime scale of  the flow, l /U. The parameter  

e l = -  2 \~ul+qJ2] 

is related to the rheological parameters  of  the fluid, 
~ul and ~'2, which are defined in a simple shear flow 

by [25] 

~l = lim Vxx - -  "Cyy (9) 
g ~  --* 0 g 2  x ' 

q/2 = lim 7@y - -  7gzz 
o,~-* 0 gy2 (10) 

~'1 and ~u2 are known as the zero-shear-rate first and 
second normal-stress coefficients, and gyx is the veloci- 
ty gradient. ~ff2 is usually much smaller than ~ul and has 
a negative sign [25]. 

In Leal's analysis, 2 is considered to be small, 
0 < 2 ~ 1, so that the constitutive equation (eq. (6)) is 
only slightly perturbed from that of  a Newtonian fluid. 
This assumption limits the magnitude of  the instanta- 
neous non-Newtonian contributions to the particle's 
motion. Nevertheless, this small effect turns out to 
have a large cumulative influence on the particle orien- 
tation. Leal obtained the rate-of-change of  the particle 
orientation in a second-order fluid under a simple 
shear flow as 

4 ~ g (cos2~ + r2 2) 

+ fig sin20 sinq5 cosq~(sin24- cos2qS) + . . . ,  (11) 

0 ~ g sin 0 cos 0 sin ~b cos 4 

- 2f ig sin30 cos 0 sin24 cose~b + . . . .  (12) 

where fl = - (g ~'2)/(8 t/s) is of  order 2 and hence fl ~ 1. 
fl characterizes the non-Newtonian effects on the par- 
ticle orientation in eqs. (11) and (12). If  ~2 is zero, 
fl = 0 and the particle motion reduces to that in a New- 
tonian fluid. 

From Jeffery's solution, one can define the orbit  con- 
stant and phase angle by integrating eqs. (1) and (2) to 
obtain 

1 ) 1/2 
C = tan0 sin2q5 + cosZq5 , (13) 

The orbit constant C appears  in eq. (3) as a constant of  
integration in the case of  a Newtonian fluid and thus 
d C / d t =  0; for the second-order fluid, on the other 
hand, one gets from eqs. (1 l) and (12) that [21] 

dC 
- -  ~ - f i g  sin20 sin2~ bC (for r~ ~> 1). (15) 
dt 

A unique feature of  the above theoretical results is 
the orbital drift of  the particle in a second-order fluid. 
The rodlike slender particle will drift through Jeffery's 
orbits to the preferred orbit C = 0, which means that 
the particle will eventually orient along the vorticity 
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axis. The rate of drifting is characterized by f19 and 
depends therefore on the magnitude of the fl parame- 
ter. This orbital drifting behavior had been observed 
earlier by Saffman [17], Karnis and Mason [18], and 
subsequently confirmed by Gauthier etal. [19], and 
Bartram and Mason [20] in their experimental investi- 
gations of the motion of rodlike particles in a non- 
Newtonian fluid. 

3. Orientation and theology of  rodlike particles 
in a second-order fluid 

The hydrodynamic motion of a single rodlike par- 
ticle with no Brownian motion in a Newtonian fluid or 
a viscoelastic fluid subjected to a simple shear flow 
were reviewed in the previous section. We consider 
here the effect of weak Brownian diffusion of rodlike 
particles on their orientation in a second-order fluid. 
The analogous effect for a Newtonian matrix was con- 
sidered by Leal and Hinch [15] and their results are 
summarized below. To determine the bulk properties 
of a suspension consisting of many non-interacting 
particles in the suspending fluid, the distribution of 
orientation among all the suspended particles is need- 
ed. This distribution can be obtained by first calculat- 
ing the time-average distribution of orientation for 
each particle orbit, and then by specifying the statis- 
tical distribution of orbits among the particles [15]. The 
latter is especially difficult to achieve. 

The distribution function of particles orientation f is 
governed by the Fokker-Planck equation 

ef - - +  V" (go)f) = V. (DVf) ,  (16) 
~t 

where g o  is the angular velocity caused by hydro- 
dynamic forces, and D is the particle rotational Brown- 
ian diffusion coefficient, which is a constant in a dilute 
suspension. The term V ' ( g  w f )  is the convective term 
describing the rate of change of the distribution func- 
tion resulting from the deterministic change of the 
distribution function, and V" (DVf) is the diffusive 
term due to the diffusion process induced by a gradient 
in the probability distribution. 

Since the action of particle rotational Brownian 
motion has a randomizing effect on the particle orien- 
tation, the final steady-state distribution of orientation 
represents a compromise between the anisotropic peri- 
odical orientation associated with undisturbed Jeffery 
orbits and the uniform orientation which results from 
unopposed random Brownian motion. For a large rod- 
like particle the particle Brownian motion is weak but 
its effect will produce a steady state equilibrium dis- 
tribution orientation after a sufficiently long time 

(order of (Dr2) -1) [26]. Hinch and Leal [27] have 
obtained a perturbation solution to the steady-state 
form of eq. (16) in terms of the small parameter, D/9, 
and the zeroth-order solution, f0, can be expressed in 
the following form 

f0 (C, T) = I (C) 9 (C, ~), (17) 

where C and T correspond to the orbit constant and 
phase angle defined in eqs. (13) and (14). In particular, 
g(C,r) describes the phase-angle distribution around 
each specific orbit and is given by: 

1 
g(C,z)=w[l+C2(cos2z+r2esin2z)]3/2 (18) 

where C 4 = 0. 
On the other hand, l(C) is the distribution function 

of orbit constants and has the following asymptotic 
form for re ~> 1: 

1 C 
l(C) ~ (19) (4 C 2 + 1)  3/2 ' 

The product of these two functions gives the overall 
orientation distribution of particles in the suspension. 
In terms of (0,40 coordinates, this steady-state distri- 

bution is [27] (20) 

1 
f0 (0, ~b) = - -  [4 sin20 (cos2~b + re 2 sin2q~) + cos 20]-3/2. 

7g r e 

Rodlike particles with weak Brownian motion in a 
second-order fluid will be discussed in the following 
section, where it will be shown that eq. (20) is a special 
case of a more general solution. It will be necessary to 
examine first the validity and limitation of the Fokker- 
Planck equation (eq. (16)) for the case of a relaxing 
non-Newtonian matrix. 

3.1 The governing equation and its solution 

The assumption that enters in the derivation of the 
Fokker-Planck equation for the probability density f 
and that must be of concern here is the assumption 
that the macroscopic Brownian particle is subjected to 
random stochastic forces which are totally uncorrelated 
in time (on the macroscopic time scale). If this assump- 
tion is satisfied, the fluctuating forces are then said to 
follow a Markovian process and the drag on the par- 
ticle which is related to the autocorrelation of the 
fluctuating force by the fluctuation-dissipation theorem 
is then independent of time [28]. Otherwise, the "mem- 
ory" of the molecular impacts received by the particle 
during a given interval of time is not "completely lost" 
causing the drag and hence the diffusion coefficient of 
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the particle to be time dependent. We can assume that 
the form of the Fokker-Planck equation as written in 
eq. (16) remains unchanged, but that in a relaxing fluid 
we have to consider the time dependence of D. Sup- 
port for this assumption comes from the fact that a 
molecular derivation of hydrodynamic equations for a 
binary mixture yields the classical convection-diffusion 
equation for the concentration equation with a diffu- 
sion coefficient which in general will be time (or fre- 
quency) dependent [29]. 

Let us now consider the condition for which the time 
(or frequency) dependence of the diffusion coefficient 
is negligible. Volkov and Vinogradov [30] have recently 
shown that for a Maxwell fluid with a relaxation time z, 
the drag kernel ~(t) on a bead of radius a may be 
expressed as 

~ ( t ) = ~ r - l e  -1/~ for t - 0 ,  

where ~'= 6~zrla. Taking the Fourier transform of the 
above equation, one obtains for the real part: 

~(co) = ~(1 + co2 r2) -1 . 

state and constant D conditions: 

V' (e~ 0 + fle~l)f = D Vzf. (22) 

In the limit of weak Brownian diffusion, which means 
D/g ~ 1, one can expand the solution in terms of this 
small parameter as 

one then obtains the following equation by substituting 
eq. (23) into eq. (22) 

V ' ( ~ O ) ~ ) + ( D )  V ' ( t ~ 0 f l ) + ( D ) 2 v ' ( o 0 f 2 ) + . . .  

+fl*r2e V ' ( o l f o ) + f l * r  2 V' (e~ifl) + .. 

= ( D )  VZf0 + (D)2  V2f, + . . . .  (24) 

Hence, in the Maxwell model and in the analogous 
second-order fluid we must determine the magnitude 
of cot compared to unity to establish the magnitude of 
the frequency contribution term to the drag coefficient 
or diffusion coefficient. Since we are considering here 
the effect of rotation diffusion on the orientation distri- 
bution, the time scale (or frequency) of interest must 
be of the order of D-1 (or D); hence, taking 

c o ~ D  

where fl* = fl/[r2(D/g)]. The parameter fl* will be dis- 
cussed in details later. The governing equation to 
zeroth order is then given by 

V" e%f 0 = 0. (25) 

After coordinate transformations from the (0, 0) system 
to the (C, r) systems, eq. (25) can be solved as 

fo (c ,  ~) = l ( c )  g(C,  ~) (26) 

we must assume D r ~ 1 to legitimize ~ (co) ~ ~ and 
D ~ constant. For the case under consideration, the 
assumption D r  4 1  will, however, be automatically 
incorporated into model as the perturbation scheme in 
the second-order fluid requires that fl and hence 29 be 
less than unity (where r=-~u2/8r ls  ) and the weak 
Brownian diffusion limit requires that D/g be less than 
unity. Therefore, since rg ~ 1 and D~ 9 ~ 1, the condi- 
tion that D r ~ 1 is automatically satisfied, and we can 
assume a constant D in eq. (16). 

The convective motion of a single rodlike particle in 
a second-order fluid undergoing a simple shear flow 
described in section 2.2 can be written as [21, 22]: 

O) = ¢Lt0-}-/~O)1 , (21) 

where to 0 is Jeffery's solution for a Newtonian fluid, 
and fleJ 1 is the additional contribution caused by the 
elasticity of the second-order fluid as given in eqs. (11) 
and (12). Substitution of eq. (21) into the Fokker- 
Planck equation (eq. (16)) yields the following govern- 
ing equation for the distribution function under steady- 

which has the same form as in the Newtonian case. It 
may be deduced from eq. (25) that the solution for 
g(C,r )  is the same as eq. (18), but that the function 
I(C) is yet to be determined. 

Since both the diffusion and elasticity effects on the 
distribution function are lost in eq. (25), one can follow 
arguments similar to those used by Leal and Hinch [15] 
to recover this information by integrating eq. (22) and 
making use of the divergence theorem. This results in 

( o f ) "  nds= D ~ (Vf) " nds. (27) 
g 

Substitution of eq. (21) yields 

[(OJ 0 + fl tal)f]  " lids = D D_ ~ ( V f )  " l ids .  (28) 
g 

Further, if one chooses the Jeffery orbit as the line 
integral domain, then o 0 " n  = 0. When the expanded 
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form of f i n  eq. (23) is used, eq. (28) becomes 

D D 2 
= (~-) (fj) {V[ fo+ ( 7 ) f l  + ( 7 )  f2+ ...]} "rids ( 2 9 ,  

and gives the "order one" equation as 

fl*r2e { (o , f0)"  , d s  = { (Vf0)" rids. (30) 

To obtain the distribution of orbits, I(C), one has to 
use eq. (30). Notice that when fl* = 0, i.e. no fluid elas- 
ticity, eq. (30) will reduce to the condition used by 
Lea1 and Hinch for the Newtonian fluid case. After 
lengthy algebra (see Appendix A), substitution of eq. 
(26) into eq. (30) will give 

I ( C) = c°nst C J~(~'fl*) [ HC4 + KC2 + M ] 

[2 HC2 + K-d l /2 ]  &(r''fl*) 
x HC2+K+,d l /2 j  "Fo(C) "F1(C)"F2(C), 

(31) 

U (Pe) = 1"2 -Jr- 1, 

1 2 7 1 
K ( r e) = -T r e + -~ + 4 r----~e , 

M(re) = (r 2 + 1)/r 2, 

A = K 2 - 4HM.  

The function Fo(C) is given by 

Fo(C) = [ ca 1 2 + (1 + r2) C2 + 2 ~  

Yo (re, fl*) 

where 

fl* r 4 
Yo(re'fl*) ( r e  2 - 1) 2 

and 

R (x) = 1 + (1 + r2e) x + r}x 2 . 

The formulae for Fi(C) (i = 1, 2) are given by: 

(35) 

(36) 

(37) 

(38) 

, ( 3 9 )  

(40) 

(41) 

Fi(C)=exp [ -  Y/tan-i t 2 + (1 + r2e)Xi + (1 + rZ + 2r2exi) C2) ] 
2 ] fZ~ (xi)" ~ 

where 

1 
xl,2 = - 2---ff [K 4- U d ] ,  

Y1,2 - 
fl* F4e 

(re 2 - 1) 2 

The analytic continuation of (42) when R (xi) > 0 is given by: 

C 2 - xi J ?' 
Fi(C)= 2 + ( l + r 2 e ) X i + ( l + r Z + Z r Z x i ) C z + Z V R ( x i ) ' R ( C  2) 

(42) 

(43) 

(44) 

(45) 

where 

2fl*r 4 
Jl(re,fl*) = 1 ( r 2 _  1) 2 , 

3 fl*r 4 
J2 (re, fl*) = - - -  + 4 2 (r 2 - 1) 2 ' 

( 3 K - 3 )  1 (r}+l)2(fl*r 2) 
J3 (re, fl*) = - -  A 1/2 2 (r 2 -  1)2A u2 

K fl* r 4 + 
2(r 2 -  1)231/2 , 

where 

fl* r 4 _ K 
(32) YI,2- ( ~ - - ] )  [ 1 +- ' -~-1 ~ • (46) 

(33) For large re the numerical value of the coefficient xl 
tends to -0 .25 and R (xl) < 0, while x2 tends to 0 and 
R(x2) > 0. Therefore for large re, FI(C) takes the 
functional form (42) and F2(C) is given by (45). In the 
limit re >> 1 eq. (31) can be simplified to 

(34) I(C) ~ const (4C2 + 1)2fl*-1"5C 124fl* , (47) 
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where the constant can be determined by using the 
normalization condition [15] 

O(3 

~l(C)dC= 1 . (48) 
0 4= 

Again, for/7* = 0, i.e. in the absence of fluid elasticity, 
eq. (47) will reduce back to eq. (19) of  the Newtonian 
case. 

The mechanism of  the approach to the steady state 
distribution of orbits among the particles in a second- 
order fluid is different from that in a Newtonian fluid. 
In the latter, the Brownian diffusion, which is a 
random process, is the only force that alters the orbit of  
a particle. In addition to the diffusion force, the elas- 
ticity of  a second-order fluid will also change the orbit 
of  a particle, and this effect will drive the particles 
toward the vorticity axis, C = 0. Since Brownian diffu- 
sion is a randomizing force, it will oppose the fluid 
elasticity force and the net effect will give a steady 
state distribution of  orbits which is a compromise  
between the distribution of particles with weak diffu- 
sion in a Newtonian fluid, which is essentially along 
the flow direction, and a delta peak orientation along 
the vorticity axis. 

°"°1 C 

O.O8 

O.Oe 

o 
0.04 

0.02 

0 ~ 
0 0.5 C 1.0 

Fig. 3. Orbit constant distribution function l(C) versus orbit 
constant C for different values of fl* with r e = 16: (a) B* = 0, 
(b)/7* = 0.125, (c) fl* = 0.24 

3.2 D&tribution of orientation 

Eq. (47) is valid for large re, with the exception of  a 
small region of  order (1/re) in the vicinity of  C = 0, 
where for p * > 0 . 2 5  it is divergent for C ~ 0 .  To 
obtain the approximate  solution in this region one has 
to expand the full solution (31) around C = 0. We find 
easily that up to the first order in C: l(C) ~ C. That  
means that for very small values of  C, corresponding to 
the particles oriented towards the vorticity axis, the 
influence of the non-Newtonian properties of  the sol- 
vent is not felt, i.e. the form of the distribution func- 
tion l(C) does not depend on /7*. As a result of  the 
Brownian diffusion the number  of  particles oriented 
along the vorticity axis is equal to zero [I(C) ~ 0 for 
C ~ 0] as it is in a Newtonian fluid [15]. Note that 
Leal's result of  the drift of  particles through Jeffery's 
orbits towards the preferred orbit  C = 0 [see eq. (15)], 
leading to the Dirac's  delta function for the steady- 
state equil ibrium distribution over orbits, is not recov- 
ered as in our regime of  small /7 and small D~ 9, we 
cannot take D/9 to zero without simultaneously taking 
/7 to zero [see eq. (29)]. 

The parameter /7* (= fl/r~ (D/9)) is a measure  of  the 
relative influence of  the fluid elasticity to the particle 
Brownian motion on the particle orientation. These two 

effects, assumed to be both weak, will balance to lead 
to a steady-state distribution of orbits. When /7* in- 
creases, the elasticity term of the hydrodynamic  force 
is becoming larger, and the distribution of orbits will 
shift toward C = 0, the most stable orientation for non- 
Brownian rodlike particles in the viscoelastic fluid. An 
estimation of the distribution over orbits is indicated 
in figure 3. For  simplicity it is l imited to the asymp- 
totic limit of  large re using the expression in eq. (47) 
which is limited to/7* < 0.25 as it does not reproduce 
the correct limiting behavior  given by the full solution 
of  eq. (42) in the region of very small C when/7* > 0.25. 
The function l(C) has a sharp m a x i m u m  which be- 
comes sharper and shifts toward C = 0 with growing 
/7*. This means that most of  the particles start to orient 
closer to the vorticity axis C = 0 with increasing fluid 
elasticity. It is clear that the asymptotic  limit given by 
eq. (47) will not be able to describe the "boundary  
layer" region around C = 0 as/7* increases beyond 0.25 
for which one needs the full solution (42). 

As indicated in eq. (26), the complete picture of  par- 
ticle orientation is given by fo(C, r) as the product  of  
9(C,~) and l(C). One can transform the distribution 
function, f0, f rom the (C, r) coordinate system back to 
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( a )  ? 
Z x 

(b) 

Fig. 4. 3-D representation of the orientation distribution func- 
tion in a Newtonian fluid under a simple shear flow field 
(fl* = 0, r e = 16). x designates the flow direction and z the vor- 
ticity axis 

(0, 4) to obtain 

f0 (0, 4)) 

= const {re [4 sin20 (re2 sin2o5 + cos2q~) + cos20]} -3/2 

x 4 + tan20(rg 2 sina~b + cos2q5 ) (49) 

From eq. (31) the distribution of orbits l(C) is zero at 
C = 0 indicating that there are no particles with this 
orbit constant. When particles have an orientation 
0 = 0, or ~z, they have a particle orbit  constant corre- 
sponding to C = 0 and as a result (see Appendix A), 

f 0 ( 0 , 4 ) = l ( C ) = 0 ,  at 0 = 0 , ~ .  (50) 

The constant in eq. (49) can be determined for each 
specific fl* value, and one can therefore actually plot 
the distribution function, f0, in a 3-D spherical coordi- 
nate system. 

F igure4  represents the results of  fo(O,O) for the 
Newtonian case, f l *=  0. As shown in the figure, the 
highest probabil i ty of  orientation at steady state is in 
the flow direction (x-axis). The probabil i ty of orienta- 

Fig. 5. 3-D representation of the orientation distribution func- 
tion in a second-order fluid under a simple shear flow field 
(re= 16): (a) fl*= 1/32, (b) fl*= 1/1.6, (c) /?*= 1/8, (d) 
fl*= 3/16. x designates the flow direction and z the vorticity 
axis 

tion in other directions is non-zero but very small 
(except for 0 = 0 and ~ where it is zero) and is repre- 
sented by a uniform sphere which is not drawn to scale 
to make it visible on the figure. The z-axis is the 
vorticity axis and one can watch how the orientation 
develops near this direction as a function of /q* by 
proceeding to the following figures. 

For f i *=  1/32, figure 5a, the elasticity effect is still 
too small to show any obvious change in the distribu- 
tion function compared to that of  the Newtonian case. 
In figure 5b, fl* = 1/16, the major  orientation is still in 
the flow direction, but there is a small peak now 
appearing near the z-axis. This means that the elastici- 
ty has brought some of the particles to orient close to 
the vorticity axis. As /~* increases further to 1/8, the 
effect of  the fluid elasticity on the orientation distribu- 
tion is now clearly seen in figure 5c. The peaks near 
the z-axis are getting larger at the expense of the peaks 
along the x-direction. In the case of  f l *=  3/16, shown 
in figure 5 d, the major  orientation is close to the vor- 
ticity axis (z-axis). The fluid elasticity is now the domi- 



Cohen et al., Orientation and rheology of rodlike particles with weak Brownian diffusion 225 

nant effect on the orientation of  the particles as most of  
the particles are oriented along the vorticity axis. 

3.3 Calculations of rheological properties 

Theoretically, once the distribution of  orientation of 
the particles in a suspension is determined, one should 
be able to evaluate any physical property of  the system 
which is dependent  on particle orientation as long as a 
suitable expression to describe that property is avail- 
able or can be obtained. To describe the theological 
behavior  of  a dilute suspension of rodlike particles in a 
second-order fluid, one needs an expression for the 
bulk stress pertaining to this system. A suspension is a 
system which is determined only in a statistical sense 
because the exact location and orientation of the par- 
ticles are different for different realizations of  the sus- 
pension with the same macroscopic conditions. Many 
such realizations with the same macroscopic boundary 
conditions make up an ensemble. Batchelor [23] has 
defined the bulk stress of  such a system as an average 
over an ensemble or realizations. This average repre- 
sents an integration over a suitably chosen volume of 
ambient  fluid and particles together when the suspen- 
sion is statistically homogeneous.  In other words, the 
chosen volume should have a characteristic length l 
such that the volume l 3 is large enough to contain a 
statistically significant number  of  particles while l is 
still small compared to the characteristic length scale of  
the bulk flow field. The bulk stress of  the suspension 
has meaning only in the above "average" sense. 

Batchelor [23] has discussed extensively the bulk 
stress of  a suspension resulting from a pure hydro- 
dynamic force in a Newtonian fluid. Later, Hinch and 
Leal [26] employed his results to express the bulk stress 
in terms of statistical averages: 

- -  - A ( s i n 4 0 s i n 2 2 @ +  2B(s in20)+ 2,  (51) 
~gr/~ 

A (sin40 sin 4 ¢ ) ,  (52) 
O g ~I~ 

C g rls 

A 
2 (sin40 sin 2 ¢ )  

- 2 (A - B) (sin20 sin 2 ¢ ) ,  (53) 

where g is the shear rate, ~/~ is the viscosity of  the am- 
bient fluid, and ¢ is the volume fraction of  suspended 
particles. When re ~> 1, 

A = 4 ( l n 2 r e -  1.5) ' (54) 

31n 2re -  5.5 
B = .2 (55) 

I e 

O g ~ls 

and 

The angle-bracket average is defined as 

~z 2 ~  

(P(O,¢))=SdO ~ s inOP(O,¢) f (O,¢)d¢,  (56) 
0 0 

where f (0 ,  ¢) is the orientation distribution function. 
However, the hydrodynamic  force is not the only 

source to contribute to the particle stress. In some 
cases, other sources, such as Brownian force, electric 
force, etc., also affect the particle mot ion so as to con- 
tribute to the particle stress directly. These direct con- 
tributions should also be included (Kirkwood and 
Auer [31], Saito [32], and Brenner [33]). In our system, 
the two contributions to the stress are the hydrody- 
namic force and the Brownian force; hence, the particle 
stress can be written as 

P _ H + cr D (57) 
a i j  - -  ~Yij 

Giesekus [34] and Hinch and Leal [26] have shown that 

(60) 

a~2- g qs = ( D)  F {3(sin20) - 2 + (sin20 c°s 20)) ' 

where D is the rotational Brownian diffusion coeffi- 
cient, and when re ~> 1, F may be taken as 

3 r e 
F -  (61) 

(ln 2 re - 0.5) 

When a particle is in a second-order fluid, the par- 
ticle motion caused by purely hydrodynamic  forces 
consist of  two parts: the Newtonian part  and an addi- 
tional contribution due to the elasticity of  the fluid; 

H could be written in terms of  two components,  hence ~ij 
and eq. (57) can be modif ied as 

~ P  = H N  H E  aij + a U + a~, (62) 

HN and a D have the same expressions as those where a~i 
HE is for the particles in a Newtonian medium,  and aij 

the additional direct contribution from the elasticity. 
Kaloni and Stastna [35] have obtained an expression 

HE for spherical particles in a second-order fluid. for a~i 
For  the relatively more complicated geometry of  rod- 
like particles (in a second-order fluid) there are no 
available expressions for a~  E and no attempts to obtain 
such an expression will be made here. The complete 
particle stress expression that describes the rodlike par- 
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ticle in a second-order fluid is therefore not available, 
but we shall discuss the contribution from each term in 
eq. (62) and show that in the present case both a~ E and 
a D are expected to be negligible compared  to 0 "HN. 

For rodlike particles with weak Brownian diffusion 
in a Newtonian fluid, Hinch and Leal [26] have solved 
the orientation distribution function to order (D/9) 
and obtained expressions for both f0 and J] where 

f = f o + ( D ) f , .  (63) 

By using eq. (63), they found the particle contribution 
of GIH2 u and a D to be 

{ (o)2} 
cr~ ,-~ q5 r/s g O ~ -  (65) 

while, for the particle normal-stress difference, ( a ~ -  
a~3), the contribution from (a~N _ a~N) and (~r~ - a~)  
are 

(GHN -- uHN) ~ ~rlsg [ g \41nre]J ' (66) 

ID(16re l l  (67) 
~ e, g [ g " 

Similar results were obtained for (a2e2-a3e3). Eqs. 
(64-67)  show that it is legitimate to neglect the ¢~ 
term from eq. (53) when Brownian diffusion is weak 
and r e >> 1. 

For spherical 
and Stastna [35] 
tribution to the 
tion of O (2) to 

particles in a second-order fluid, Kaloni 
found that aft E will not make any con- 
shear stress, but will have a contribu- 
the normal  stresses, where 2 has been 

defined earlier as (q/2+ ~Ul)U/l~s. In our case, this 
contribution will be small compared to the O(fl*) 
effect retained in G HN when r2e D~ 9 is small and will 
therefore be negligible for D sufficiently small. Further  
evidence will be given in a subsequent paper  where an 
expression for a t of  rodlike particles with strong 
Brownian motion in a second-order fluid will be de- 

HE is about  at rived; it will be shown that, in this case, crij 
least one order of  magni tude smaller than O "HN when 
the fluid elasticity is weak. We shall therefore assume 
that this term is also negligible in the particle stress 
expression of eq. (62) for small elasticity effects. The 
dominant  contribution to the stress expression for large 
rodlike particle in a second-order fluid will then be 
taken as a~ u'  and although we neglect the direct con- 

U ' 

tributions to the particle stress caused by weak fluid 

HN must, of  course, elasticity and Brownian diffusion, a;j 
be evaluated on the basis of  the distribution of particle 
orientations which is governed by these effects. Conse- 
quently, these to weak forces of  Brownian diffusion 
and fluid elasticity will make  indirect contributions to 
the particle stress by virtue of  their influences on the 
distribution of particle orientations. In other words, the 
particle stress must be evaluated according to eqs. 
(51-53)  with the orientation distribution function 
which has been obtained in eq. (49). 

The resulting non-dimensional shear viscosity de- 
creases as fl* increases as shown in figure 6. Gauthier  
et al. [19] have used the stress expression of eq. (51) to 
calculate the intrinsic viscosity, 

[r/] = lira r / -  r/s (68) 
~-*0 q~r/s 

based on the experimentally observed orientation dis- 
tribution; they find that the intrinsic viscosity of  the 
non-Newtonian suspension is lower than that in the 
Newtonian system for the same particle size. From the 
analysis presented here, this behavior  could be due to 
the fact that when fl* increases, more  particles will 
orient close to the vorticity axis leading to a decrease in 
the viscosity of  the system. 

The dependence of  the shear viscosity on the particle 
aspect ratio is also shown in figure 6: The entire vis- 
cosity curve is higher for a suspension of particles with 
larger aspect ratios. 

The calculations for eqs. (52) and (53) show that the 
contributions from particles to the first and second 
normal-stress differences are very small, for example,  
(aHU--o 'HN)/~bgt]s  has the value of order 10 .4 for 
re = 50. (a~2 N -  af3N)/~gtls is about  two orders of  

5 

3 

b_K__ 
- - - - - - - - -  a 

. . . . . . . . . .  I~ i  aJi mlMl_ En~ r~¥ _QI Js~pa t i ~ n _  SLaLe . . . . . . . . . . .  

i i i I I i 

0.1 0.2 0,3 

Fig. 6. Non-dimensional shear viscosity, (r/-t/s)/C~t/s, of a 
suspension of rodlike particles with weak Brownian diffusion 
in a second-order fluid as a function of fl* and re: (a) re = 15, 
(b) re = 30, (c) re = 50 
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Fig. 7. Normalized first normal-stress difference, ( a l l -  a22)HN/ 
(a l l  -- a22)0 HN, of a suspension of rodlike particles with small D 
in a second-order fluid as a function of fl* and re: (a) r e = 50, 
(b) r e = 16 
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Fig. 8. Normalized second normal-stress difference, (a22- 
o_33) ~+/(G22 HN -- a33)0 , of a suspensio n of rodlike particles with 
small D in a second-order fluid as a function of fl* and re: 
(a) r e = 16, (b) r e = 50 

magnitude smaller than (0 " H N -  aHN)/Q ~ 9 iVls but varies 
more appreciably as a function of  fl* and re (see figures 
7 and 8). Furthermore,  ( a~  u - az~N)/~b 9 r/s has a nega- 
tive contribution to the total first normal-stress differ- 
ence, a behavior  similar to what has been found by 
Kaloni and Stastna for spherical particles in a second- 
order fluid. The magni tude of (0 " H N -  ~THX)/cD~trls, 
however, will decrease with increasing fl* very slowly, 
as shown in figure 7. On the other hand, (a~2 N -  a ~ u ) /  

q5 9 r/s increases with increasing fl*. 

4. Discussion and conclusion 

In a dilute suspension, when the solvent is a New- 
tonian fluid, the Brownian rotational coefficient, D, for 

a rodlike particle can be estimated from Kirkwood's  
relation [31] 

k TIn  (re) 
D 3 7r r/s L 3 ' (69) 

where k is Boltzman's constant, T is the absolute tem- 
perature, r/s is the solvent viscosity, and L and re are 
the particle length and aspect ratio respectively. The 
diffusion coefficient depends strongly on L, and has a 
magnitude of O(10 -1) to O(10) s -1 for the case of  
rodlike macromolecules in low viscosity solvents. Under 
a simple shear flow, when the shear rate is high enough 
to overcome the random diffusion force, the particles 
will start to orient themselves in the flow direction [36] 
leading to a decrease in the shear viscosity which will 
exhibit a shear-thinning behavior.  The  characteristic 
shear rate associated with this shear thinning has the 
same order of  magni tude as D. For large rodlike par- 
ticles, such as glass fibers of  several hundred microns 
in length, the diffusion coefficient has typical values of  
about  10 -8 s -1 or less (see Appendix B). For all prac- 
tical shear flows imposed on the system, the particles 
will be oriented in the flow direction since the required 
shear rate to orient the particles will be of  the order of  
10-Ss -1 o r  smaller. One will therefore expect a con- 
stant shear viscosity within the accessible experimental  
range for these large rodlike particles in a Newtonian 
med ium since no substantial orientation changes is 
possible by increasing the shear rate. This corresponds 
to the theoretical case of  fl* = 0 which shows constant 
shear viscosity from O (1) calculations, and the orienta- 
tion picture, figure 4, which indicates that most of  the 
particles are oriented in the flow direction. On the 
other hand, when large rodlike particles are suspended 
in a second-order fluid, our O(1) calculations (for 
f l * =  0) indicate a shear-thinning behavior  (figure 6). 
The fluid elasticity will orient the particles in their 
min imum energy dissipation state along the vorticity 
axis which will lower the system viscosity. When the 
shear rate 9 increases, fl* increases as g2, and there 
are more particles shifting their orientation from the 
flow direction to th e vorticity axis, and, consequently, 
the viscosity of  the suspension is decreasing. The shift 
of  orientation from along the flow to the vorticity axis 
has been shown in figure 5. 

The cause of shear thinning when it occurs for 
rodlike suspensions in a Newtonian med ium is very 
different from that expected for a suspension in a non- 
Newtonian fluid as described here. Only particles with 
strong Brownian diffusion (macromolecules) can show 
shear-thinning behavior  in a Newtonian fluid due to 
the fact that the particles change their orientations 
from a random orientation to a quasi-al ignment along 
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the flow direction as the shear rate is increased. No 
shear-thinning behavior  for the large rodlike particle 
(with weak Brownian diffusion) in a Newtonian me- 
dium should be observed in the accessible experimen- 
tal shear rate range. However,  when the large particles 
are suspended in a second-order fluid, the shear-thin- 
ning behavior predicted by the theory is the result of  
the shift of  particle al ignment from the flow direction 
to the vorticity axis. 

Faitel 'son and Kovtun [37] have investigated a sus- 
pension of monodisperse fibers under simple shear 
flows• Different volume fractions (1%, 3%, and 5%) of  
Kapron fibers (aspect ratio 54) were suspended in an 
epoxy resin. Within their experimental  temperature  
and shear rate range, the epoxy resin shows a constant 
shear viscosity; no normal  stress measurements  were 
reported. A shear-thinning behavior  of  the suspension 
is shown in their results, even for 1% volume concen- 
tration. We have analyzed their results for the 1% 
concentration suspension at 293 °K (see Appendix B). 
The rotational diffusion coefficient is of  the order 
o f  l 0  -14 S -1 for these fibers. The shear viscosity starts 
thinning at a shear rate of  about  0.5 s -1. From the 
results shown in the Appendix B based on the model  
presented here, we note that a shear-thinning behavior  
at this shear rate for such a small diffusion coefficient 
would imply that the epoxy resin would have a zero- 
shear-rate second normal-stress coefficient of  ~,2= 
- 1 0 - 7 d y n e  • s2/cm 2. Although q/2 is very small and 
impossible to detect by available rheometry instru- 
ments, it may not have been zero; if  that was the case, 
the observed shear thinning could have been caused by 
the combined effects of  very small D and ~u2. 

It is noticed that the 1% volume concentration is 
already slightly beyond the dilute regime and in the 
semi-dilute concentration region [36] where l / L 3 <  
< 1/dL2; hence particle interactions should be con- 
sidered. However, Faitel 'son and Kovtun report  in 
their paper  that separate fibers scarcely cross each 
other at this concentration. The shear thinning of the 
matrix itself at high shear rates is another possible 
reason for the shear-thinning behavior  of  the suspen- 
sion at lower shear rates. However,  the Kapron suspen- 
sion discussed above shows a shear-thinning behavior  
at shear rates at least two orders of  magnitude smaller 
than the max imum shear rate used on the pure matrix 
which behaved in a Newtonian fashion; it is very un- 
likely that the presence of  the fibers would affect the 
relaxation mechanism of the matrix to this extent. A 
calculation for a suspension of  particles in a corota- 
tional Jeffreys model fluid further supports this argu- 
ment  by showing that a new shear-thinning behavior  
will appear  for the suspension at shear rates much 

smaller than the rates required to shear-thin the Jef- 
freys fluid. The corotational Jeffreys model is a non- 
Newtonian fluid model with a shear-thinning viscosity 
and non-zero first and second normal-stress differences 
which can be expressed as (Bird et al. [25]) 

1 + 21 22 g2 
r/,=r/o 1 + 2 2 g  2 ' (70) 

2 r/0()q - 22) 
I/'tl --  1 + 2 2 g2 ' (7 l) 

-- / ' ]0 (21 - -  22) 
gt2 - 1 + 22 9 2 ' (72) 

where 2j, 22 are two relaxation t ime parameters  with 
the constraint 1/3 < 22/21 < 1. For 219, 229 ~ 1, one 
h a s  

r/s = r/0, (73) 

~'1 = 2r/0(21 - 22) , (74) 

~'2 = - ~ 0 ( 2 ~  - 2 2 ) ,  ( 7 5 )  

and the fluid behaves as a second-order fluid under 
these conditions of  low shear rates• We can therefore 
apply our theory to calculate the shear viscosity of  the 
suspension in this regime. Here, we will choose D = 2.0 
• 10 -11 s -1, 21 = 1.67 • 10 .3 s -1, 22 = 0.421, ~u2 = - 10 . 3  

dyne.  s2/cm 2, and ~/0 = 1 poise (see Appendix B). The 
normalized viscosity curves for the pure corotational 
Jeffreys fluid and for the suspension are shown in 
figure 9. One can see that the suspension starts shear 
thinning much earlier than the pure matrix indicating 
that one would expect two independent and widely 
separated shear-thinning domains. 

r 
~ ' 1 o  ° 

" i~', 

i i i i 

Fig. 9. Weak fluid elasticity effect on the shear-thinning be- 
havior of viscosity of a suspension of large rodlike particles 
(D =2.0" 10-Ss -I, re= 102) in a corotational Jeffreys fluid 
(21=1.67"10 -3s -1, 22= 0.421, ~ 2 = - 1 0  -3dyne ' s  2 ' cm -2, 
~/0 = I poise) at 300 °K: (a) corotational Jeffreys fluid, (b) sus- 
pension 
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Fig. 10. Weak fluid elasticity, g2 (dyne' s 2' cm-2), effect on 
the shear viscosity of a suspension of large rodlike particles 
( D = 2 '  10-12s -1, re=102) in the second-order fluid (r/s= 
102 poise): (a) q / 2  = - -  10-4, (b) q / 2  = -  10 -6, (c) ~ 2  = - -  10 -8 

the suspensions are functions of  fl* which represents 
the ratio of  the fluid elasticity effect to the particle 
Brownian diffusion effect. These two effects have been 
assumed here to be both weak but they can compete 
with each other to yield widely different distribution of  
orientations among the particles. One can combine the 
distribution function of  orbits with the distribution 
function of  phase angles for each orbit to give the full 
expression of  the orientation distribution of  particles in 
the suspension. Based on the obtained orientation 
distribution function, the rheological properties of  the 
suspension were evaluated for different fl* values. 
Although the expressions used to calculate the theo- 
logical properties are only approximate ones for rod- 
like particles in a second-order fluid, interesting rheo- 
logical behavior has been suggested by the theory; in 
particular, a shear-thinning viscosity of  the suspension 
occurs as a result of  the competing effects of  weak fluid 
elasticity and weak Brownian diffusion of  the particles. 

101 
o-' 

a b c 

I I 

1 0  0 101 g( , , c  -1 ) 

Fig. 11. Weak rotational diffusion coefficient effect on the 
shear viscosity of a suspension of large rodlike particles in a 
second-order fluid (~/s = 102 poise, ~u 2 = - 10 -6 dyne' s 2. cm-2: 
(a) D =  10-12s -l, re= 50, (b) D =  10-10s -1, re= 30, (c) D =  
10 -ss -1,r e = 16 

For a given particle size, when the fluid has a 
smaller ~u2 value, the shear-thinning behavior of  the 
suspension will start at a relatively higher shear rate 
required to build up enough elasticity force to bring 
the particles along the vorticity axis. This has been 
illustrated in figure 10. Similarly, for the same fluid, 
larger particle diffusion coefficients will shift the shear 
thinning point to higher shear rates as shown in fig- 
ure 11. 

In conclusion, for rodlike particles with weak Brown- 
ian diffusion in a second-order fluid, the orientation 
distribution of  particles and rheological properties of  

Appendix A: The distribution function of orbits 

A.1 Coordinate transformation 
One can define the orbit constant, C, and phase angle, r, in 

Jeffery's solution as: 

[ 1 \1/2 
C = tan0 [ 7  sin20 + c°s20] ' (A.1) 

\re / 

) = tan -1 tan0 . (A.2) 

On the other hand, 0 and 0 angles can be expressed in terms 
of C and r 

0 = tan -I [C(cos2r + r~ sinZr)J/2], (A.3) 

~b = tan-I (re tanT) . (A.4) 

Based on eqs. (A.l=4), the following relations can be easily 
derived: 

(80)  ~ -  (cos2T + r2 sin2@/2 
0c = - , (A.5) 

1 + C2(cos2r + r 2 sin2r) 

(s0) 
O ~ = ~ c  

C(r~-- 1) COST sin~ 
(cos2r + r 2 sin2r)1/2 [1 + C 2 (cos2~ + r 2 sinZz)] ' 

(A.6) 

( ~(9 ) r e 
@= ~ C-- cos2z+r2sin2"c ' 

(A.7) 

~C) 1 
(A.8) 
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Fig. 12. The representation of a line segment in the two dif- 
ferent coordinate systems: (0, 4)) and (C, r) 

8C) O r (cos2"c + r 2 sin2r) 
(A.9) 

~--~ 0 = Oc re ' 

0 G 

From figure 12, the line segment ds can be expressed as 
follows for the two different coordinate systems 

ds 2 = dO 2 + sin20 dq52 

= 02dC 2 + 20cO~dCdr + (02 + sin20 ~b 2) d'c 2 . (A.11) 

Let 

Oc = h (A. 12) 

and 

(02 + sin20 q52) I/2= k.  (A.13) 

From the cosine law, eq. (A. 11) can then be written as 

d s  2 = h2dC 2 + k2dr 2 + 2h k cosc~ dCdr , (A.14) 

where cos~ = G / k  and 

sin ~ = sin 0 G [02 + sin 20 ~b~]-1/2. (A. 15) 

Based on the above relations between the (0, ~b) and (C, r) 
coordinate systems, eq. (25) can be transformed after algebraic 
manipulations to give in terms of C and r: 

(A.16) 
gr  e I~fo 3C2(r~ - 1) cost s i n rv  } 

V' o) ofo (r~+ 1) / 8r [1 + C2(cos2r+r~sin2r)] f° 
I 

~(o)~£).n& =-l(C) 

and 

When C :# 0, the above equation can be written as 

g 1 8 
(hk  sinc~f0 ) = 0, 

r e+re  I hksinc~ ~r 
(A.17) 

{ .2x(r2+ 1) 1 

C r  e 

[1 -4- C2(cos2T -k r 2 sin2r)] 3/2" 

Integration of eq. (A. 17) yields 

(kh  sinc0f 0 = I (C) .  (A.18) 

Hence 

fo(C, r) = l(C) g (C, r),  (A.19) 

where g ( C , r ) =  1 /hk s ine .  On the other hand, when C = 0 ,  
eq. (A. 16) can be written as 

gre iv0/ 
V" o)0Y0 = r 2 - ~  t 8r I = 0, 

therefore, 

fo(C, r) = l (C) . (A.20) 

A.2 Derivation of  l(C) in a second-order f luid 

From eq. (30), one has 

~ (o)l fo) " nds = ( fl--~-r2 ) ~ (Vfo) " nds , (1.21) 

where o) 1 is the additional contribution to the particle angular 
velocities caused by the fluid elasticity, and can be expressed 
as [21-22] 

o) l = - 2 sin30 cos 4) sinZq5 CO82~ 0 

+ sin30 sin ~b cos ~b (sin2~b - cosZ~b) q~. (A.22) 

fo(C, r) is of the same form as in the Newtonian case: 

fo(C,r)  = l(C) g ( C , r ) .  (A.23) 

One obtains after carrying out the integrations and simplifying 
the results, 

:Z( r2 + 1) 2 / 
[1 - V(1 + c 2) (1 + r2e C 2) ] 4 (~e --- -17 C / (A.24) 

• = 7~ [H(re) C 4 + K ( r e ) C 2 + M ( r e ) ] ~ + ~  [2H(re) C 4 + ( 6 - K ( r e ) ) C 2 - M ( r e ) ] l  , 

where H(re) = r2e + 1, 

K<) = r +Y+Z4, 
4 2 4 

and M(re) = (r 2 + 1)/r~. 
One obtains by equating eqs. (A.24) and (A.25): 

[ / 1 ' ~ (r2e+l)2] 2 [ 2( r2+1)  ] 
2 / ~ C  4 -1- 6 1 8-~-~r2 ) - K + ~ ]  C - a ) -  (1 -- ] /(1 + C 2) ( I  +r2C2)) 

dl . . . .  - -  , ( r 2 e - -  1) 2 
- - +  1=0  

(A.25) 

(A.26) 

clC c [ f l c  4 + R c  2 + ~4] 
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where 

/ ~ _  1 , A ] r -  1 . , R -  1 - ( ~ ) H ( r e )  -(-~r2e)K(re) and -( '-~.2)M(re) 

Eq. (A.27) can be solved by using a standard method which will give the solution as 

l (C) = const e -  5 PdC, 

where 

[ ( 6 )  (r2e+l)2JC2 [ ~  f 2( r2+ 1) 
2 / ~ C 4 +  ~ - / ~ - k  (re2--1) 2 (r2e_l)2 

p ( c ,  re) - 
C (1216 4 q- K C 2 -l- J~/1) 

Then, 

(1 - W(1 + C 2) (1 -t- F2C 2) )] 

(A.27) 

(A.28) 

(A.29) 

H ~ ~ 2 2 5 4 - - -  ~ " F o ( C ) ' F  1 (C) 'F2(C)  , (A.30) 

where K 2 -  4HM > 0, r e > 1, and Jl  (re fl*), J2(re, fl*), J3(re, fl*), and Fo(C), FI(C), F2(C) are given in the text by eqs. 
(32-46). 

A p p e n d i x  B:  C a l c u l a t i o n s  f o r  s e c t i o n  4 

B. 1 Rotational diffusion coefficient for short glass fiber 
For L=0 .01cm,  r e=100, r / s=lpoise ,  T = 3 0 0 K ,  and 

using 

k Tlnre 
O = , - -  

3nrls L3 

one obtains 

D = (1.38" 10-16 erg/K) (300 K) ln(100)=  2.0.10-Ss -I . 
(3) (3.1415) (1) (10-2cm2) 3 

B.2 Rotational diffusion coefficient for Kapron fiber 
in the Faitel'son and Kovtun's paper [3 7] 

For L=0 .125cm,  d =  0.0023 cm, re=54,  r/s= 330 poise, 
T = 293 K, one obtains 

D -  (1.38 • 10 -16 ) (293) 1n(54) = 2.66 • 10-14s -1 . 
(3) (3.1415) (330) (0.125) 3 

The shear-thinning point, from their experimental results, is 
at 9ar=lOOs -1, where aT=200  at 293K. Therefore 
g = 0.5 s -1. If one assumes that - ¢ 2  = 10-7 dyne • s2/cm 2, one 
has then: 

P* g (r/- q0/(r/- r/s)0 

0.06252 0.358 0.9734 (C) 
0.125 0.506 0.9302 
0.1875 0.620 0.8775 
0.22 0.671 0.8461 
0.24 0.701 0.8248 
0.248 0.713 0.8156 
0.2499 0.715 0.8140 

The shear-thinning point calculated from our theory is 
around the shear rate value of 0.5 s -1, and would therefore be 
comparable with the experimental result with the choice of 
- ~2 ~ 10-7dy ne • s2/cm2. 

B.3 Corotational Jeffreys model 
The rheological function of this model are given by [25] 

1 + 21220 '2 2r/0(21 -- 22) r/0 (21-  22) 
~/=r/0 1+2292  , % -  l + 2 ~ g  2 , qJ2 l + 2 ~ g  2 , 

where 21 and A2 a r e  two relaxation time constants with the 
constraint 1/3 < 22/21 < 1. 

When 21 g, 22g "~ 1, one has 

r/s = r/0, ~'l = 2 r/o (21 - 22) , gt2 = - r/o (21 - 22) • 

By choosing 22/21 = 0.4 for the pure solvent, one has 

~/s 1 + 0.4(21 g) 2 

r/o 1 + (2j g)2 

One can plot th/~lo vs. 21g, which is shown in figure9 
in the text. For the suspension system, if  re= l02, D =  
2.0" l0 -s S -1, q/2 = - 10-3 dyne- s2/cm 2, and r/s = 1 poise, and 
taking ) q = l . 6 7 " 1 0  -3s- l ,  22=6.68"10 -4s  -1, and fl*= 
- q/2/8 r/s D r~ g2 = 0.625 g2, one will have the following results: 

P* g ,~1 g ( ~ s -  q) / (~ - r/,)0 

0.0625 0.316 5.28 
0.125 0.447 7.468 
0.1875 0.548 9.147 
0.22 0.593 9.908 
0.24 0.620 1.035 
0.248 0.630 1.052 
0.2499 0.632 1.056 

• 10 -4 0.9734 
10 -4 0.9302 
10 -4 0.8775 
10 -4 0.8461 
10 -3 0.8248 
10 -3 0.8156 
10 -3 0.8140 

The plot of ( r / -  Vs)/(r/- r/s)o vs. 2j g is shown in figure 9 in 
the text. 
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