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Abstract. Strong Ll-convergence towards a stationary solution when time tends to infinity is 
established for the solutions of the time-dependent nonlinear Boltzmann equation in a bounded 
domain f~ C •3 with constant temperature on the boundary. The collisionless case is first investigated 
in the varying temperature case. 

Introduction 

The initial boundary value problem for the Boltzmann equation with large data 
when the behaviour at the boundary is either given by a pointwise reflection law or 
by a mixing of specular or reverse reflection with diffuse reflection was first 
studied by HAMDACHE [13]. In contrast to the specular reflection and periodic cases, 
the diffusion reflection boundary condition provides a well-defined boundary 
temperature. A later study by ARKERYD and CERCIGNANI [2] deals with the case of 
general diffuse reflection with varying boundary temperature under a restriction to 
bounded velocities. The diffuse reflection case with unbounded velocities was 
solved by ARKERYD and MASLOVA [4]. A serious extra complication in this case in 
comparison with the specular reflection and periodic cases is the quite delicate 
trace behaviour due to the integral connecting ingoing and outgoing mass flows. A 
natural next question is the long-time behaviour of the time-dependent solutions. 
Strong L 1 asymptotics for the Boltzmann equation in the periodic case when 
t -* ~ was considered by ARKERYD [1] and L~oNs [14]. In the case of reverse and 
specular reflection, DESVILLETrES obtained weak convergence [10] when t -* c~. 
For other boundary conditions the existence of stationary solutions becomes part 
of the problem. Under various cut-offs of the collision kernel for small velocities, 
the existence problem for a slab in the stationary case was studied in a measure 
setting by ARKERYD, CERCIGNANI and ILLNER [3], and in an L 1 setting by ARKER~ 
and NOURI for given ingoing data as well as diffuse reflection boundary with 
varying temperature [5]. In the context of diffuse reflection on the boundary, BOSE, 
GRZEGORCZYK and ILLNER studied the asymptotic behaviour of the discrete velocity 
model of the Boltzmann equation in the slab [6]. We are here going to consider the 
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corresponding asymptotics for the full Boltzmann equation with diffuse reflection 
at the boundary when the boundary temperature is constant. 

The first section of the present paper is devoted to the collisionless case in a 
bounded domain with maxwellian diffuse reflection and varying temperature at the 
boundary. Strong L 1-convergence of the solutions for the time-dependent equation 
inside the domain as well as on the boundary towards the associated stationary 
time-dependent solutions is established. The sole mechanism behind this 
convergence is the maxwellian diffuse reflection boundary conditions. 

The asymptotics for the time-dependent Boltzmann solutions with maxwellian 
diffuse reflection and constant temperature on the boundary is studied in the 
second section. Here the entropy dissipation term is essential for the asymptotic 
properties. First a global in time control of the energy is achieved by bounding the 
relative entropy with respect to the stationary solution, using a Darrozes & 
Guiraud inequality [8]. This is then used to prove the strong Ll-convergence to a 
global maxwellian (i.e. independent of x and t), uniquely determined by the 
boundary conditions and the conservation of mass. Such a uniqueness result is still 
open in the periodic and specular or direct reflection boundary conditions cases. 

1. The Collisionless Case 

The problem considered in this section is the asymptotic behaviour of the solution 
of 

Of ]-~.~Txf =O, t E N + ,  x E ~ ,  ~Eff~ 3, (1.1) 
Ot 

where f / i s  a bounded convex open set of ~3, together with the initial condition 

f(O,x,~) =fo(x,~), x E f~, { E ~3  (1.2) 

and the maxwellian diffuse reflection at the boundary 

f (t,x, ~) = M(x, ~) _.l~t.n(x)< 0 I~' " n(x) lf ( t,x, ()d~', 

t E N + ,  xEOfl,  ~ E N  3, ~ . n ( x ) > O ,  (1.3) 

where n(x) is the inward normal at x E 0fL 

M(x,,)  = (27r)-102(x)exp(-~ O(x),,, 2) (1.4) 

is a maxwellian with prescribed inverse temperature O(x), such that 

o < cl < O(x) < c2 < oo .  (1 .5 )  

All along the paper, f~ is assumed to have a boundary 0f~ of Lyapunov type, 
and f0 >~0 is assumed to satisfy 

Jf~fx~J~176176 < c, Ja f x a 3  (1 + l~12)fo(x,~)dxd~ < c. (1.6) 
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The existence of a unique solution of (1.1)-(1.6) can e.g. he deduced from [4]. 
Existence and uniqueness properties for the associated stationary problem are 
stated in the following theorem. 

Theorem 1.1. The stationary equation 

~ . V x f = O ,  x E ~ ,  ~ E ~  3, (1.7) 

together with the boundary condition 

f(x, ~) = m(x, ~) ~ L.,(x)<O [(" n(x)]f(x, ( ) d ( ,  

xeO~~, ( E ~  3 , ~.n(x) > 0, (1.8) 

has a non-negative solution in L 1 N L~176 • ~3) with given total mass #, which is 
unique in L~~ x N3) as well as in LI(Q • N3). 

Proof of Theorem 1.1. For (x,~) E (~ x R3, denote 

~+(x,~) = inf{s > O;x - s~ E 0~,  ~. n(x - ~ )  > 0}. 

Define a solution fi of (1.7)-(1.8) by 

fa(x,~)=~M(x-s+(x,~)~,~),  x E O ~ ,  ~.n(x) <0, 

and extend fi so that it is constant along the characteristics ending at 
(0~ x ~3)- := {(x,~) E 0 ~  • ~3s.t. ~. n(x) < 0}, and choose ~ such that 

Then, for x E OK, 

I('.n(x)<O I~'" n(x)lfs(x, ~')d~' = 

= ~(2~) - '  [ I(" n(x)lO2(x s+ (x~ ( ) ( ) x  I 

3 ~'.n(x)<O (1 ) 
x exp - ~ O ( x -  s+(x,(')~')l~'l 2 d (  = 

i Ji = '~ '..(~)<o,lel=l le" n(x)lde' ( 2 7 r ) - l e x p  - r 2 "r3d'r = 

= ~. (1.9) 

Hencefs(x, () ---- ~M(x, ~) for x E OK, ( -n(x)  > O, fi satisfies (1.1) and (1.3), and 
fi belongs to L 1 n L ~ ( K  • ~3). 

If there is another solution f i n  La(~ • ~3) or L~(~  • R3), then the boundary 
condition (1.8) implies that there exists a function K defined over 0K, such that 

f ( x , { )=K(x)M(x , { ) ,  x E O ~ ,  { . n ( x ) > 0 .  
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H e r e  

I~ K(x - s +(x, ~)~)M(x - s*(., ~)~, ~)l~. n(x) ldr K(x) = .n(x)<0 

Hence K is continuous. Also 

1 os2)le  n(x)ls3ds = 1 L,(x)<0,,4=l It0 (2re) -102exp ( -  ~ 

independently of x in 0f2. It follows that K is a constant function, since at each 
point it is a convex combination of the other K-values. 

We now derive energy and entropy bounds for the solutions of the time- 
dependent problem (1.1)-(1.6). 

Theorem 1.2. Let f be a solution of (1.1)--(1.3) under (1.4)-(1.6). Then 

Ja• ]gl2f(t'x'g)dxdg' Ja• 'fll~ 

are uniformly bounded with respect to time t in ~+. This also holds for the mass 
and energy flows 

J[t,t+l] xof~ __Ln(x)>O ~ " n(x) f (t, X, ~) dx d{ dr, 

l[t,t+l]xOf~ J{-n(x)<0 [{" n(x)lf(t'x' ~) dxd{ dr, 

J[t,t+l]xOO J,.n(x)>O ~ �9 n(x) lel2f ( t,x, ~) dx d~ d'r, 

. Jt,,,+ll• Je..(x)<o Ir n(x)ll~[2f(t,x,{)dxd~dr. 

Proof of Theorem 1.2. We have 

(0t + ~. Vx)(f log~ +fs - f )  = 0, 

where f, denotes the solution of the stationary problem introduced in Theorem 1.1. 
Integrating over [0, t] x f / x  N 3 leads to 

laxRJ logf ( t, x, ')dx d'  - 

- Jtoloa• ' '  n (x) f l~  (r ,x , ' )drdxd'  = 

= [ 3folog~(x,{)dxd{, (1.10) 
df~xN J~' 

so that, taking into account the non-positivity of the boundary term in (1.10) (see 
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Darrozes & Guiraud inequality in [8]), 

~ .[.~U~@I"x'~l"x< < c. (~.11/ 
Hence 

_J~ ~ : log +:(,, x, ~ ).x < - _i.~ o:log -:l(t, x, ~ ).x < -  

-- . [axU3f ( t ,X  , ~) logfs(x ,  ~ ) d x d {  < c. 

It implies that 

L~/lo:f(t ,x,~)ex< Jax#fllog-fl(t,x,{)dxd{+ 
+ ?[ i{12f(t,x,{)dxd~ < c. (1.12) 

d Ox~ 3 
But for every positive real e, (see [7]), 

I fllog-fldg-- 

= ]:.~ _,,,/ilog:l< + J<_,,:<: ~lfllogflde < 

<Jl,l<.lde+Je>le-le:lei'de+Jilel'dL 
so that 

Ifllog-fld<~ <c + J I~:f<. (1.13) 

It follows from (1.12-13) that 

+ m[ 1~12f(t,x,~)<txd~ < r  

Jfl x R 3 

Hence 

I~ • # f log+f  (t, x, ()dx d~+ 

+ ~ L~x#,l{12-,>>.2 (i{12 - 2 ]~le) 

-- ln• [~lz_~<} [{[ef(t,x, ~)dxd~+ 

+ 2L<e-~.<~ I&(,,~,~).x<+ 
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which implies 

Ig~xR3flog+ f (t,x,~)dxd~ + 2 L~• [~]2f(t,x,~)dxd~ < c. (1.14) 

(1.13)-(1.14) finish the proof of the boundedness of fflxn' l~12f(t, x, ~)dxd~ and 
faxu3fllogfl(t,x,~)dxd~. Then bounds on mass and energy flows through 0f~ 
follow from [4, Lemma 4.1]. 

The entropy flow of the trace o f f ( t , . ,  .) on the boundary is studied in the 
following lemma. 

and 

Lemma 1.3. 

J[t,t+l] •  I~-rt(x)>0 ~" n(x) flogf (% x, {)d'c dx d{ 

fit,t+1] J{.n(x)<0 I~" n(x) l~ogf(r, x, ~)d~dx d~ 
r 

X0~ 

are uniformly bounded with respect to t in ~+. 

Proof of Lemma 1.3. By Theorem 1.2 and (1.10) the uniform boundedness of 
the outgoing flow follows from the uniform boundedness of the ingoing flow. 
Denote by q 

q(t,x):=L.,(x)<ol{.n(x)if(t,x,~)d(, t C ~ + ,  xEOa. (1.15) 

Then, for x E 0f~ and ~ E ~3 such that {. n(x) > 0, the boundary condition (1.3) 
implies that 

f logf(t, x, {) = f (t, x, {)logM(x, {) + M(x, ~)(qlogq)(t, x). 

By Theorem 1.2, the ingoing flow of f logM is uniformly bounded as well as the 
ingoing and outgoing mass and energy flows. So f lll 

t 0n .n(x)>0 

is uniformly bounded in t if and only if 

is uniformly bounded in t. The boundedness of the log- part follows from 
1 So it remains to prove that g+l foaf~.n(x)>O~.n(x)Mqlog+ q is qlog-q ~< ~. 

uniformly bounded in t. But uniformly in x 

J~[ n~>0 ~ n(x)M(x, ~)e~ .<c ,A [x ~ n(x)M(x, ~)< 
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with 

Hence 

Ax= {C;l> lgl > e'g'n(x) > elgl} 

~ . n(x)Mqlog+ q <~ c / t+l n(x)Mqlog+ q. 
a t  9t .n (x) > 0  a t  9t x 

For (x, ~) E • x N3 denote 

s -  (x, () = inf{s > O; x + s( C 0~2, ~. n(x + s~) < 0}. 

Then 

where 

Now the lernma holds i f  

i n f s - > 0 ,  s u p s - = S < ~ ,  
A A 

A = {(x.r E Of~,{ E Ax}. 

t+l L I = s-(x,~)~, n(x)Mqlog+qdxd~dr 
a t  

is uniformly bounded in t. But 

[t+l j~ [s-(x,,~) f dxd{drds~  I = ~. n(x)flog + 
a t  JO 

which is uniformly bounded in t by Theorem 1.2. 
Let us now state the main result of this section. 

Theorem 1.4. Let f be a solution of (t.1) with the boundary condition (1.3) 
and initial data satisfying (1.6). Then for all T > 0 the family of functions 
fr(t,x,~) :=f ( t+r ,x ,~)  for 7->~0 converges when "r--+cx~ in LI([-T,T]x 
x~'/• R 3) to the solution fs of the stationary problem (1.7)-(1.8) with total mass 
ffodxd~. Moreover, the traces of fr on the boundary OD + : = J - T , T ]  x 0~2x 
x{~ E [~3;~-n(x) > 0} (resp. OD- := [ -T ,T]  x 0f~ x {~ E ~J ;~-n(x)  > 0}) 
converge in LI(OD +) (resp. LI(OD -) to the traces off,  on OO +) (resp. 019-). 

Proof of Theorem 1.4. It is enough to show that for every sequence tn tending 
to infinity, there exists a subsequence t,~ such that fnk(t,x, ~) : = f ( t  + tn,,x, ~) 
converges in Lt([-T, T] x Q • R 3) to the solution fs of the stationary problem 
for all T > 0 (where for a given T we only consider tn with tn > T). Theorem 1.2 
and Lemma 1.3 imply for all T > 0 the weak compactness in L~([-T,T]x 
•  • ~3),LI(OD+) and Lt(OD -) of f(tn~ + t,., .) and its traces over OD + and 
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OD- respectively, so that subsequences converge to some g,g+ and g-  re- 
spectively. Let us first prove that 

l~.,~(x)>O ~'n(x)fnfl~' (respI~.n(x)<O ]~'n(x)lfnfl~) 

strongly converges in LI([-T, T] • Of~) to 

J~.n(x)>o~'n( x)g+d~' (resp'L.~(x)<Ol~'n(x)lg-d~)" 

Because of the boundedness of the energy flow through the boundary established 
in Theorem 1.2, and the boundedness of the entropy flow of Lemma 1.3 it is 
sufficient to prove that for arbitrary e > 0 

I~.n(x) <~ -e,e<l~ I ~<1 ~" n(x)fnfl~ 

strongly converges in LI([-T, T] • 0~) to 

I ~. n(x)g+d~. 
~.n(x) <~ --e,e<l~ ] ~<~ 

It is enough to prove translational equicontinuity of the sequence in sL 1. 
This criterium is easily defined for translations in ~n. A strong enough substi- 
tute can be defined with respect to 0f~ as follows. Fix a sphere in fL Connect 
x C 0f~ to the centre of the sphere by a line segment, and let x' be the intersection 
with the sphere. Rotating the sphere takes x' to ~ and thereby defines a 
corresponding image xt E Of~ for each x E Of L At an outgoing point (t,x, ~) 
the value of f equals the one at the ingoing point (t- s+(x,~)(,~), where 
s+(x,() = inf{s > O;x-s~ E Of~+}. For xt choose ~t so that xt- s+(x,~)~t = 
x - s + (x, ~)~. Using the uniform continuity of M and a change of variables from 
to (t in the unperturbed integral gives the desired equicontinuity in sL 1. The 
argument for translation in time is similar. Since for x in f~ 

f.~ (t, x, ~) = M(x - ~s + (x, ~), ~) • 

• _~.Is,,,(x-~s+(x,~))<o ]~'" n(x - ~s+(x, ~))1 
fnk (t  -- s + (x, ~ ) , x  -- ~s + (x, ~),  ~ ' )d~' ,  

fn~ converges in L 1 ([-T, T] • f~ • ~3)  to g, and the traces of g are g+ and g-  
which satisfy (t.3). 
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It remains to prove that g, g+ and g-  are resl~ectively equal to the stationary 
solutionfi with total mass # = ~fo(x, ~)dxd~, the trace off i  on 0f~ + and the trace 
of fi on 0f~-. From Egoroff's theorem, there exists for every positive real e a 
subset A, of [ -T,  T] x 0f~, the complement of which is of measure smaller than e, 
and such that I~.n(x)>0 ~" n(x)fnkd( uniformly converges to ~.n(x)>O ~" n(x)g+d~ on 
A,. But 

? I  [J d~- dx [~ n(x)If (t + ~-)log f ( t  + ~-) d~-  
-t oa ~.n(x)<O fi 

+ r )  
- L.~(~)>o~.n(x)f(t + re)log f(tfi d~]+ 
+ -i f ( t  + T)log f(t + T) dxdf = 

ax~ 3 fs 

The boundary integral on the left hand side is positive and increasing with T by the 
Darrozes & Guiraud inequality, which guarantees that its inner bracket [...] is non- 

It follows that faxr~3f(t)log a--~dxd~ is decreasing with time. But the negative. 
J $  

mass o f f  is conserved, and by Theorem 1.2 its energy uniformly bounded in time. 
So by [7], ~r~xe3f(t)logf(t)dxd~ is bounded from below. Using (1.5) and 

1 

Theorem 1.2 it follows that also ~a• ~ d x d ~  is bounded from below. 

Hence the decreasing function ~[a• r has a finite limit when t 
tends to infinity. It follows that f s  

li~m~JTrdTIoadX[J~.n(x)<o(f"kl~ 

- _Je-~(x)>O ( "  " f"~ t]nk lOg --f~s + fS -- fnk ) l = 0 .  

Since the inner bracket [...] is non-negative the same holds if [ -T,  T] x 0f~ is 
substituted by A~. Hence with q given by (1,15) f o r f  = g -  we have 

<~ lim Ij, I(.n(x)<Ol~.n(x)l(f, klogf~+fs-f~k)(-r,x,~)dmdxd~= 

= lim ~ .,(x)>o(.n(x)ts, k g ~ - + f i  drdxd~= 

= Ia J ~.n(x)(Mqlogq+ ~M-Mq)drdxd~. (1 .16)  
0 ~.n(x)>0 
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From the Darrozes & Guiraud inequality, 

IA~ I~.n(x)>o ~ " n(x) (g+lOg ~s + fi -- g+ ) dT dx d~ <~ 

<~ lA~ I~.n(x)<O '~ " n(x)[ (g-l~ + fs - g-)d'r dxd~, 

so that (1.16) implies that 

Ia~ I~.n(x)>o~ " n(x) (g+l~ + fi - g+) d'r dxd~ 

+ JA~ J~.n(x)<o~ " n(x) (g-l~ + fi - f - ) d r  dxd~ = O" 

Moreover, 

and 

g§ 

J'[_r,T]• I~.n(x)<O [~ " n(x)l (g-logg~fi + fi -- g-)  dT dxd~ < c" 

Therefore 

g+ - g+)dT dxd~ l[_T,T]• J~.n(x)>O ~ " n(x) (g+log-ff + fi 
/ 

+[[_T,T]xOf~I~.n(x)<o~'n(x)(g-lOg~s +fS--g-) dTdxd~=O" 

And so by the equality case for the Darrozes & Guiraud inequality there is a 
function q(t,x) defined over I-T, T] • Of 2, such that 

g+(t,x,~) =fi(x,~)q(t,x), (t,x,~) E 01) +, 
and 

g-(t,x,() =fs(X,()q(t,x), (t,x,() ~ 0l)-. 
Since f~ is a convex set, and g satisfies 

(Or + ~Vx)g = O, 
q is independent of x and t. Moreover, because of the mass conservation, this 
constant is equal to one. 

Corol lary  1.5. Theorem 1.4 holds under the weaker assumption that the initial 
data only satisfy the mass and energy bound of (1.6). 

Proof of Corollary 1.5. The problem is linear and monotone. The truncated 
initial values f~ = f 0  An for Ivl<<.n,f~ = 0 otherwise, satisfy (1.6). The cone-  
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sponding solutions are a monotone increasing sequence with mass conservation 
J'ff = J'f~'. This implies that the Ll-limitf(t) = lim,__,~fn(t) is uniform in time, 
hence that f satisfies Theorem 1.4. 

Remark. The above approach via (1.6) was chosen (instead of more regular 
f~'s, such as f~ E L ~) to connect with kinetic aspects also useful in more general 
contexts. 

2. Asymptotics for the Boltzmann equation 

This section studies the asymptotic behaviour of the solution of the Boltzmann 
equation in an open bounded convex domain f~ C ~3, with Lyapunov type 
boundary, 

(Ot+~'Vx)f=Q(f,f), t E ~  3 , X C [-~ ~ C ~ 3 ~  (2.1) 

where Q denotes the collision operator, together with an initial condition 

f(t ,x,~) : f0(x ,~) ,  x C a,  ~ C ~3 (2.2) 

satisfying (1.6), and maxwellian diffuse reflection on the boundary 

f ( t ,x ,  ~) = M(~) ]r n(x)]f(t,x, ( ) d ( ,  

tEN+,  x c O a ,  ~ .n(x)>O.  (2.3) 

M is a normalized maxwellian with a constant temperature ~ > 0, 

M(~):(27r)-lO2exp(-~O]~[2). (2.4) 

The relevant equilibrium solution is fs = cM with 

c = ~-~[ Iax~3fo(x, ~)dxd ~. (2.5) 

An existence result for (2.1)-(2.3) from [4] is recalled in the following theorem, 
where the collision operator is of the full generality in [4]. 

Theorem 2.1. There is a function 

f E C(N+,LI(f~ x N3)), f~>0, 

satisfying (2.1) and (2.2) in DiPerna-Lions sense and (2.3)for the traces, possibly 
with inequality, the left-hand side being greater than or equal to the right-hand 
side. 

Actually the relevant result from [4], Theorem 6.1, states slightly less, but the 
proof of Theorem 6.1 also implies the trace inequality as formulated here. Energy 
and entropy bounds are also derived in [4], but on finite intervals of time, the 
bounds depending exponentially on time. Bounds uniform on N+ are derived in the 
following theorem. 
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Theorem 2.2. Let f be a solution of (2.1)-(2.4). Then 

I~• lgl2f(t'x'g)dxdg' Jf~• 

f[t,t+TlxOf~ [~,~(x)>O [~12~, n(x)f ('r,x,~)d'r dxd~, 

JE,,,+T~xO. ~[~.(x>o I~:J~" n(.)Jf (T, ~, ~)d~ ax <, 

L,,,+,.>,_L.o(x>>0 ~"(~): (~' ~' ~)"~ "* <' 

J[t,t+T]xO* I~-n(x)<0 I~" n(x)lf (T,x,~)dTdxd~ (2.6) 

are uniformly bounded for t varying in ~+. 

Proof of Theorem 2.2. Formally 

(Or+ ~" V x ) ( f l o g f )  = Q ( f , f ) l o g f  + Q(f , f) .  

Integrating this over [0, t] x f~ x N3 and using (2.2-3) gives 

Iax~3 ( f l ~  ) (t,x, ~)dxd~ - ji loa• ~ " n(x) ( f  l~ f ) dr dxd~+ 

+ jl ]axN3 e(f)dr dx d~ <<- Ja• l~ ~ (x, ~)dx d~, 
where 

e(f) =l I~ j~+B(" - '*',u)(f'f. - ff* )log~. d'*du. 
This inequality strictly holds (see [4]). Since e(f)>~0 and Darrozes & Guiraud's 
inequality holds for the boundary term, it follows that 

, ,  f l O g f  (t'x'{)dxde < C, (2.7) 

and 

0 <~ e(f)( t ,  x, ~) d t , ~  d{ < c. (2.8) 
x ~3 

From here the proof proceeds as the proof of Theorem 1.2 from (1.11) on. For the 
solutions of Theorem 2.1, the asymptotic behaviour of a solution of the Boltzmann 
problem (2.1)-(2.3) can be derived, i f  we require that the collision kernel B of Q is 
nowhere vanishing. 

Theorem 2.3. Let f be a solution in the sense of Theorem 2.1 of the initial 
boundary value problem (2.1)-(2.3) with nowhere vanishing collision kernel. 
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Then, when t tends to infinity, f ( t , . ,  .) converges strongly in Ll(f~ • R 3) to the 
global maxwellian cM, where M is defined in the boundary condition (2.3) and c 

the conservation of mass \(C -- f M j -~'~ gives 

Proof of Theorem 2.3. It is enough to show that for every sequence tn tending to 
infinity there exists a subsequence t~ k such that f~(t,x,  ~) : = f ( t  + the,X, ~) con- 
verges in L 1 ([0, T] x f~ x ~3) to cm for all T > 0. The weak L 1 ([0, T] x f~ x •3) 
convergence of a subsequence of f ,  follows from Theorem 2.2. Given (2.8) and 
Theorem 2.2 and arguing as in [1] or [14] we may conclude that the limit 
is of strong Ll-type, that it satisfies the Boltzmann equation in mild sense, and 
is a local maxwellian m(t, x, ~) since the collision kernel B is nowhere vanishing. 
By [10] it follows that a maxwellian solution of the Boltzmann equation has the 
form 

m(t,x, ~) = exp{d0 + C1. (x - ~t) + c31x - ~t12+ (2.9) 

+Co .~+Cz(X-~ t ) -  ~ + c1I([2 + Ao(x).~}, (2.10) 

where do, cl, ca, c3 E ~+, Co, Cl E ~3, and A0 is a skew-symmetric tensor. The 
proof of Theorem 6.1 in [4] can also be applied with the fnk satisfying (2.3) with 
inequality 

f~k(t,x,~)>~M(~) [ ,  1~'" n(x)lfnk(t,x,~')d~ ' 
a~ .n(x)<0 

on the boundary. The conclusion is that also the traces of m satisfy the same 
inequality, 

re(t, x, ~) >~ M(~) _lE"n(x)<O I~" n(x) l m(t, x, ~')d~', 

t E E  + , x c Of~, ~ - n ( x ) > 0 .  

But the collision term of the Boltzmann equation for m is Ll-integrable (actually 
zero). Since the mass fro(t, x, ~)dxd~ is time-independent, Green's formula (see 
[4]) gives that the inflow of mass of m on 0f~ over a time interval [0, T] equals the 
corresponding outflow. Hence there is for a.e. (x, t) equality in (2.3). This together 
with (2.9) gives that m(t,x, ~) is a global maxwellian. 

Remarks. In contrast to the periodic and specular or direct reflection boundary 
condition cases, here the maxwellian is uniquely determined by the initial value 
and the boundary condition. This uniqueness of the maxwellian under diffuse 
reflection at the boundary was first noticed by C. CERCIGNA~ in [9]. The driving 
mechanism behind the maxwellian asymptotic behaviour for the Boltzmann 
equation with a strictly non-vanishing collision kernel in Theorem 2.3 (see also 
[15] for the linear case) is the entropy dissipation term. This should be compared 
with the collisionless case of Theorem 1.4 where the maxwellian diffuse reflection 
boundary condition is the sole underlying agent. 
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