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Abstract. Two types of flexibility are important in manufacturing scheduling in general and in real-time schedul- 
ing in particular. The first is flexibility with respect to the criteria that can be considered in the scheduling deci- 
sions. The second is flexibility with respect to the trade-off between decision quality and computational burden: 
that is, the ability to arrive at a solution that makes maximum use of the available computational capacity and 
computation time. This paper describes a procedure which meets the above requirements. The procedure is justified 
using a theoretical analysis based on probability. Experimental results of the procedure's performance are also 
presented. The results show that random selection (which is used in the procedure) can play a useful role in 
the real-time scheduling problem. 
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1. Introduction 

In  manufactur ing,  there are large numbers  of dec is ion-making problems in the areas of  
product  design, control of  manufactur ing processes, and production control. Decision mak- 
ing in  manufac tur ing  is characterized by the t ime required for a decis ion to be made,  the 

n u m b e r  of decisions that have to be made  over a certain per iod of time, and the impact  

a decis ion will have on  the manufac tur ing  system. Based on the values of  these attributes, 

manufac tur ing  decis ions can be classified as strategic, operat ional  or  detailed decisions,  
which  are related in a hierarchical  fashion (see figure 1). 
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Figure 1. Characteristics of manufacturing decisions. 
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At the strategic level, the time which is available to make a decision is usually lengthy 
and the decisions have a large impact on the manufacturing organization. The frequency 
of decisions is low. An example of this class of decisions is the decision to construct a 
new manufacturing plant. Although this decision is made relatively rarely, the time re- 
quired to make it is usually long, due to its complexity and possible impact. 

At the operational level, the frequency of decisions tends to be greater, and each deci- 
sion must be made in less time. Individual decisions have less impact on the organization. 
An example of this class of decisions is the master production scheduling decision that 
determines which portion of the planned workload in a manufacturing system should be 
allocated to each of several consecutive "time buckets." 

Individual detailed decisions must be made quickly and have low impact on the manufac- 
turing organization. However, since the frequency of these decisions is high, the aggrega- 
tion of these decisions has a significant impact on the organization. The assignment of 
a production task to a particular machine is an example of this type of decision. When 
this assignment occurs in real time in reaction to events on the factory floor, it is called 
real-time scheduling, which is the subject of this paper. 

In real-time scheduling, a decision point arises whenever one or more production resources 
become available after completing manufacturing tasks or after repair. A resource can be 
any individual production unit such as a single machine, an operator, or a manufacturing 
cell of machines grouped together with auxiliary devices (e.g., robots). Resources can be 
logically grouped into work centers according to common manufacturing function. The 
decision to be made in each work center at each decision point is which of the pending 
tasks (tasks that are ready to be performed) should be performed next on each of the available 
resources. The partitioning of this decision-making problem into work centers renders it 
more computationally manageable while still allowing the consideration of all feasible 
resource-task assignments. A feasible decision alternative is a list of resource-task 
assignments in which the resources are the ones that are available in a work center at the 
decision point and the tasks are selected from those pending at the work center at the deci- 
sion point. For example, if two resources R 1 and R2 are available and three tasks T1, T2, 
and T 3 are pending at a decision point, then the six possible alternatives are: ((R1 T1) 
(R 2 T2)), ((R 1 T2) (R 2 T1)), ((R 1 T1) (R 2 T3)), ((R 1 T3) (R 2 T1)), ((R 1 T2) (R 2 W3)), and 
((R1 T3) (R2 T2)). The schedule for a work center can be generated by deciding on alter- 
natives at consecutive decision points over time; the schedule for an entire facility can be 
generated by combining the schedules of its constituent work centers. 

Because of limits placed on computational burden in real-time scheduling, often a "good" 
decision must be made in lieu of the optimal decision. A "good" decision can be defined 
as one with a decision quality (DQ) which is within some interval A of the decision quality 
of the optimal decision. The efficiency of a manufacturing decision can be defined as the 
ratio of its quality to its computational burden. 

Decision quality can be a function of multiple, possibly conflicting, criteria. These are 
generally different from organization to organization. An effective real-time scheduling 
procedure should be flexible in terms of the trade-off between decision quality and com- 
putational effort; that is, it should make full use of the available decision time in order 
to achieve the highest possible decision quality. The purpose of this paper is to motivate 
and describe such a procedure, and to present experimental results of its application. 
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A number of procedures have been developed to address the problem of real-time schedul- 
ing. One approach that has been extensively researched is the use of dispatch rules (Con- 
way, Johnson, and Maxwell 1960; Panwalker and Iskander 1977; Stecke and Solberg 1981; 
Blackstone, Philips, and Hogg 1982; Malstrom 1983). A dispatch rule orders the tasks 
waiting to be assigned in a queue based on some task attribute. At each decision point, 
the dispatch rule is applied and the task at the head of the queue is selected for processing. 
If more than one resource is available at the decision point, the resource which will pro- 
cess the selected task must be chosen either randomly or heuristically. Thus dispatch rules 
partition the assignment problem into two parts, namely the selection of an available resource 
and the selection of a task to assign to the resource. Resources and tasks are not considered 
simultaneously, but rather sequentially at a decision point. Since dispatch rules consider 
only a limited amount of information (i.e., a single attribute of the pending tasks at a deci- 
sion point), their computational burden is relatively slight. This computational burden cannot 
be adjusted to change decision quality because dispatch rules are "hard-wired" heuristics. 
The dispatch rule approach is limited in its ability to consider multiple criteria because 
most dispatch rules are designed to benefit a single criterion. In addition, although much 
research has been devoted to determining the conditions under which particular dispatch 
rules perform well (Elvers 1974; Rochette and Sadowski 1976), the results are difficult 
to generalize beyond the particular manufacturing systems and conditions studied, making 
the selection of a dispatch rule a difficult task. 

A second approach to real-time scheduling partitions the overall problem into indepen- 
dent decision-making problems at each resource. These problems are treated via a class 
of scheduling policies similar to dispatch rules which determine the processing sequence 
of part types in the input buffer of each resource (Perkins and Kumar 1989). The decisions 
are made solely on the basis of part type levels in the input buffer. These policies differ 
from standard dispatch rules in that parts of the selected type are processed until none re- 
main in the input buffer. A different part type is then selected to be cleared from the input 
buffer. Such policies, implemented independently at each resource, enable a manufactur- 
ing system to achieve prespecified demand rates for each part type, and are stable in the 
sense that they can be implemented without exceeding preset, finite input buffer capacities. 
Since the decision making is very distributed and each decision process considers only 
inventory levels in one input buffer, the computational burden of the approach is very small, 
making it easily implementable in real time. However, the partitioning of the overall prob- 
lem by resource means that this approach is not suitable for systems in which multiple 
resources may perform a single task. This approach cannot make use of extra computation 
time, if any, to improve decision quality. It is also incapable of addressing multiple criteria, 
since the decision making considers only inventory levels. 

A third approach combines discrete simulation with dispatch rules (Wu and Wysk 1989). 
In this approach, discrete simulation of a manufacturing system model is used to evaluate 
the performance of a set of plausible dispatching rules over a short planning horizon, z~t. 
The rule with the best simulated performance in the planning horizon is then applied to 
the physical system. At the end of At, the state of the physical system is incorporated into 
the simulation model. The evaluation/application process is carried on repeatedly. The use 
of different dispatch rules at different times is designed to overcome the weaknesses of 
any single rule. The decision quality versus computational burden of this approach may 
be adjusted by varying At or by varying the number n of dispatch rules that are simulated. 
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Increasing At and n increases the decision quality but reduces the ability of the method 
to respond in real time. This approach is limited in its ability to consider multiple criteria 
for the same reasons as the dispatch rule approach: most dispatch rules are designed to 
benefit a single criterion; in addition, the success of a dispatch rule with respect to dif- 
ferent criteria depends in an unknown way on the structure of the manufacturing system 
and on the particular conditions (e.g., workload) which hold there. This makes the selec- 
tion of the set of dispatch rules to be simulated a difficult task. 

2. A game theory approach 

In this paper, game theory (Rajan and Nof 1990; Nof 1991) is proposed as a tool for deter- 
mining a good alternative at each decision point. The decision-making problem at each 
decision point can be represented as a two-person non-zero sum game in which the deci- 
sion maker is player 1 and "nature" is player 2. The decision alternatives {Altl, Alt2 . . . . .  
Altm} are associated with the rows of the game matrix, while the criteria {Crib, Crit2, 
• . . ,  Critn} by which the alternatives to be evaluated are associated with the columns. The 
consequence Cig of the i th alternative with respect to the jth criterion forms the element 
in the ith row and jth column of the game matrix (figure 2). The utility of the i th alter- 
native may be calculated as the weighted sum of its (normalized) consequence values: 

U 1. = W l C i l  -}- W2Ci2  + . . .  -}- WnCin (1) 

Here each ~ij is a consequence value that has been normalized so that it is dimensionless, 
and the higher its value, the more favorable the consequence (Keeney and Raiffa 1976). 
The alternative with the highest utility is selected. The game theory approach proposed 
in this paper, allows multiple-criteria decision making and the trade-off between execution 
time and quality of solution. Furthermore, such an approach makes relatively few restric- 
tive assumptions about the problem. 

ALTERNATIVES 

Altl 

Alt2 

Alti 

Altm 

CRITERIA 

Critl Crit2 ... Crit i ... Critn 

Cll c12 ... Clj  . . .  Cln 

c21 c22 ... c2j  . . .  C2n 

Cil c i2 . . .  c i j  . . .  Cin 

Cml Cm2 . . .  Cmj . . .  Cmn 

Figure 2. Game theory representation of the real-time decision-making problem. 
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Ideally, the evaluation of an alternative's utility should be based on all of the information 
available at a decision point. This means that it should be based not just on the quality 
of the assignments in the alternative, but also on the quality of the assignments that are 
possible once the assignments in the alternative are implemented. Consider a situation in 
which there are two available resources R1 and R2 and three pending tasks T 1, T2, and 
T 3. Let the sole decision criterion be the average cost of performing a task. A feasible 
alternative is ((RI T0 (R2 T2)), with T 3 left unassigned. If only the costs of the assigned 
tasks T 1 and T 2 are considered in the evaluation of this alternative, then information about 
the cost of T 3 will not have been utilized. In order to incorporate the information about 
the cost of T3, one may evaluate the alternative by considering its samples--namely, the 
ways in which all of the pending tasks may be assigned, given that the assignments in the 
alternative are fixed. For the given alternative, there are two samples: ((R1 T1 T3) (R2 T2)) 
and ((R1 T1) (R2 T2 T3)). That is, T3 may be performed on R 1 after the completion of 
T1, or it may be performed on R2 after the completion of T2. We may then evaluate the 
alternative ((R1 T1) (R2 T2)) by computing the average cost per task of its two samples. 
In general, we may define the utility of an alternative to be the average utility of its samples. 

Given this definition of an alternative's utility, we may make two observations for 
motivating a particular game theory approach to real-time decision making. 

Observation 1 

If some maximum number of alternatives (MNA) are formed randomly from a population 
of N possible alterntives, then the probability Po of forming the best alternative is given 
by MNA/N. For decisions of even moderate size, N may be prohibitively large. For exam- 
ple, if five resources are available and 20 tasks are pending, then N is 

20~ 
- 1,860,480. (2) 

(20-5)! 

Thus it is unlikely that P0 can be made to approach the optimum value of 1 in a real-time 
scheduling application. 

However, a more positive picture emerges if a "good" alternative will suffice. An alter- 
native is "good" if its utility is within some A of the optimal utility Um~x. For a given deci- 
sion, if we characterize the distribution of the alternatives' utility values by a continuous 
density functionf(x), then the probability Pa that the utility of one randomly formed alter- 
native lies within A of the optimal utility Umax can be approximated as: 

Pn = f(x) dx (3) 
U r e a  x - -  A 

Now, consider the fact that up to MNA alternatives can be formed at each decision point. 
If these are formed randomly, the probability P(MNA, A) of forming at least one good 
alternative is: 

P(MNA, A) = 1 - (1 - p~)mNA (4) 
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This probability measures the quality of the alternatives formation process. Figure 3 shows 
an example of P(MNA, A) versus MNA assuming thatf(x) is a normal probability density 
function with a mean/z of 70 and a standard deviation a of 10. The best utility Uma x is 
defined to be t* + 3a, which is 100 in this case. Figure 4 shows P(MNA, Ax) versus A 
for three values of a, the standard deviation off(x).  Again this distribution is assumed 
to be normal with a mean/,  of 70. z~ is assumed to be 5. Using the/z + 3a definition, 
the three values of Umax in this case can be computed to be 76, 100, and 130. In these 
examples, Pa can be approximated as: 

f 
Pax = exp ]- dx 

Umax--A 2 ~  O" ~ 2  J (5) 

From equation (4) and figure 4, it can be seen that, regardless of the distribution which 
determines Pa, P(MNA, A) increases sharply at first as MNA is increased and then levels 
off. Thus, by forming a (relatively small) subset MNA out of N possible alternatives at 
random, just enough to reach the point at which P(MNA, A) levels off, the probability 
of forming a "good" alternative can be made to approach the probability that would result 
if a much greater number of alternatives are formed. This behavior is more pronounced 
for larger values of h (figure 3), meaning that as the definition of a "good" alternative 
becomes less stringent, the measure P(MNA, A) of the quality of the alternatives forma- 
tion process increases. This behavior is also more pronounced for smaller values of a (figure 
4). As a decreases, Pzx increases, leading to an increase in the value of P(MNA, ZX). This 
means that as the distribution of the alternatives' utilities becomes narrower, the likelihood 
of forming a good alternative increases. 

1° t a=3°a 1 0 ~ ~  A=5 0i 006 
0 100 400 500 200 300 

MNA 

Figure 3. P(MNA, A), the probability of forming at least one good alternative, versus MNA for several values of A. 
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Figure 4. P (MNA, z~) versus MNA for several values of o. 

Observation 2 

Although the mean utility of all samples of an alternative defines the alternative's true utility, 
the mean utility of a fewer number of samples SR can be used as an estimate of the alter- 
native's utility. The goodness of this estimate is given by the probability that the estimated 
utility lies within some 6 of the true utility. If we characterize the distribution of the utility 
values of a particular alternative's samples by a continuous probability density function 
g(x), then the probability P~ that the estimated utility lies within 6 of the true utility ~70, 
if only one sample is used to estimate iT0, can be written as: 

f ~o+~ 
P6 = g(x) dr (6) 

o fi0_~5 

Note that t70 is by definition the mean of the distribution defined by g(x). 
Now consider the case where the mean utility of SR samples is used as the estimate of 

t7 o. Evaluation of this probability requires a knowledge of the distribution of estimated 
utilities Usn with a density function g'(x). This distribution can be approximated by a nor- 
mal distribution for two reasons. First, the utilities of an alternative's samples tend to be 
normally distributed because of the additive procedure by which they are calculated. Con- 
sider an example. Let the available resource be R1 and the pending tasks be Tb T2, T3, 
T4, T5, T 6, T7, and T 8. A feasible alternative is (R1 T1), and one sample (sample 1, say) 
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of this alternative is (R1 TI T2 T3 T4 T5 T6 T7 T8). The utility of such a sample is usually 
defined as the mean value of some combination of criteria for the tasks in the sample. For 
example, if the criterion is tardiness, then the utility of this sample would be calculated as 

Tard],] + Tard],2 + Tardl, 3 + Tard],4 + Tardl,5 + Tardl,6 + Tardl,7 + TardL8 (7) 
Ul = 8 

where Tardld represents the tardiness of taskj if the resource i, processes the tasks in the 
sequences specified in the sample. The utilities of the alternative's other samples are similarly 
calculated. Irrespective of the distribution of the Tardi,j's, utilities of the form in equation 
(7) tend to be normally distributed by the central limit theorem. The second justification 
for this assumption comes from a separate application of the central limit theorem. Let 
ao be the standard deviation of the distribution g(x) of the utilities of all of the alternative's 
samples; for sufficiently large SR, ?*sR is approximately a normal random variable with 
mean t70 and standard deviation a0/S~- (central limit theorem). Therefore, the probability 
P(SR, 8) that the estimated utility t~SR is within 6 of the true utility ~70 is approximately 

P(SR, O) = f ~°+~ S~ 
J ~o-~ ~ ~o 

~_ SR (x - ~ o ) 2 ~  
- -  exp 2a-~ dx (8) 

This is a measure of the quality of the evaluation of an alternative. Figure 5 shows P(SR, 8) 
versus SR assuming that the distribution of the alternative's sample utilities has a mean 
(t~0) of 70 and a standard deviation (o0) of 10. Figure 6 shows P(SR, 6) versus SR for 
several values of o0, assuming that 6 is 5. 
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SR 

Figure 5. P(SR, 6) versus sampling rate SR for various values of 8. 
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Figure 6 P(SR, 6) versus sampling rate SR for various values of ~0. 

As the sampling rate (SR) increases, P(SR, 6) increases rapidly at first and then levels 
off. Thus although the quality of the evaluation of alternatives improves as SR increases, 
the amount of improvement levels off after a certain level of SR is reached. This behavior 
is more pronounced for larger values of 6 (figure 5). It is also more pronounced for smaller 
values of tr 0 (figure 6), meaning that as the distribution of the utilities of an alternative's 
samples becomes more concentrated about their mean (the true utility), the likelihood that 
the estimated utility will be within 6 of the true utility P(SR, 6) increases. The quality 
of the evaluation of alternatives, as measured by P(SR, 6), has the same type of behavior 
as the quality of the formation of alternatives, as measured by P(MNA, A). That is, the 
quality of evaluation at lower values of SR can rival that at much higher values of SR. 

Based on the above observations, the following procedure is proposed for making the 
assignment decisions required in real-time scheduling (Chryssolouris, Wright, Pierce, and 
Cobb 1988; Chryssolouris, Pierce and Dicke 1991, 1992; Chryssolouris, Lee, and Dicke 
1991; Chryssolouris, Dicke and Lee 1992). 

1. Form alternatives 
• Establish the maximum number of alternatives (MNA) that can be considered out of 

the total set of N alternatives {Alti }. 
• If MNA <_ N, then randomly form (without replacement) MNA alternatives out of 

{Alti} and proceed with step 2; skip the step directly below. 
• If MNA > N, then form all N alternatives and proceed with step 2. 
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2. Establish criteria 
• Establish the decision-making criteria by which the formed alternatives will be 

evaluated. 
3. Evaluate alternatives 

• For each alternative formed construct SR samples, and calculate the utility of each 
sample. 

• Calculate the mean utility of the SR samples and use this as an estimate of the utility 
of the alternative. 

4. Select the best alternative 
• Implement the alternative with the highest estimated utility. 

3. Statistical aspects 

Since P(MNA, A) (figures 3 and 4) represents the quality of the formation of alternatives, 
and P(SR, 6) (figures 5 and 6) represents the quality of the evaluation of alternatives, we 
can define the probability 

Px = P(MNA, A) P(SR, 6) 

~0-~ 2 ~ r  0 exp 2tr~ ° dx (9) 

to be a measure of the quality of the decision-making process as a whole. Px is the prob- 
ability that among the maximum of MNA alternatives that are formed and evaluated at a 
decision point, at least one alternative has a utility that is within A of the utility (Umax) 
of the best alternative, and, in addition, for each alternative that is evaluated, the value 
of the utility is estimated to within 6 of the true value. We assume, for the purposes of 
calculating Px, that a single representative standard deviation a 0 characterizes the distribu- 
tion of sample utilities for each and every alternative. In other words, P(SR, 6) is the same 
for all alternatives. Although this is a rough approximation, it will suffice for the drawing 
of qualitative predictions from the resulting Px. 

In figure 7, Px is plotted versus both the maximum number of alternatives MNA and 
the sampling rate SR. The two plots can be viewed as theoretically derived decision quality 
(DQ) versus computational burden (CB) curves for the proposed decision-making procedure. 
As CB is increased (by increasing MNA or SR), the increase in DQ (Px) is rapid at first 
but then levels off. 

An observation can be made with regard to the relative effectiveness of increasing DQ 
via increasing MNA or increasing DQ via increasing SR. Qualitatively, figure 7 shows that 
increasing MNA is more effective in increasing DQ than increasing SR. This can be quan- 
titatively expressed by observing the saturation point: the CB at which the DQ (as measured 
by Px) attains 95 % of its highest value. Below this point, increasing CB appreciably in- 
creases DQ; above this point, little increase in DQ can be achieved, no matter how much 
CB is increased. The saturation points for the Px versus MNA plots occur at 460 units or 
greater (depending on SR), while they occur at less than 20 units for the Px versus SR 
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Figure 7. Px versus MNA and Px versus SR. The distribution of alternatives' utilities are normal with mean 70 
and standard deviation 10. A is 5. The distribution of sample utilities for each alternative is normal with standard 
deviation 10. ~5 is 5. 

plots (depending on MNA). Thus a given computational capacity is best invested by devoting 
most of it to forming alternatives (increasing MNA) and relatively little of  it to evaluating 
alternatives (increasing SR). In actuality, formation of alternatives (increasing MNA) takes 
much less time than evaluation of alternatives (increasing SR). This only strengthens the 
above conclusion. 

Another way to examine the effect of the sampling rate SR on DQ is the following. A 
measure of DQ is the probability Py that the alternative that is implemented will have a 
utility t70 that is within a desired range A of the maximum utility Um~x. Figure 8 shows 
the distributions of the estimated utilities in two representative cases. In the first case, the 
formed alternatives have utilities which are far apart. Since the distributions have little 
overlap for a wide range of values of SR, the selected alternative will very likely be the 
alternative with the highest ti 0. As this utility lies within the desired range, Py will be very 
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Distr ibutions o f  utility es t imates  for fo rmed alternatives. 

Case  1. Alternat ives  have  utilities which  are well  separated. 

,Rhigh q ,Rhigh   hi h,5 

_ At5 _ AL8 _ Ata _ AL3 Ume x utility 
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Case 2. Alternatives have utilities which are similar in value. 

S R  high 
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.o .o .o .... 
- I 

_AI3 
U o 

Figure 8. The effect on decision quality of the decision parameter SR (sampling rate). 

close to 1. In this case the influence of the sampling rate S R  is relatively low. In the second 
case, the formed alternatives have utilities which are close together. Here, the overlap of 
the distributions of estimated utilities, when S R  is small, makes it likely that any of the 
few top alternatives will be selected. Increasing S R  makes the distributions narrower, reduc- 
ing the amount of overlap and making the selection of the top alternative more likely. 
However, since the few top alternatives are all within the desired range, P y  is again not 
greatly affected by S R .  

4. Experimental procedure 

Simulation tests were conducted to verify the predicted characteristics of the proposed game 
theory-based approach to real-time scheduling. 

Tes t  1 

The first characteristic of the approach that was verified was its flexibility with respect 
to the trade-off between decision quality and computational burden. Specifically, the 
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influence of the decision parameters maximum number of alternatives (MNA) and sam- 
piing rate (SR) on decision quality and on computational burden were investigated. 

Simulation runs were performed on a system consisting of one work center with three 
resources. The workload of the system consisted of 20 independent tasks, all of which ar- 
rived at time 0. Each time one or more resources became available during the course of 
the simulation, the game theory procedure was used to assign a task to each available 
resource. The processing times of the tasks were integers generated uniformly at random 
from the range [1, 59]. All resources were capable of processing all tasks. Each simulation 
was run until all 20 tasks were completed. 

The values of the decision parameters MNA and SR were varied across the simulation 
runs. Ten values of MNA were used: 3, 5, 10, 20, 30, 50, 100, 200, 500, and 1000. Ten 
values of SR were used: 1, 2, 4, 8, 12, 18, 25, 30, 40, and 50. There were thus 100 com- 
binations of decision parameters. Each combination was simulated five times, and the results 
of these simulations were averaged, yielding a total of 500 simulation runs for test 1. 

A single decision criterion, mean flow time, was used for all simulations. The flow time 
of a task is the difference between its time of completion and its time of arrival into the 
work center (time 0, for these simulations). At each decision point, the utility of each alter- 
native was estimated to be the mean flow time of the tasks in SR randomly formed samples. 
For example, if SR was 2, and one resource R1 was available with four pending tasks T5, 
T9, Tll , and T20 remain to be assigned, then the utility of the alternative (Ra T5) was found 
by first forming two samples at random, say (R1 T5 T20 T9 Tal) and (R1 T20 T5 Tll T9), 
and then calculating the average flow time of the tasks in these samples: 

u(R1 Ts) = 

Flow1,5 + Flow1,9 + Flow1,11 + Flow1,20 + Flow2,5 + Flow2,9 + Flow2,11 + Flow2,20 
8 

(10) 

where: Flowi,j -- flow time (difference between completion time and arrival time) of 
task j in sample i. 

The decision quality of a final schedule was defined to be the mean flow time (MFT) 
of all 20 tasks in the schedule: 

20 
Z (tJ °mp -- t7  r) 

decision quality (DQ) = MFT = j=l 
20 

(11) 

where:  /;omp ~ completion time of task j; 
t7  r ~ arrival time of task j (= 0). 

Test 2 

The second aspect of the approach that was investigated was the dependence of its behavior 
on processing time variance. Intuitively, as processing time variance becomes smaller, the 
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differences in the mean flow times (equation (11) of different schedules should become 
less significant. (In the limit of equal processing times for all tasks, mean flow time is 
the same for all schedules.) Thus the decision quality should be fairly constant across a 
wide range of computational effort (across a wide range of values of MNA and SR). 

In the theoretical analysis, this type of behavior is predicted for the case in which the 
variance a 2 of the distribution of the alternatives' utilities at a decision point (defined by 
f(x) in equation (3) is small relative to the distance A from the optimal utility which defines 
a "good" alternative. Therefore simulation experiments were conducted to verify the follow- 
ing statements: 

1. A narrow (wide) processing time distribution results in a narrow (wide) distribution 
of the alternatives' utilities at a decision point. 

2. If statement 1 is true, then, in accordance with the theoretical analysis, a narrow proc- 
essing time distribution creates a situation in which the decision quality remains fairly 
constant across a wide range of computational effort (across a wide range of values of 
MNA and SR). 

In order to verify statement 1, two simulations were performed using the same facility as 
test 1. Again the single decision criterion mean flow time (equation (10)) was used. For 
the first simulation, the workload was identical to that of test 1. The processing times of 
the 20 tasks were integers uniformly distributed in the range [1, 59]. For the second simula- 
tion, the processing times of the 20 tasks were more narrowly distributed, being integers 
uniformly distributed in the range [25, 35]. For both simulations, 1000 (MNA) alternatives-- 
out of a possible 20!/(20-3)! or 6840--were formed at the first decision point, and the utility 
of each of these alternatives was estimated as the mean flow time of 50 (SR) randomly 
formed samples. These utilities were accumulated in a histogram in order to show the 
distribution of their values. One histogram was construced for each simulation. 

In order to verify statement 2, the experiments of test 1 were repeated, with the dif- 
ference that the processing time distribution of the 20 tasks was changed from uniform 
in the range [1, 59] to uniform in the range [25, 35]. 

5. Results and discussion 

Test 1: Influence of the decision parameters on the decision quality and the computational 
burden 

Figure 9 shows the computational burden, as measured by the CPU time required to ex- 
ecute a simulation in test 1, versus MNA and versus SR. Each data point of the CPU time 
versus MNA graph (figure 9(a)) is the average CPU time across all 10 values of SR for 
the given value of MNA. Similarly, each data point of the CPU time versus SR graph (figure 
9(b)) is the average CPU time across all 10 values of MNA for the given value of SR. The 
graphs show linear relationships between CPU time and the values of MNA and SR. This 
justifies the use of MNA and SR as surrogate measures of computational burden in the 
theoretical analysis. It also shows that the computational burden per unit increase in MNA 
is an order of magnitude less than the computational burden per unit increase in SR. 
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Figure 9. Computational burden, as measured by CPU time, versus MNA and SR. 

Figure 10 shows decision quality, as measured by mean flow time MFT (equation (11)), 
versus MNA and versus SR. The lower the MFT, the higher the decision quality. Each 
point in figure 10(a) is the mean of the MFTs across all 10 values of SR for the given 
value of MNA. Similarly, each point in figure 10(b) is the mean of the MFTs across all 
10 values of MNA for the given value of SR. Both graphs show that as computational burden 
(MNA or SR) is increased, the decision quality increases sharply at first and then levels 
off. This is consistent with the behavior predicted in the theoretical analysis (figure 7). 
The "leveling off" of decision quality occurs at a lower value of SR than one of MNA. 
This indicates that decision quality is more effectively increased by increasing MNA than 
by increasing SR, which confirms the theoretical analysis. 
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Figure 10. Decision quality, as measured by mean flow time, versus MNA and SR for the [1, 59] uniform process- 
ing time distribution. 
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This point can be quantitatively made by graphing the efficiency of the decision-making 
process versus MNA and versus SR (figure 11). Efficiency is defined as the ratio of deci- 
sion quality (the reciprocal of MFT) to computational burden (CPU time): 

1 
Efficiency = (12) 

MFT • CPU Time 

Each data point in figure l l (a)  is the average efficiency across all 10 values of SR, for 
the given value of MNA. Similarly, each data point in figure 11 (b) is the average efficiency 
across all 10 values of MNA, for the given value of SR. Peak efficiency is attained at about 
MNA = 20 and at about SR = 3, confirming the higher MNA, lower SR prescription. 

Test 2: Influence of the processing time distribution on the relationship of decision quality 
to computational burden 

In order to establish the influence of the processing time distribution on the relationship 
of decision quality to computational burden, we first establish its relationship to the distribu- 
tion of the utilities of the alternatives (defined atf(x) in equation (3)) at a decision point. 
Figure 12 shows the task processing time distributions used in two simulations (uniform 
with minimum = 1, maximum = 59 and uniform with minimum = 25, maximum = 35) 
along with the resulting distributions f(x) at the first decision point in each simulation. 
The graphs confirm that narrow (wide) processing distributions result in narrow (wide) 
utility distributions at a decision point. 

According to the theoretical analysis, when distributions of the alternatives' utilities at 
decision points are narrow, the decision quality remains fairly constant across a wide range 
of computational effort (across a wide range of values of MNA and SR). Therefore we would 
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AN APPROACH TO REAL-TIME FLEXIBLE SCHEDULING 251 

1.0 

A 0.8 N ~o.7 j 
0.6 

U 0,4 -~ 
~o.s j 

0.2 
0.1 

~ 4  
I 0  

: ~" 0.9 

g ~ 06 
0.5 

U 0,4 N U 
T ~I 0 3  

I o2 
0.1 

12 24 36 48 60 

pme~smg ume [h] 

rn in= l ,  max=S9, uniform ] 

1.0 
0.9 

,~ 0.8 - 
D 0.7 

6 0 6  t 
D 0"5 1 

~ .3 
ST 0.2 

0.1 

1200 I300 1500 1700 1800 

m.OJty ['a] 

(a) 

r 50 

u 

1.0 
s 0.9 

0.8 
D 0.7 
~, 0.6 
D 0 5  

0.4 
~ 0.3 
IT 0.2 
S 0.1 

12 

10 

r 
24 36 48 60 

fm~z~smgume 0a] 

i min-~-5, m a x ~ , u n f l o m l  

130o I500 I700 1800 2000 

utility [hi 

(b) 

Figure 12. Influence of processing time distribution on the distribution of alternatives' utilities at a decision point. 

expect that the effect of  the invested computational effort should be minimal when the proc- 
essing time distribution is narrow. This is shown in figure 13. By contrast, the behavior 
of  decision quality versus MNA and SR in the case of  a wide processing time distribution 
is shown in figure 10. 

When the processing time distribution is wide, there is a decision quality benefit to be 
obtained by increasing the computational burden up to a certain point (figure 10). However, 
i f  the processing time distribution is narrow, then decision quality is fairly uniform for 
across the entire range of  computational burdens and it makes sense only to invest the 
minimum computational burden possible (figure 13). This is reaffirmed by the efficiency 
versus computational burden (MNA and SR) graphs for the narrow processing time distribu- 
tion case (figure 14). Peak efficiency is achieved at the lowest possible values of  MNA 
and SR as opposed to MNA = 20 and SR = 3 for the wide processing time distribution 
case (figure 11). 
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Figure 13. Decision quality, as measured by mean flow time, versus MNA and SR for the [25, 35] uniform proc- 
essing time distribution. 

4 

0.0005 

0.0004 

0.0003 

0.0002 

0.0001 

0.0000 0 200 400 ' ~  600 800 10"00 
MNA 

(a) 

0.0002 

i 
o.oool 

0.0000 ;0 10 30 40 50 
SR 

(b) 

Figure 14. Efficiency versus computational burden for the narrow processing time distribution [25, 35]. 

6. Conclusions 

The experimental results confirm the main points of the theoretical analysis regarding the 
proposed real-time scheduling procedure. Although the analysis is based on the considera- 
tion of probabilities at a single decision point, it successfully describes the behavior of 
the procedure over a sequence of decision points. The game theory procedure is flexible 
both with respect to the number and types of scheduling criteria and with respect to the 
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decision quality versus computational burden trade-off. It can be tailored, via the decision 
parameters MNA and SR, to attain the best decision quality possible for a given computa- 
tional capacity. 

The real-time scheduling procedure is largely based on the power of random selection. 
As demonstrated in the theoretical analysis, formation and evaluation of a small fraction 
of the total number of alternatives at a decision point can yield a decision quality that is 
comparable to that which is obtained from an exhaustive and (likely) computationally in- 
feasible enumeration of all possible alternatives. This is an intrinsic property of the real- 
time decision-making problem which is fully exploited by the proposed procedure. 

References 

Blackstone, J.H., Philips, D.T., and Hogg, G.L., '7~ State of the Art Survey of Dispatching Rules for Manufac- 
turing Job Shop Operations," International Journal of Production Research, Vol. 20, No. 1, pp. 27--45 (1982). 

Chryssolouris, G., Dicke, K., and Lee, M., "On the Resources Allocation Problem," International Journal of 
Production Research, Vol. 30, No. 12, pp. 2773-2795 (1992). 

Chryssolouris, G., Lee, M., and Dicke, K., 'gtn Approach to Short Interval Scheduling for Discrete Parts Manufac- 
turing" International Journal of Computer-Integrated Manufacturing, Vol. 4, No. 3, pp. 15%168 (1991). 

Chryssolouris, G., Pierce J., and Dieke, K., '9,n Approach for Allocating Manufacturing Resources to Produc- 
tion Tasks" Journal of Manufacturing Systems, Vol. 10, No. 5, pp. 368-382 (1991). 

Chryssolouris, G., Pierce, J., and Dicke, K., ' ~  Decision-Making Approach to the Operation of Flexible Manufac- 
turing Systems" International Journal of Flexible Manufacturing Systems, Vol. 4, Nos. 3/4, pp. 309-330 (June 
1992). 

Chryssolouris, G. Wright, K., Pierce, J., and Cobb, W., "Manufacturing Systems Operation: Dispatch Rules 
Versus Intelligent Control," Robotics and Computer-Integrated Manufacturing, Vol. 4, Nos. 3/4, pp. 531-544 
(Spring 1988). 

Conway, R.W., Johnson, B.M., and Maxwell, W.L., '~n Experimental Investigation of Priority Dispatching;' 
Journal of Industrial Engineering, Vol. 11, No. 3, pp. 221 (1960). 

Elvers, D.E., "The Sensitivity of the Relative Effectiveness of Job Shop Dispatching Rules with Various Arrival 
Distributions," Transactions of the American Institute of Industrial Engineers, Vol. 6, pp. 41 (1974). 

Keeney, R. and Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Trade-Offs, John W'tley 
and Sons, New York, NY (1976). 

Malstrom, E.M., ' ~  Literature Review and Analysis Methodology for Traditional Scheduling Rules in a Flex- 
ible Manufacturing System," Final Technical Report performed under CAM-1 Contract LA-83-FM-01 (1983). 

Nof, S.Y., "Game Theoretic Models for Planning Cooperative Robotic Work," in Proceedings of the 17th NSF 
Design and Manufacturing Systems Conference, Austin, TX, pp. 553-556 (January 1991). 

Panwalker, S.S. and Iskander, W., '~_ Survey of Scheduling Rules" Operations Research, Vol. 25, No. 1, pp. 
45-61 (1977). 

Perkins, J.R. and Kumar, P.R., "Stable, Distributed, Real-Tune Scheduling of Flexible Manufacturing/Assembly/ 
Disassembly Systems" IEEE Transactions on Automatic Control, Vol. 34, No. 2, pp. 139-148 (February 1989). 

Rajan, V.N. and Nof, S.Y., ' ~  Game-Theoretic Approach for Co-operation Control in Multimachine Worksta- 
tions" International Journal of Computer Integrated Manufacturing, Vol. 3, No. 1, pp. 4%59 (1990). 

Rochette, R. and Sadowski, R.P., "A Statistical Comparison of the Performance of Simple Dispatching Rules 
for a Particular Set of Job Shops" International Journal of Production Research, Vol. 14, p. 63 (1976). 

Stecke, K.E. and Solberg, J.J., "Loading and Control Policies for a Flexible Manufacturing System," Interna- 
tional Journal of Production Research, Vol. 19, No. 5, pp. 481-490 (1981). 

Wu, S.Y. and Wysk, R., 'An Application of Discrete-event Simulation to On-line Control and Scheduling in Flexible 
Manufacturing" International Journal of Production Research, Vol. 27, No. 9, pp. 1603-1623 (1989). 


