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A new type of X-ray interferometer which uses Bragg case transmission for beam 
splitting and for beam recombination is described. The principles and special problems 
of this interferometer are discussed and a strict plane-wave treatment of the inter- 
ference phenomena is presented. The feasibility of such a device is demonstrated by 
some interference patterns, obtained with an instrument made from a silicon crystal 
for use with copper Kc~ radiation and the 220 Bragg reflection. Since, for the operation 
of the Bragg case interferometer, strong absorption is not essential, such devices may 
also be more suitable than the previously reported Laue case interferometer 1, 2 for 
use with neutrons. 

1. Introduction 

In  opt ica l  in ter ferometry ,  the genera t ion  and subsequent  r ecombina-  
t ion of two (or more)  coherent  beams  can be accompl i shed  in m a n y  
different  ways, mos t  of which canno t  be appl ied  to X-rays  because  the 
refract ive index of all  mater ia l s  is too  close to unity.  The  only m e t h o d  
which has  been successfully used so far, splits and  recombines  X- ray  
beams  by  Laue  di f f rac t ion  ~'z in a B o r r m a n n  crystal  (# t > 3  where # 
is the n o r m a l  abso rp t ion  coefficient  and  t is the crystal  thickness).  
In  this pape r  the pr inciples  and the exper imenta l  ope ra t ion  of ano ther  
k ind  of X- ray  in te r fe rometer  in which the b e a m  spl i t t ing and  b e a m  
r ecombina t i on  are  achieved by  Bragg case di f f ract ion will be de- 
scribed. 

* Present address: Physikalisches Institut der Universit~it Mtinster, 44 Mtinster, 
Germany. 

** Present address: H. H. Wills Physics Laboratory, Royal Fort, Bristol, England. 
1 a Z.  Physik, Bd. 194 
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2. General Description of the Bragg Case Interferometer 

The interferometer and the layout of the beam paths are shown in 
Fig. 1 a and b. As with the Laue case interferometer 1' 2, the necessary 
stability of alignment is achieved by making the complete instrument 
f rom one single crystal block. The two grooves cut in the crystal have 
equal widths and are cut at an angle (o to the 220 reflecting planes. 
A thin lamella between the two grooves serves to split and recombine 
the X-ray beams while the outer surface of each groove is used as a 
Bragg reflection mirror M (Fig. 1 b). 

mflec//ng 
pc/#lanes ,~] 

a 

Fig.  1 a and b. Bragg-diffraction X-ray interfero- 
meter,  a Shape and positions of the two grooves 
and the lamella cut  f rom a single crystal of 
silicon, b Plan of the interferometer showing 

paths of the interfering beam. See text 

Where the primary beam ~ is incident on the lamella, the Bragg 
reflected wave ~ i  is excited. Inside the lamella a wavefield is set up and 
will enter the crystal 3 except in the unrealistic case of zero crystal 
absorption when total reflection can occur. (If total reflection could 
occur the energy flow of the wavefield inside the crystal would be exactly 
parallel to the surface.) 

The entering angle e of the wavefield (Fig. 1 b) may be found from 

g = ~ - f l  (1) 

1 BONSE, U., and M. HART: Appl. Phys. Letters 6, 155 (1965); -- Z. Physik 188, 
154 (1965). 

2 BONSE, U., and M. HART: Z. Physik 190, 455 (1966). 
3 BONSE, U.: Z. Physik 177, 385 (1964). 
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where fl is the angle between the direction j of energy flow and the net planes, fl is 
calculated from e 

tan/3 = R sin (0 + q0) - sin (0 -  (p) tan g (2) 
R sin (0 + ~o) + sin (0 -  c?) 

where R is the single crystal reflection coefficient and # the Bragg angle, cr has a 
minimum of a few tenths of a degree where the reflectivity R is a maximum, c~ is 
largest when no diffraction occurs and the entering wavefield is then just the con- 
tinuation of the incident wave. Hence ~max----- cp+ 0% For  the silicon 220 reflection with 
copper Kcr radiation, calculated values of the important  parameters will be given below, 
for ~o= 13.7 ~ (the asymmetry actually used in the experiments). 

R can be derived from Eqs. (25) and (27) in Ref. 3. One obtains 

R(y) = ~  I~(Y)! e =E-~/E2-1 (3) 
with 

E = d 2 + f z  + [1 + (d 2 + f , ) 2  _ 2 (d z - f ; ) ] ~ - ,  (4) 

v Zio Zlh . (5) 
d= I-d/ z.h z.--h -+y' 

v Zi o _ f l  1__2_, 
f = l - C r  - ~ Z,h y '  (6) 

0 = 2 \ g l i b 1  g r 0 )  
C is the polarisation factor. Since we are concerned only with the weakly absorbed 
wavefields we will assume throughout the paper that C----- 1 (5_ polarisation state only), 
y is the parameter which measures the angle of incidence in terms of the range of total 
reflection in the zero absorption case [Eq. (31') in Ref. 3]: 

* This follows immediately from 

1 = [ ( 1  +Jg l ' )  c o s 0 / ' - ( 1 - 1 g  [ 2) sin 0 n-I [ 1 + l g [ 4 + 2  r gl '  c o s 2 0 ]  -a- 

[Eq. (15b) in Ref. a] with 

U = l ~ [ 2  17hJ 
7o 

where, in the usual notation, ~h=COS ~u h, Yo=COS q/o and g'h, q/0 are the angles be- 
tween the surface normal and the K h, K o wave vectors respectively. 

~ =  Dh/D o is the amplitude ratio of the waves 3)h and 330. n is a unit vector normal 
to the net planes and f is a unit vector parallel to the net planes and to the plane 
containing K 0 and K h. 

** ~,o~= ~/2-- 0--  ~ is the angle of incidence according to the geometrical  theory 
of X-ray diffraction, 
1" 
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Zr0, Zrh are proportional to the Fourier coefficients of order 0 and h of the electron 
density. Zio and Zih are proportional to the corresponding Fourier coefficients of the 
absorptive electron density. 

For the beam splitting (and recombining) process it is essential 
that the internal wavefield reaches the rear surface of the lamella and, 
while being partially reflected internally, emits the wave ~ which is 
necessarily coherent with the wave ~ .  Both waves are then surface 
Bragg reflected at the mirrors M producing the waves ~[  arid ~ 
(Fig. 1 b). In the central lamella ~ generates a wavefield which is of 
the same type as that generated by ~ previously. When this wavefield 
is partially reflected internally at the rear surface of the upper part 
of the lamella, the wave ~ti~ will leave the crystal in the region where 
~ generates the surface BRAGG reflected wave ~)i~. Since the waves 
~He and ~)Ie a re  coherent by reason of their formation they will interfere. 
In particular, as will be shown later, if the geometry is ideal both waves 
are in phase and will interfere constructively. 

3. The Intensities of the Interfering Waves ~ i  e and ~ I I  e 

There are several factors that influence the intensities of the waves 
~ie and ~i~ e. Both waves are formed after two surface Bragg reflections 
and one Bragg transmission (although the sequence is different for the 
two waves). Each surface Bragg reflection introduces an intensity factor 
R while the Bragg transmission introduces two factors ( 1 -  R), one from 
the surface Bragg reflection at the entrance surface and the other from 
the partial internal reflection at the exit surface of the lamella (see Fig. 4). 
Absorption of the wavefield within the lamella introduces a factor 
exp [ -  % t cosec ~] where t is the thickness of the lamella and % is the 
absorption coefficient of a wavefield whose flow direction is parallel 
to the unit vector j .  Thus the intensity of the beams ~ and ~ is 
proportional to 

R 2 (1 - R) 2 exp [--- aj t cosec c~]. 

From Eq. (23) of reference 3 

aJ-=#(  1+1r ZiZ~- oh G)( l+ i r162  (9) 

4, is the real part of ~ =DdDo,  the amplitude ratio of the component 
waves ~3 h and ~0 which make up the wavefield. ~(y) can be found from 
Eq. (25) of reference 3. The absorption is anomalously low if ~r<0 
and anomalously high if ~ > 0 (C> 0). The magnitude of the absorption 
anomaly is essentially determined by the ratio )~h/Z~O" In the Bragg case 
interferometer the paths are sufficiently long that only the wavefields 
with low absorption are important. 
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It has been shown 3 that in the Bragg case, where complex values of 
have to be considered, aj has its minimum for ~ r = - l .  Because 

R = I ~ [2 17h [/70 < 1, in the Bragg case the condition ~ = - 1 can be realised 
only if [yhl/7o<l. This means that the minimum absorption can be 
obtained with an asymmetry ~o > 0 as indicated in Fig. 1 b. 

But (p>0 is also advantageous from another point of view. With 
]~hl/~o--~0.3 for example, ~ r = - - I  can be obtained with a fairly low 
value of R, which is equivalent to ~ r  (~i is the imaginary part of ~). 
Consequently, [ ~ I ~- I ~r I = 1 and the energy flow with minimum ab- 
sorption will be almost parallel to the reflecting planes (see equation for 
j in footnote on p. 3), a situation well known in the Laue case of 
diffraction. On the other hand, in the symmetric ((p=0) or nearly 
symmetric ((p>0 but small) Bragg case, the paths of wavefields with 
this flow direction inside the crystal are extremely long. Thus with 
qo =0  or (0 too small the advantage of a low absorption is negated by 
the increased path length. For  these reasons, the interferometer is cut 
asymmetrically with ~o = 13.7 ~ (I])h 1/~)o =0.286). 

4. Calculation of Bragg Transmission 

To confirm these considerations and to obtain an estimate of the 
magnitudes of the intensities of the waves ~ e  and ~ue the following 
quantities have been calculated: 

the single crystal reflection coefficient R(y), 
the entering angle c~(y) of the Bragg case wavefield, 
the absorption anomaly ~rj(y)/# and 
the Bragg transmission coefficient 

e x p [ - c r , ( y )  t] where a , (y)=o)(y)cosecc~.  

All calculations have been made for the crystal actually used in these 
experiments, i.e., for the silicon 220 reflection with copper Kc~ radiation, 
(p=13.7 ~ and t=504  gm. The results are plotted in Fig. 2 and 3. 

Parameters needed in these calculations are Zro, Zzo, Zrh and Zih/Xio where 
e 2 ,~2 

Izr01 = ~ U c 2  X (10) 

(e: electron charge, m: electron mass, 2: X-ray wavelength, N: number  of electrons 
per cm 3, c: light velocity). 

Fo r  silicon N =  6.990 • 1023 cm -3 and with copper  K s  radiat ion one calculates 
[ Z r o [ = l . 4 8 8 X  10 - s .  

Zio is obtained f rom /~,~ 

Zio = 2~z " (11) 

F r o m  the Internat ional  Tables p : 1 4 1 . 2 c m  1 whereas experimentally 4 p =  
144 cm -1. 

4 HILDEBRANDT, G.:  Private communicat ion.  
1 b Z. Physik, Bd. I94 
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Fig. 2. Calculation of single crystal reflection curve R(y), entering angle ~(y) of Bragg case wavefield 
and absorption anomaly  ~rj(y)]tt. 220 reflection of silicon, copper K ~  radiation, angle between surface 
and reflecting planes ~0 = 13.7 ~ Note  the transition of crj/~z f rom anomalously high absorption (y < 0.07) 
to anomalously low absorption (y > 0.07). ctmln = 0.49 o ; for large I Yl, a approaches ctmax = '9  + ~0 = 37.4 ~ 
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Fig. 3. Bragg  transmission coefficient exp [ - - a~  t] and R(y),  calculated, an=aj(y)/sin ~. 220 reflection 
of silicon, copper Kc~ radiation, ~0 = 13.7 ~ t = 5 0 4  pro. Note  the stronger dependence of exp [ - -an  t] on 

the state of absorption as compared with R 

We u s e / t =  142 cm -1 and calculate Ix/0[ = 3.48 • 10 -7. 
]Xrh[ was calculated from 

f 2 2 0  (12) 
Ix,. l=lz,01 z 

From recent measurements of the scattering factor f220 of silicon which gave 5 
f220 = 8.59 at room temperature one obtains Ix, hi--9.13 • 10 -6. Since no measure- 

5 The mean value of two independent measurements by HART, M. : Z. Physik 189, 
269 (1966) and HATTOm, H., late H. KURIYAMA, T. KATAGAWA, and N. KATO: J. 
Phys. Soc. Japan 20, 988 (1965) is used here. 
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ments of the ratio Zih/Zi  0 for the silicon 220 reflection with copper Kc~ radiation have 
been reported, it was determined by measuring the minimum absorption coefficient 
tTj min" From (9) it follows that 

cos 3 
X i  11 : 1 - -  O ' j  m i n  - -  (13) 
Zi o tz 

Two silicon wafers t l =  0.180 cm and t 2 =  0.279 cm thick were prepared with surfaces 
parallel to (111) planes. For each platelet, the anomalously transmitted (diffracted) 
intensities 11, I 2 were measured for the symmetric 220 Laue reflection of copper Kc~ 
radiation. The tube was operated at only 16 kV so that harmonics were not generated. 
Since, even for the thinner specimen,/z t--~ 25, only the wavefields with least absorption 
contribute to the integrated reflection so that 6 

l /  
12/11 = V~-~2 exp [ -  (t 2 - t l )  a s minl. (14) 

In this way we obtained the value aj  min= 7.87 cm -1 and, for t t=  142 cm -1 the result 
Zih/Zio  = 0.949 is calculated. 

As  m a y  be seen f rom Fig.  2, for  y-~0.8  the reflectivity R has indeed  
a m a x i m u m  very close to 1 (R m a x = 0 . 9 4 5 ) .  Cor respond ing ly  the 
smal les t  enter ing angle of the wavefield is only  emln=0.474 ~ 

In  the Bragg case, with the condi t ions  given here,  the abso rp t ion  
is anoma lous ly  high for  y < 0  and  anomalous ly  low for y > 0  (strictly 
y <0 .07  and  y > 0.07 respectively,  see curve as/p in Fig.  2). The m i n i m u m  
of a s is p rac t ica l ly  as low as in the Laue  c a s e  (aSmln=7.87 cm -~ or  
ajmi,1//~=0.0554) and  occurs exact ly when j is para l le l  to the 220 planes  
(c~=13.7 ~ y = 1 . 2 0 ,  R=0 .287) .  

The abso rp t ion  a n o m a l y  is very s t rong (Fig.  3). F o r  example ,  a t  
y = 1 . 3 0  (c~=16.9 ~ the Bragg t ransmiss ion  coefficient e x p ( - a ,  t) has 
its m a x i m u m  value of 0.207 whereas  at  y = - 1.30 the Bragg t ransmiss ion  
coefficient  is 10-z3!  A l t h o u g h  the m a x i m u m  Bragg t ransmiss ion  occurs 
at  y = 1.30, the m i n i m u m  value of as occurs at  y = 1.20. The reason  for  
this shift  is the ove rcompensa t ion  of a lower  as value  by  an increased 
pa th  length  as men t ioned  above.  I t  is also seen f rom Fig. 3 tha t  con- 
s iderable  in tensi ty  is t r ansmi t t ed  over a fair ly large angular  range :  
exp [ -  a ,  t] > 0.1 for  1.1 < y  < 1.55 which cor responds  to 9.1 ~ < c~ < 23~ 

5. Measurement of the Bragg Transmission 

The Bragg t r ansmi t t ed  intensi ty  t h rough  a lamel la  of thickness t 
was measu red  for  a 20 p m  wide incident  spher ical  wave (Fig. 4). The 
ra t io  of t r ansmi t t ed  intensi ty  I r to inc ident  intensi ty  I0 is p r o p o r t i o n a l  
to (1 - R )  2 exp [ -  a ,  t]. 

6 KATO, N.: J. Phys. Soc. Japan 10, 46 (1955). 
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Inside the crystal the beams are spread over the large angular range 
A ~-~ 12 ~ while the incident beam is passing through the reflection range 
A ~o of approximately 4 seconds of arc. Therefore a geometric weakening 
of the intensity per unit area proportional to 

@.L 
occurs behind the lamella. L is the distance between plate and X-ray 
source, n(z-R) 

~ / /  \ \ /',~ / 

Fig. 4. Lay-out of beams in the case of Bragg transmission of a narrow incident spherical wave. See text 
for details 

In the experiment L >> a (Fig. 4) and 

1 = t [-cotan c~ sin(O+ q~)- cos(0 + (p)]. (15) 
Hence 

d~_/ t sin(0+cp) _ tTo (16) 
- sinZc~ sin 2 c~ 

with (8) and (16) 

(17) 
] / l~ . f  I c l 

- tyo s in20 sin2 c~' 
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o r  

L @ / ~  = 0 . 6 0 8 x 1 0 - 2  d y sin; 

i f - - - -L = 103 is assumed. 
t 70 

The transmitted intensity I r  is now 

(1.8) 

Ir=loxO.608xlO -2 ~ sin2c~(1-R)2exp[-d,,t]. (19) 

I r  was calculated from (19) and has been plotted as a function of 1 in 
Fig. 5. The maximum transmission occurs near y = 1.6 (~ =23.5 ~ though 
the maximum of e x p [ - a n t ]  occured near y=1 .30  (c~=16.9~ This 
shift is due to the factor s i n 2 e ( 1 - R )  2 which increases with c~. (In the 
interferometer, the additional factor R 2 will shift the maximum back 
again by about  5~ Also shown in Fig. 5 is a microdensitometer 

_ .10 -~/ 

,n ,/I9 z.7~ 

r j /  

~Fj~m] moo aaa ~oo vaa 2oo a 

Fig. 5. Comparison of calculated and experimental Bragg transmission of a narrow spherical wave through 
the silicon lamella t--504 gm thick, h abscissa • to transmitted beam. 220 reflection, copper Kc~ radia- 
tion, ~0= 13.7 ~ Ordinate of densitometer trace normalised to best fit. (Increase of calculated intensity 

near l = 0  is due to the factor L d~o/dl which tends to 1) 

trace of the measured intensity distribution behind the lamella. The 
ordinate of the measured curve has been normalised for best fit to the 
calculated one. Except near the incident direction, where the short 
wavelength component  of the incident beam and its scatter predominates, 
the agreement is quite good. This is the experimental confirmation that 
energy is indeed transmitted in the Bragg case over a fairly wide range 
A e inside the crystal. This is quite different to the situation in the Laue 
case interferometer 1'2 where the energy flow is confind to a narrow 
Borrmann triangle with A~-~4 ~ 
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6. Experimental Interference Patterns 

Interference patterns obtained with the Bragg case interferometer 
described above are shown in Fig. 6 a - c .  A plastic wedge with its edge 
horizontal was put into one of the beams and produces the almost 
horizontal, high contrast interference fringes illustrated. These interference 
topographs demonstrate the feasibility of X-ray interferometers with 
Bragg case transmission beam splitting and beam recombining com- 
ponents. 

However, as may be seen in Fig. 6, the interference fringes do not 
extend over the whole field. In the upper third and lower left corner 
there are no fringes because the local variations in groove width cause 
a loss of coherent overlap of the interfering beams. As with the Laue 
case interferometer, coherence is lost if a certain limit of geometrical 
inaccuracy is exceeded. Both 220 and 440 Bragg case interferometers 
have been sucessfully constructed. In an unsuccessful interferometer 
the groove widths were found to differ by 8 0 - 1 0 0  Izm; as we will see 
later, this difference is too large for interference to be observed. 

The interference topographs in Fig. 6 were obtained using a double 
crystal arrangement. The first crystal was an asymmetrically cut silicon 
crystal using the 220 reflection - this provides a wide field and at the 
same time eliminates the background. This crystal and the interfero- 
meter were set like the two crystals of a double crystal diffractometer 
in the dispersionless (1, - 1) position. Their rocking curve was 4 seconds 
of arc wide. Fig. 6a and c were made with the crystals set halfway up 
on opposite flanks of the rocking curve while Fig. 6b was made with the 
crystals set on the peak. It  can be seen that the region with good fringe 
visibility shifts slightly from left to right between these three topographs. 
This can easily be explained if one remembers that the direction of energy 
flow inside the crystal varies drastically if the angle of incidence is 
changed by setting the two crystals at various points on their rocking 
curve. Since different directions occur it follows that different parts of 
the grooves are mated in the interfering beams and that, with imper- 
fect geometry, different geometrical path lengths can occur for rays 
which interfere in the same part  of the field. Thus the coherent region 
can shift in the observed manner. 

We will briefly consider the vertical fringes which are particularly 
distinct in Fig. 6c. They are not related to the interference effect since 
they occur even if either ~i~ or ~ ]  is removed by an opaque screen. 
They do not occur if either ~g or ~ [  is removed by a screen. The vertical 
fringes were obtained only in topographs made with beams which were 
in the left hand groove. Furthermore, by reversing the entire ray path, 
that is by interchanging the position of the film and X-ray source, the 
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vertical fringes were observed only in topographs made with beams from 
the right hand groove. To sum up, vertical fringes are only seen with the 
beam which is first Bragg transmitted and then surface Bragg reflected 
twice (T.R.R.-beam) and never with the beam which undergoes two 
Bragg reflections followed by a Bragg transmission (R.R.T.-beam). 
It is thought that the vertical fringes are images of growth bands which 
become visible in the last R-reflection of the highly collimated incident 
TR-beam; the trace of planes normal to the growth axis of the original 
single crystal is vertical in the topographs of Fig. 6. In the RRT-beam, 
the wide triangle of energy flow of the final T-reflection completely 
smears the pattern. It is remarkable that these small lattice parameter 
variations do not appreciably distort the interference pattern whereas 
in the Laue case interferometer such small deformations are very im- 
portant 2. 

7. Plane Wave Interference Theory 

We will assume that the incident wave is the linearly polarised plane 
wave 

:Doi =Do~ exp [2 rc i(v t -  Kio �9 r)] . 

K~ is the wave-vector of the incident wave and [K~I = k = l / 2  where 2 
is the wavelength in vacuum. Outside wave vectors in the direction of 
the diffracted h waves will be denoted by K~. The plane z = 0  is the 
mean plane of the lamella, the beam splitter thickness is 2a and that 
of the beam recombiner 2b (Fig. 7). Correspondingly, the distance of 
the mirrors from the plane z- -0  will be denoted by M~ and M n. All 
waves mentioned in the following calculations are systematically labelled 
and are indicated in Fig. 7 in the places where they occur in the inter- 
ferometer. When setting up the boundary condition at a surface for a 
wave incident from outside of the crystal one only has to consider one 
wavefield but at a crystal exit surface, where partial internal reflection 
occurs, wavefields of both type 1 and type 2 must be considered. The 
amplitude ratios ~1 and ~2 of any coexistent wavefields must satisfy 
Eq. (32) in 3 

41 ~2-- 70 Zh (20) 
'~h X,~ 

where 

~I(I~o)=Dhl/Dol and ~2(t~o)=Dh2/D02. (21) 

Both 41 and ~2 are functions of the incident angle r that can be calcu- 
lated from Eq. (25) in a. For simplicity we will assume the existence of 
an inversion centre so that Zh=Z~. On the entrance surface ( z = - a )  
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of the beam splitter the boundary condition is 

D~ exp [ - 2 r c  i =DIo2 K g z ( - a ) J  e x p E - 2 n  i KIo2~(-a)J (22) 

i D~I, expE--2rciKhz(-a)]=D~h2expE-2niK~,z=(-a)] (23) 

Fig. 7. Waves  occurring in the plane wave interference theory of the Bragg case X-ray interferometer 

in which the subscript z identifies the z component of a vector. Kg 2, K~, 2 
are the wavevectors of the type 2 wavefield that is excited inside the 
crystal by the incident wave ~ .  The type 1 wavefield which is compa- 
tible with the above wavefield at the same surface has wavevectors 
Kg 1, K~I. Since the tangential components of the wavevector remain 
unchanged across a boundary, we can write 

Kio_Kol=k6, z , Ko-Ko2=kg)ez 
(24) 

i K~,-Khl=k6' 1 z, Kh--Khz=lc6~ z. 
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Here the conventional abbreviations 62, 32, 3' ' 1, 32 have been introduced. 
Analytical expressions describing the variations of the 6's with the 
incident angle can be found in YON LAUE'S book 7. For our purpose, 
it is sufficient to point out that all 5's are of order 10 -5 to 10 -6. With 
(24) and (22) we find 

DIo2 = D~ exp [ + 2 zc i k 52 a~ (25) 

and furthermore with (21) 

D~2=D~ ~2 e x p [ + 2 ~  i k 62 a] .  (26) 

This combined with (23) gives 

DI~=D~ ~2 exp[--27r i k a(6'2-62)-~ �9 (27) 

At the boundary z =  + a  two internal wavefields and one outside wave 
have to be considered�9 We obtain the conditions 

DE e x p [ - 2 ~  i Kio~ a] (28) 

= DE, exp [ -  2 rc i Kol= a] + Dto2 exp [ -  27r i Ko2 z a], 

O=D~lexp[--27ZiKhlza]+Dlhzexp[--2rCiKh2za] .  (29) 

Using (21) and the Laue equation (30) 

K h ~  - -  K o ,  = K h  2 - -  K o  2 = h (30) 

where h is the diffraction vector of the acting reflection, (28), (29) and 
(25) can be combined to yield the result 

D~o=D~(~I-~2) ~ - 1  exp [-4~z i k62  a]. (31) 

At the mirror surface z =MI  in Fig. 7, we have 

�9 ~ ' e x p [ - 2 u i K o 2 z m i ]  (32) DE exp [ - 2 ~ t K o z m I ]  = Do 2 

D~ e x p [ - Z ~ i K i h z M l ] = D ; , z e x p [ - 2 7 r i K h 2 ~ M i ] .  (33) 

Using (21), (24), and (31), with (32) and (33) we find 

' ' ' - k [ ( 2 a - M , ) 5 2 + M ,  62]} (34) Dh=Do ~2 r 1(~1--r exp {2zc i 

By comparing Eqs. (31) and (34) we see that the Bragg reflection at 
surface z = M  I has introduced an amplitude factor 

I ,  I Dh/Do = ~2 exp [27~ i k MI(6'2 - 32) ] �9 

7 LAUE, M. V.: R6ntgenstrahlinterferenzen. Frankfurt:  Akademische Verlagsge- 
sellschaft 1960. 
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In a similar way the reflection of :D~ into ~ e  at the upper rear surface 
of the lamella z=b introduces the amplitude factor 

DIoe/D~={~l exp ]-2~r i k b (c5'~- 61)]} -1 (35) 

(in this case the incident wave is an h-wave and the wavefield inside 
the crystal must be of type 1 to have an energy flow direction into the 
lamella). Using (34), (30), and (24) it therefore follows that 

o =~ o  sz ~-2(41--~2) exp{ 2~r i kE2a ~2q-(M,-b)05'2-~2)]}. (36) 

Notice that (30) and (24) can be combined so that 

a i --~51 = ~ 5 1 - -  a 2 . ( 3 7 )  

Consider now the right hand path (II); the surface Bragg reflection 
at z = -  M .  introduces the amplitude factor [c.f. Eq. (35)] 

n . (38) Do/Dh = {it exp[2~ i k(-M,,)(6'l-~5~)]}-' 

and using (27) and (37) and (38) 

II i -- 1 Do=Do 42 41 exp[2~z i k(Mn-a)(6'2-62) ] . (39) 

At the upper front surface of the lamella z = - b  the boundary condition 
requires that 

D~Iexp[-2~z i i b)]=D~2 ex p i b)] Ko~ ( -  [ - 2 ~r K o 2~ ( -  (40) 

and using (21), (24) and (39) it follows that 

DU - n '  ~-i exp {2~z ikE(Mn-a)(62-62)+br52] } (41) 0 2 - - L ' 0  42 ~1 
and 

Dl~z=Dg422{;' exp{2~rik[(M.-a)(61--a2)+ba2]}.  (42) 

At the upper rear surface of the lamella z=b, partial internal reflection 
occurs with two internal wavefields and only one external wave ~ e ,  
therefore 

D~e exp �9 i E-27cz Ko= b] (43) 
=D~, expE-2=iKo,zbJ+P~e expE-2*ciKo2=b], 

0=D~ expE-2~ziG,.b]+D~r2 expE-2=iG2=b]. (44) 

Combining (43) and (44) and using (21), (24) and (30), the amplitude of 
the wave ~ is 

D ~  e__ n t I  y - 
- ~o 2 sl ~(~, - 42) exp [2re i k b c~2] (45) 



16 U. ~BoNsE and M. HART: 

and with (41) we obtain 

D~ e =Do 42 ~ - 2 ( ~  _ 42) exp {2re i k [2b 62 + (MH--a) (6'2--62)-1}. (46) 

Finally, f rom (36) and (46) we obtain the amplitude ratio of the two 
interfering waves ~ and ~)~e 

Ie lie Do/Do =exp{2"aik[bi(yi-xH)+c52(Y,i-Xl)-1} (47) 

where 

YI = M ~ -  b, Yn = M . -  b, 

x I = M I - a ,  Nil = MII -- a .  

I t  is seen that the waves ~le and ~ e are exactly in phase if the 
dimensions of the interferometer are "ideal", that is if 

a =  b and MI=MII .  (48) 

Furthermore a split-lamella design analogous to the split-mirror Laue 
case interferometer 8 can be used since (47) requires only that yi=xi~ 
and yii=xt for constructive interference. As has already been pointed 
out, since fi~ and b 2 are both of order 10 .5 to 10 -6, deviations f rom 
the ideal geometry by 1 to 10 microns are permissible so that the 
construction of actual interferometers is not too difficult. Similar results 
have been obtained for Laue case interferometers 2. 

I t  is also important  that with perfect or almost perfect geometry 
the phase relationship between the exit beams ~)~e and ~)~e does not 
depend on ~ and hence depends neither upon the incident angle 00 nor 
on the angle of the flow direction e inside the lamella. Thus the calculated 
phase relationship is also correct for spherical waves. 

Let us now consider the effect of the internally reflected wavefields 
on the interference of the main or first order beams. From Eq. (20) 
we conclude that in the Bragg case (y0/7h<0) the coexisting wavefields 
of type 1 and 2 have the same absorption state since the signs of the 
real parts of ~ and 42 are the same. (This is just the opposite of the 
situation in the Laue case.) Therefore the partially reflected wavefield 
generated by a weakly absorbed wavefield at the rear surface of the 
lamella could in principle again reach the front surface of the lamella 
and thus generate more waves. WithX-rays it is unlikely that the wavefield 
will have an appreciable energy after penetrating the lamella twice. 
Furthermore, if it was still sufficiently strong to produce a second system 
of waves no difficulties would arise because the two system of waves 

8 BONSE, W., and M. HART: Appl. Phys. Letters 7, 99 (1965). 
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are spatially separated. Thus the second system of waves could be either 
utilised or eliminated by suitable screens. 

Finally, an important difference between Laue and Bragg case 
interferometers should be pointed out. Laue case interferometers, as 
previously described 2, make essential use of the presence of the strong 
absorption and probably would not work if there was no Borrmann 
effect. In interference patterns obtained with Laue case interferometers, 
the dark regions are dark because the energy is dissipated by photo- 
electric absorption. On the other hand, when destructive interference 
occurs between the exit beams D Ie and ~ e  of a Bragg case interfero- 
meter, the energy is diverted into the two  type 1 wavefields which pro- 
pagate into the beam recombining crystal from the surface z=b .  These 
two wavefields are made up of the pair of internal waves (not entered 
in Fig. 7) excited by the wave ~ and the pair of waves 37~ 1 and ~i~ 
resulting from the partial internal reflection of ~ 2  and ~ 2  at the 
surface z=b. Thus the energy is deviated rather than absorbed when 
desctructive interference occurs in a Bragg case interferometer. It seems 
then that this type of interferometer would work without strong absorp- 
tion though multiple internal reflections in the lamella would then be 
possible. Since it is difficult to obtain suitably perfect, highly absorbing 
crystals for neutron diffraction, the Bragg case design might be particu- 
larly suitable for neutron interferometry. 
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