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A computational method is presented for the calculation of the conductivity tensor and 
the density of states of disordered solids. This is a more general and detailed discussion 
of an algorithm which has been applied to d.c. and a.c. conductivity, Hall effect and 
density of states of various systems. 

1. Introduction 2. The Basic Algorithm 

In the study of non-crystalline solids the lack of any 
simplifying symmetry poses a major problem in the 
calculation of electronic and other properties. Trans- 2C = ~ Hull ) (jl 
port studies have proven particularily tricky since u 
long range correlations and non-local contributions 
can play an important role. 
In the simulation of such systems computer storage 
is usually the most significant limiting factor. For  a 
system of N atoms diagonalisation requires the stor- 
age of ~ N  2 quantities; thus prohibiting the study of 
3-dimensional systems of more than 53 atoms. 
Some methods have been developed which have a 
storage requirement ocN which allows up to 253 
atoms. The recursion method [1] and the equation of 
motion method [2, 3-1 have proven useful for the 
calculation of densities of states and related proper- 
ties. Transport  properties have proven more elusive 
however [4, 5-1. 
In this paper an algorithm will be presented which 
contains no limitation due to computer storage on 
the volume of the systems which can be treated. 
N~ 109  has been considered. The systems are very M o o o o o 
anisotropic however: N=Me-lLwhere M d - l < 1 0 0  o o o o o 
and L is essentially unbounded. While this may be a o o o o o 
disadvantage in a few cases, it is generally possible l o o o o o 

to increase L sufficiently to achieve a very accurate 
result whose dependence on M can be studied 1 
[6, 7]. 
This paper will deal with a very general form of the 
algorithm, for which particular cases have been con- 
sidered by various authors. 

Consider a tight-binding Hamiltonian of the form 

(1) 

where the functions Ii) are located at points on a 
regular lattice and ~r is hermitian but otherwise 
general. For  simplicity let us consider all matrix 
elements Hi~ where i and j are not on the same or 
nearest neighbour sites to be zero. 
Any lattice can be divided into slices along one 
lattice direction such that each slice may be labelled 
by a single integer, Fig. 1. The system we consider 
here will be built up of a large number of such slices 
where each slice has a finite cross-section, with peri- 
odic or free boundary conditions. 
In what follows all quantities written in BOLD CA- 
PITALS are matrices operating in the subspace of a 
slice and the indices refer to slices. In this way a 
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+ 
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Fig. 1. Schematic picture of the iterative procedure ~used for the 
calculation of p, a ~  and crxy. A quanti ty corresponding to a 
system of size ( L + I ) - M ,  A (L+I), is related to the same quanti ty 
for the system of size L- M, A (L) via a recursive relation 
A(L+ 1) = f (A(L)) 
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Green's Function may be defined from 

[Z-Hij]Gij-Hi,j+IGi+I,j-Hi,i_IGi_I,i=I6ij (2) 

where Z = (E + iy) I  is the complex energy. 
Now consider a stack of N-slices. We wish to find 
the effect of adding an additional slice. The Hamil- 
tonian may be divided into three contributions: 

= H~ + (Vs + V~) + H~ (3) 

where i,j<=N, Vs=HN, s+~ is the off-diagonal part 
coupling the Nth and the (N+l)st slice, and 
H ~  We can calculate the Green's 
function for the N + 1 slice system from that for the 
N slice system by using Dyson's equation with V~ as 
the interaction. Thus 

G(.U+~) = G(.m • ~(N)v CZ(N+I) u --u ~ui~ "N'~ (4) 

In particular 

G(N+I) --- Z l-lo vf/-2(N)V q-~ 
N + I , N + I - -  [ - -~t~N+l - -  "N'~'~NN "NA 

G!~+I) = G(#) + ~ (mv  /'~(N+I) Vr I~-(N) 
tj --tJ --'~JiN "N"JN+I ,N+I  "NX'~Nj 

(5 a) 

(i,j < N) 
(5b) 

(5c) 
(5d) 

G ( N + I )  _ t~{N)v ~_(N+I) (i<=N) i ,N+l - - ' , J zN  VN".JN+I,N+I 

G(N+ 1) _ ~_(N+I) Vt t'~(N) I V + I , j - - ~ J N + I , N + I  N~JNj (j<N). 

In this way we can generate any element of the 
Green's function for the new system and we can 
build a Stack of any thickness by starting from a 
single slice and repeatedly applying (5). 
In the following discussion we shall require both 
advanced and retarded Green's functions, G -  and 
G +. For a hermitian Hamiltonian these are related 
by 

Gg =(G+) *. (6) 

3. The Density of States and Conductivity Tensor 

In this section we shall derive formulae for the den- 
sity of states, p, and for the diagonal and off-diago- 
nal components of the conductivity tensor, ax~ and 
a~y. These may be defined as follows [8]: 

- 1  N 
p(E)= N MIm ~ TrG~ (7a) 

i=1 

e 2 4 Tr 72 G+xjG~xl 
a ~ - h  NM -. 

- i T � 8 9  2 (7b) 
i 

f N e 2 4 Tr 7 2 ~ G + y G ~ x i  
axY h NM ~ U 

-iY�89 } (7c) 

where the Gij are evaluated at the Fermi energy EF, 
M is the cross-section of a slice, y is the diagonal 
operator representing the position accross the slice 
and x i is the (scalar) position of the i th slice. 
We are now in a position to derive recursion for- 
mulae by substituting (5) into (7). The results are 
expressed in terms of the following ancillary ma- 
trices for the stacks of N-slices: 

R N = G+N (8 a) 
N 

N 

BN:,V~[~G+jxj(27G~-iI~u)xiG+]VN (8c) 

N 

v rz + lv - +), (8d) C + = y  G N i X i G i N  - - ( C N  

N 

N 

v ; [ z  + -lv  - )' DN = 7 GmyGiN - (DN 

[ 
12  V m (8g) FN = V~* G~iGiu 

In deriving the recursion relations we consider the 
new slice to be at XN+l=0 (see end of this section). 
This considerably simplifies the equations. By com- 
bining (5), (7) and (8) we obtain the relations: 

s(f +1)=#pro + Tr {RN+ 1 FN } (9a) 

s~  +l) = s ~  ) + Tr {Re(BNRN+ 1) 

+ C + R~+ ~ Cr~ RN+ ! } (9 b) 

s~+ 1) = s~) + Tr {Re(AN RN + 1) 

+(DN+Ty)R~+IC~ RN+I} (9c) 

RN+~ = [Z - H~ - V~ RN VN]- 1 (9d) 

AN+I =Vsf +1RN+I [AN + 2(DN + ?y)R~+~ C~] 

"RN+IVN+I (9e) 

BN+I =Vs* +~ RN+~ [BN + 2C+ R*s+~ Ct~] RN+~ VN+I (9I) 

+ _ t + t C V R C R V N + I  -- N + I  N + I  N N + I  N + I  

- -  - -  t t - -  CN+I -- V~+l RN+I CN RN+IVN+I 

DN+I =V~+I RN+I(DN + yY)R~+I VN+I 

FN+I = V~+I RN+t(FN + I)RN+I VN+I 

(9g) 

(9h) 

(9i) 

(9j) 
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From these we can write 

- 1  
p(m = im s(f) (lOa) 

rcNM 

e2 4 
a(m _ s(~) (lOb) 

~ h N M - ~  

e 2 4 
~ ) _  ~(m (10c) 
~ Y - h  N M  -~y" 

There is one additional correction to be added. Al- 
though the conductivities are independent of the 
choice of origin for x i the matrices A N, BN and C~ 
are not. However it is possible to shift the origin of 
xi at each stage to the position of the current slice. 
By substituting x i ~ x i - 1  in (8) and using the iden- 
tity 

N 
~/Z G~i G ~  = '  1 + - z~(GNN --GNu) 

=i�89 (11) 

the required conditions become 

A} = A N + iD N (12 a) 

BN=BN+iC+ +iC~ 1 t t ' + ~V~(RN -RN)VN (12b) 

_+, + .i t ? C N = C ~  - t i V } ( R  N - RN)VN. (12 e) 

This correction has the additional numerical advan- 
tage that it eliminates terms like (x~+ 1) 2 - x  2 which 
can give rise to numerical instability for large xl. It 
is more generally applicable than the procedure dis- 
cussed by Saso [9] for a purely 1-dimensional sys- 
tem. 

4. B o u n d a r y  C o n d i t i o n s  

There are two types of boundary conditions which 
must be considered: 
i) accross each slice 

ii) at the beginning and end of the stack. 
For p and axx periodic boundary conditions aecross 
the slices are usually to be preferred, so that the 
strip becomes a cylinder. In the case of axy, however, 
this choice is not available due to the presence of 
the y operator in (7c). In this case the simplest 
choice is free boundary conditions. This may not be 
the best choice however (see Sect. 5). 
The choice of boundary conditions at the ends is 
more complicated. We should like to make the sys- 
tem effectively infinitely large so that we can set the 
parameter 7 to zero. This can be accomplished by 
adding semi-infinite ideal metals to both ends, with 
the operator, x, defined to be constant in the metal- 

lic part. We may do this since the electric field 
should be zero in the metal and current conser- 
vation ensures that the current calculated in the 
disordered part alone is the same as the current in 
the metals. 
The equation for the Green's function on an ordered 
stack may be written in the form 

[v vO ] 
[ g  t Gi;] 

i13, 
To solve this for G we must first consider the gener- 
al eigenvalue problem 

IV V0_t ] [U:]  = [ Z - H I  ; I ]  [U:]  (14) 

where ~ is the eigenvalue and U is the matrix of 
eigenvectors. 
For i<j  the columns of Gij are linear combinations 
of those columns of U a corresponding to eigenvalues 
with I c~l> 1: 

G o = U"g i- JA (15) 

where g is the diagonal matrix of such eigenvalues. 
From this Go0 at the end of a semi-infinite 
( - o c t 0 )  stack can be found by solving 

VG10 = VUac~A = I (Ic~[ > 1) (16) 

so that 

Go~ = ua_~-i [Ua]-I  V-1 (l~l> 1). (17) 

Similarly the result for a (0~ oe) stack is 

G o o  ~ = u a c z [ - U a l -  1[V~'] - 1  =S~o 1 ([(~l < 1) (18) 

where S ,  is the corresponding self-energy matrix 
which will be required later. 
Since we can define x~=0 at the beginning and at 
the end the initial values of A, B, C -+ are zero. The 
matrix F may also be defined to be zero since the 
sum over i only runs over the disordered region. 
Thus for p and axx the only changes required are to 
use Goo ~ as the initial value of R and to add a slice 
eharacterised by S~o to the leading end. Note that it 
is not necessary to do the latter operation after each 
slice but only when it is desired to print out the 
results. 
In the case of axr the matrix D must be calculated 
for the semi-infinite stacks. By choosing Z = ( E - i T ) I  
in (14) (R can still be calculated using (6)) we can 
write 
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D - ~ = T V  t ~ A*(~*)-"UtyU_~-"AV @ l > l )  (19a) 
n=O 

- ~  �9 * {Y~'cfi } (19b) Du =Zk, [AV]kiI-U yU]k t[AV-ltj ~ 

for a ( -  oo--.0) stack and 

D'+' ~ = V ' J  ~kt [AS ~]*, [U* yU]k, [AS o~]zj { ~ }  

(Ic~l < 1) (20) 

for (0~ oe). In these formulae [ ]u refers to the ijth 
element of the matrix in the square brackets [- ]. 
Thus the initial value of D is given by D -~  and 
D +~ must be added to D N in (9c). 

5. Finite S ize  Effects in oxy 

If we rewrite the definition of axy for a 2-dimension- 
al strip of width M in terms of extensive variables 
we obtain 

Ix=~rxyAVy (21) 

where I x is the total current flowing through the 
stack (i.e. lx=Jx M where Jx is the current density) 
and A V r is the potential difference accross each slice. 
Unfortunately for a lattice system of finite size A Vy 
is not well defined since the two points between 
which the difference is to be measured have not been 
defined. In fact the correct definition must involve 
the expectation values of the potential V of two or 
more states associated with opposite sides of the 
system. Thus the effective length associated with A V 
will be less than the total width of the system by a 
factor AM which may be a sensitive function of the 
details of the eigenstates. The calculated value of axr 

M - A M  
will be in error by a factor - -  

M 
This may be overcome in one of two ways. The 
simplest way is to redefine the operator y to have 
the value - � 8 9  in one half of the slice and +�89 in 
the other. Often, e.g. for the Quantum Hall Effect 
[8], the result does not depend on the detailed be- 
haviour of the electric field but only on A V(=M) 
the potential difference accross the system. 
A more complex way of correcting the error, and 
one more in line with the real experimental situa- 
tion, consists of attaching semi-infinite one-dimen- 
sional wires to all edge atoms. In these wires, as in 
those attached to the ends of the strip, the potential 
may be treated as constant and equal to the maxi- 
mum or minimum values (+_�89 at the respective 
edges. 

The Green's function g at the end of such a semi- 
infinite 1 - D  wire can be written in the form 

Z + I / Z  e -41V[ 2 
g -  21V[ z (22) 

where the sign of the square root is chosen so that 
the Img has the opposite sign to ImZ, and V is the 
off-diagonal element between the neighbouring 
atoms of the wire. 
When the chain is attached to the edge of our stack 
the result may be expressed in terms of a self-energy 
correction 

s=lVlZg (23) 

to the atoms on the edges of the stack. In addition 
the terms 7Y in (9) must be modified by the addition 
of a term -ymi~Ims to the contributions from the 
edges. 
In general neither Z nor V must be the same as in 
the bulk stack so that we are free to choose s = +_it/ 
for the self-energy. 
It is worth noting at this point that in the limit 7 ~ 0  
only these contributions survive (see Eqs. (9)); thus 
confirming that the detailed behaviour of the applied 
potential is unimportant. 

6. The Limit  ~ 0  

Although it is possible to interpret the parameter 7 
as having physical meaning (lifetime, inelastic scat- 
tering time, etc.) we would nevertheless like to be 
able to eliminate ~ from the above algorithm. 
Interestingly, although the definitions in (7) and (8) 
contain 7, the recursion relations (9), (10), (12) do 
not, except in the form 7Y as discussed above. The 
only part of the algorithm where special care is 
required is in the treatment of the semi-infinite met- 
als at the ends. When 7=0  the eigenvalues, c~, of 
(14) can have modulus unity, le [=l ,  so that the 
division into groups with lel > 1 or ]c~l < 1 is no lon- 
ger unambiguous. Care is also required with the 
terms in curly brackets { }, in (19) and (20). 
Whenever [c~[=l it is necessary to consider the de- 

dc~. 
rivative ~ m order to resolve the ambiguity. Ignor- 

ing the (unlikely) possibility that the e are degener- 
ate we can write 

d• a . a 
U L I I  R 

- -  = i (24) d~ u~Vu~+u~[V*]-lu~ 

where the u~2 b and u~ b are the left and right handed 
eigenvectors corresponding to e. 
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Thus we may conclude that Jel > 1 if Re (c~* d~)  > 0  

and vice versa. With this information we can choose 
the correct contributions to (15)-(18). 
Again assuming that the e are non-degenerate, the 
terms in curly brackets, { }, in (19b) and (20) be- 
come 

c~*c~l- l J  2Re 

-~0 
and 

fikt 

d?! 

[ , d~k\ 2Re!, 

(Ic~k[ = 1) (25a) 

(l~kl ~= 1) (25b) 

(l~kl = 1) (25C) 

~ 0  ([c~kl + 1) (25d) 

respectively. 
These terms illustrate a very important property of 
the ideal metals: namely that only those modes with 
lel = 1 contribute to the transport. This is physically 
reasonable since only such modes can carry a cur- 
rent from - oe to + Go. 
A note of warning is necessary at this point. It is 
important that the ideal metals are defined in such a 
way that they are capable of carrying sufficient cur- 
rent at the chosen Fermi energy. In particular if this 
lies in a gap in the metals we will get p = a x ~ = ~ r  
= 0  since the metals have become insulators and no 
current can flow. 
On the other hand, if the metals are too dissimilar 
to the disordered region of interest extra scattering 
contributions from the boundary may distort the 
result. 
This problem can be overcome in principle by con- 
structing an infinite chain of disordered blocks rath- 
er than the metal-disorder-metal  configuration con- 
sidered here [10]. 

Special Case axy 

When calculating a~r we can also consider infinitely 
weak coupling of the 1-dimensional wires discussed 
above. The parameter r/ which describes the cou- 
pling of these wires to the rest of the system must be 
larger than ? in order to be effective. ~/ always ap- 
pears as an additional contribution to 7 either in the 
definition of the complex energy Z or in the term 
7Y- Thus, when 7>>tl, t/ can be neglected and, when 
t/~> Y, Y can be neglected. This implies however that 
we may set" ? to zero and simply consider the limit 
tl-~0. 

There are in fact very few modifications to the 
standard procedure which are required to take ac- 
count of this. We can substitute 17 for ? everywhere 
and make two other changes: 
i) y--~(Ymin,0 . . . .  ,0 ,  Ymax) everywhere, in particular in 
(19) and (20); 
ii) . . . . . . .  u L UR~ULlUR~ +ULmURm in (24), 
In this case the detailed behaviour of y and the 
electric field is no longer required. Only the extreme 
values of y survive, which represent the potential 
difference between the 1 - D  wires at opposite sides 
of the system. This is, of course, exactly the quantity 
measured in an experiment. 

7. Some Special Cases, the Effects of Symmetry 

When the Hamiltonian contains some symmetry cer- 
tain of the recursion relations simplify. A common 
example is when the Hamiltonian is real. Then the 
Green's function is symmetric and this symmetry 
also applies to R N, B u and F N. In addition C/~ = C~ 
and the conductivity tensor is symmetric 
( %  = % ) .  
In (14) when H and V are symmetric the left hand 
eigenvectors are related to the right hand ones by 

a b [U L , UL] = [U~ r, - U~ T] (26) 

which considerably simplifies the perturbation 
theory, (24). This condition is rather weaker than 
that the Hamiltonian of the whole system is real. 
When the matrices V between the slices of the stack 
can be expressed as the product of a scalar and a 
unit matrix the V's can be eliminated from all re- 
cursion relations. 
In most cases of interest the ideal metals can be 
defined such that (14) can be solved analytically by 
using Bloch's theorem, thus saving considerable 
computational work. 

8. Discussion 

Algorithms of the type discussed in detail in this 
paper have been successfully applied to the study of 
the d.c. conductivity of one dimensional disordered 
systems [11] and more recently to the a,c. con- 
ductivity [9. 12]. The generalisation to disordered 
strips and bars [13] has recently been successfully 
applied to systems in a magnetic field including the 
study of p, crxx and axy in connection with the Quan- 
tum Hall Effect [8, 14, 15]. 
Generalisations to diffusion [16] and to topological 
disorder [17] have also appeared. 
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The method is closely related to that employed in 
the study of Anderson localisation in disordered sys- 
tems [6, 7, 14]. 
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