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For a given master equation of a discontinuous irreversible Markov process, we present 
the derivation of stochastically equivalent Langevin equations in which the noise is either 
multiplicative white generalized Poisson noise or a spectrum of multiplicative white 
Poisson noise. In order to achieve this goal, we introduce two new stochastic integrals of 
the Ito type, which provide the corresponding interpretation of the Langevin equations. 
The relationship with other definitions for stochastic integrals is discussed. The results 
are elucidated by two examples of integro-master equations describing nonlinear relax- 
ation. 

1. Introduction 

Stochastic differential equations (or Langevin equa- 
tions) with random perturbations have been revealed 
to be a useful tool for the study of statistical pro- 
cesses in physics, engineering and many other fields 
[1-7]. In particular the concept of stochastic differen- 
tial equations (SDE) for continuous Markovian pro- 
cesses (Fokker-Planck processes) has found wide ap- 
plication in the statistical theory of irreversible pro- 
cesses [1-10]. A common feature of the latter ap- 
proach is that the noise which enters the Langevin 
equation is often written down in an ad hoc manner 
rather than derived from first principles. It has been 
assumed, on the basis of phenomenological argu- 
ments, to be Gaussian white noise. There have been 
put forward exact generalized Langevin equations 
employing the projector method, which are either of 
the "linear"** Mori type [8] or explicitly nonlinear in 
the system variables [9]. However, it is very difficult 
to determine microscopically the stochastic structure 
of the in general multiplicative noise in those exact 
equations. 

* Supported by National Science Foundation Grant CHE78-21460 
** The term "linear" is misleading. Actually, these equations hold 
only for one special process (in most cases the stationary equilib- 
rium process) 

Another approach to describe irreversible processes 
is based on the concept of master equations [1, 4, 5, 
10]. For the study of the dynamics of discontinuous 
Markovian processes (i.e. the sample paths are no 
longer continuous functions) as they occur in a sto- 
chastic treatment of chemical kinetics [5, 10], quan- 
tum optics, spin relaxation or relaxation processes 
described by linear Boltzmann equations, the master 
equation approach presents the usual concept. 
One of the challenges of this work is to extend the 
method of a Langevin description to discontinuous 
processes so that the latter description is stochasti- 
cally equivalent to a given master equation of the 
integro-differential type. This challenge has been ad- 
dressed in some previous works [11-16, 18]. In [12, 
18] we have considered a Langevin equation de- 
scription of a discontinuous process composed of 
multiplicative white Gaussian noise (continuous com- 
ponent) and white generalized Poisson noise. In re- 
cent works [14, 15] dealing with the derivation of 
master equations of non-Markovian Langevin equa- 
tions, we have studied the limiting case of a Langevin 
equation composed of both multiplicative white Gaus- 
sian noise and multiplicative white generalized Pois- 
son noise. Using the usual rules of calculus (Strato- 
novich interpretation), the resulting master equation 
has been shown to contain a fluctuation-induced drift 

0340-224X/80/0036/0271/$02.40 
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of complicated structure. While this latter work gives 
a rather complete answer to the question o f  the 
corresponding master equation, the converse problem 
of finding for a given master equation a stochasti- 
cally equivalent Langevin description remains un- 
answered. Another interesting attempt at solving the 
above problem is in [16]: Considering a multi-Pois- 
sonian process with a parameter dependent measure, 
the author derives the corresponding master equation 
and also presents an attempt to recast the master 
equation in Langevin form. However, he does not 
specify the definition of the stochastic integral and 
consequently does not properly state the properties of 
the random force. Thus, his Langevin equation is of 
no use for determining the statistical properties of the 
solutions. In other words, the corresponding master 
equation is not uniquely defined. 
The outline of this paper is as follows: In Sect 2 we 
elaborate on the structure of the master equation. In 
Sect. 3 we present the statistical properties of two 
noise sources, the white Poisson noise and the white 
generalized Poisson noise which, as we will show, are 
quite useful for the description of a discontinuous 
process. In Sect. 4 we define two new stochastic 
integrals with respect to white Poisson noise and 
white generalized Poisson noise and study their prop- 
erties. Throughout this paper we prefer to point out 
the essential ideas and to derive key relations, not 
always with complete mathematical rigor. The main 
results are contained in Sect. 5, where we give a well 
defined Langevin description, either in terms of mul- 
tiplicative generalized Poisson increments or in terms 
of multiplieative Poisson increments, which is sto- 
chastically equivalent to a given master equation of 
the integro-differential type. In Sect. 6 we illustrate 
the results and methods with two examples of in- 
tegro-master equations describing nonlinear relax- 
ation. We extract explicitly the structure of the mul- 
tiplicative noise entering the Langevin description. 
Some conclusions and a brief discussion on the use of 
different definitions for the stochastic integral are 
given in Sect. 7. 

6"(x-y)  which account for a continuous component 
of the process x(t). For x = y  the kernel in (2.1) 
contains a negative a-contribution representing the 
loss of weight of state x during dt due to all tran- 
sitions from x to different values y. Hence we write 
for F(x, y; t) 

V(x, y; t)= W(x, y; t)-,~(yt) a(x-y) (2.2) 

with 

W(x, y; t)>O (2.3) 

and 

,~(xt) =j w(y, x; t) dy < oc (2.4) 

denoting the total jump frequency. Writing the sto- 
chastic kernel as 

F(x, y; t)=~F(z, y; t) 6 ( z - x )  dz (2.5) 

and formally expanding the &function in (2.5) at z 
=y,  we obtain the Kramers-Moyal expansion of (2.1) 
with operator F(t) given by 

( -  1)" 1 \ 0 " 
F(t) =,~=, ~ t~x) a,(t,x). (2.6) 

The Kramers-Moyal moment a,(t, x) is given by 

a,(t, x) = ~(z -  x)" W(z, x; t) dz 

n = 1, 2 . . . . .  (2.7) 

For what follows, we call the operator F(t) in (2.1) or 
(2.6) the forward generator of the Markov process 
x(t). Of main importance for the following is the 
concept of the conditional expectation: The con- 
ditional expectation <f(x(t))ly, s> of a function f(x) is 
defined as the statistical mean taken over the subset 
of sample paths passing through state y at former 
time s. The rate of change of this quantity with 
respect to the later time t obeys the equation [17, 18] 

0 
05 <f(t)lys> -- <V +(t) f(t)lys>, t > s. (2.8) 

2. Structure of the Master Equation 

In order not to complicate the main ideas, we restrict 
the following discussions to a one-dimensional pro- 
cess x(t). Let us consider a system described by a 
Markovian process x(t) obeying the master equation 

>(xt) = S r(x, y; t) p(yt) dy. (2.1) 

In general the kernel in (2.1) may contain a contri- 
bution proportional to the distributions 6 ' (x -y )  and 

By letting t approach s, t~s, we obtain from (2.8) 

lim (f(t)]y s> - f ( y )  _ (F + (t) f)(y). (2.9) 
t~s t - - S  

The transposed operator F +(t) is called the backward 
generator of x(t). It has from (2.6) the Kramers-Moyal 
expansion 

F+(t) =,~17 a,(t, x) . (2.10) 
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The backward operator has the property that it de- 
scribes the time evolution of the conditional proba- 
bility R(xtlys) of (2.1) with respect to the former time 
s [17, 18] 

8R(xtlys) 
8s 

~ F+ (y, z; s) R(xtlzs) dz. (2.11) 

The problem stated in the introduction can now be 
formulated explicitly: Given the Markov process x(t) 
possessing the backward generator in (2.10), we look 
for a stochastic differential equation description 

dx = v(t, x) dt + ~(t,  x, dtl) (2.12) 

with v(xt) denoting a regular drift* and Y a linear 
functional in some noise ~ such that the stochastic 
realizations (co) of (2.12), x(t, Xo, OO), x(0)=Xo, are 
stochastically equivalent to the process x(t) with mas- 
ter equation given in (2.1). The second part in (2.12) 
represents the irregular part of the displacement. The 
stochastic integral with respect to the noise dr/can in 
general not be defined uniquely. Henceforth, the 
structure in (2.12) must be accomplished with a specif- 
ic definition for the stochastic integral. A continuous 
component of the irregular part of x(t) is well known 
to be represented by the term (see e.g. [7, 18, 21]) 

b(t, x) dw (2.13) 

where dw=w(t+dt)-w(t)  is the increment of the 
Wiener process. In the following section we elaborate 
on the structure of noise sources which are adequate 
for the representation of the discontinuous part of the 
random perturbation in (2.12). 

with a jump width z = 1 are given by 

n (t) 

y(t, z = 1) = • O(t -- ti). (3.3) 
i = l  

Here {t~} is the set of the arrival times of the Poisson 
counting process. The stochastic properties of y(t,z 
= 1) are of course given by those of n(t). For example, 
we have 

([y(t l ,  z = 1)-Y(t2, z = 1)] [y(t3, z = 1)-y(t4,  z = 1)]) 

f,~2(t 1 - t2)(t 3 - t4) , tl > t 2 > t 3 >/74 
(3.4) (,~2(t~- t2)(t3- t4)+,)~(t3- t~), t l> t3> t2>t~ .  

Next we consider the Poisson increment 

dy(t,z=l)=[y(t+8, z = l ) - y ( t , z = l ) ] ,  8>0. (3.5) 

Clearly we have for the probability 

P(dy(t, z=l )=k)=e  a~()'e)k k! (3.6) 

and (dy(t,z=l))=28. In what follows we consider 
the fluctuation process t/(8, z = 1) 

rl(t, 8, z=1)=dy(t ,z=1)-28;  (t/) =0.  (3.7) 

The correlation function of t/(t, 8, z = 1) is from (3.4) 
given by 

0, I t-sl  >~ 
(rl(t,e,z--1)tl(s,e,z=l))= 28-21t-s l ,  I t-sl<e. 

(3.8) 
The white Poisson process ~(t) is then defined by 

~(t) =lira rift, 8, z = 1) _~ ,  6 ( t -  t~) - 2 .  (3.9) 
e ~ 0  8 i 

3. Poisson Increments and White Generalized 
Poisson Noise 

Consider a Poisson counting process n(t;2)-n(t) 
with probability 

P(n(t)=n)=e-Xt(2ffl" (3.1) 

and a characteristic function given by 

(exp ico n(t)) = exp {(e i~ - 1) 2 t}. (3.2) 

The sample paths of the Poisson process y(t ,z=l) 

* It is important to note that the drift v(xt) is in general not 
identical to the drift in a deterministic equation. The latter is 
usually proportional to a thermodynamic force [-19], whereas the 
drift in (2.12) may contain in general nonlinear effects of the noise 

From (3.7), (3.8) we find 

(¢(t)) =0  (3.10a) 

(~(t) ~(s)) =28 ( t - s ) .  (3.10b) 

The properties in (3.10) are analogous to those of 
white Gaussian noise. In this context it should be 
stressed that (3.10) alone does not guarantee that the 
solutions of a SDE with a noise satisfying (3.10) 
correspond to realizations of a Markov process. A 
complete characterization of the noise has to include 
knowledge of all higher cumulants as well. By using 
the cumulant generating functional ~t Iv] (see Equa- 
tion (A.11), (1.16) in [15]) 

Ot[v] = ln @xp i i dsv(s) ~(s) ) 
t 

=2 ~ ds(e '~(~)- 1) (3.11) 
0 
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we find for the cumulants, ( )c, of ~(t) 

(~(tl) ~(t=)... ~(t,))c 
=26(t  1 -t2)b(tz--t3).. .b(t~_l--tn) , n>=2. (3.12) 

In order to represent sample functions of a process 
with variable jump lengths, we have to generalize the 
above structure for the discontinuous noise. One 
possibility for such a generalization is obtained by 
allowing the jump width z~ at Poisson arrival time ti 
to be a random variable. Let {za,. . . ,z  . . . . .  } be a set 
of independent random variables with a common 
probability ~. The generalized Poisson process y(t) is 
then given by 

n(t) 
y(t) = ~ z j O ( t  - -  t j ) .  (3.13) 

j= l  

Its characteristic function can be calculated as fol- 
lows: Noting that 

/ '=~1 ) 
expico zj =q~m(co) (3.14) 

J 

where ~b(co)=(e i°)~1) we obtain by observing that z o 
=0  and n(t) independent of the jump variables [18] 

(exp io)y(t)) = ~ x p  
n(t) \ \  

ic°j~_ ozjln( t) = m// 

= ~ ~)m(fD) P(n(t)--m) 
m - - O  

= exp {2 t[~b(co) - 1]}. (3.15) 

Thus we obtain for the statistical mean of y(t) 

(y(t)) = ( z )  2 t. (3.16) 

Denoting the generalized Poisson process where (z)  
=0  by/~(t) we can form the generalized white Pois- 
son process ~Gp(t) 

~Ge(t) =dd( t "(') t )=  ~ zi&( t -  ti)" (3.17) 
i=1 

Its stochastic properties can be deduced from its 
cumulant generating functional given in [15]. For 
example we have 

(ice(t))  =0  (3.18a) 

(~Gp(t) ~p(S)) = 2 (Z 2) 6(t -- S) (3.18 b) 

<~G~(t0.. .  ~ ( t , ) > c :  ;,<z"> ~(t~ - t g . . .  ~(t,,_ ~ - t,). 
(3.18c) 

Note that for 2 - - ,~ ,  ( z ~ ) ~ 0 ,  n = 2 , 3 . . ,  such that 
)o(z 2) ~ 1, 2(z ") ~ 0 ,  n = 3 , 4 . . ,  we obtain from ~Gp(t) 
the Gaussian white noise. 

Another possibility to represent a jump process y(t) 
with independent increments of variable size can be 
obtained in the following way: Let A denote and 
interval Ac( -oo ,  0 - ) u ( 0  +, oo) and n(t, A) the number 
of points se[0, oo) for which y(s+)-y(s  )eA. The 
counting process n(t,A) has independent increments 
because n(t ,A)-n(s ,A)  with t>s  is completely de- 
termined by the increments of y(r)-y(s), re[s, t]. We 
further assume that the probability P([n(t,A) 
-n(s, A)] =k) depends only on the length t -s(n(t ,  A) 
time-homogeneous). Under the above assumptions 
the process n(t,A) is shown to be a time-homo- 
geneous Poisson process [20]. The parameter 2 is 
given by (n(t, A))/t. For the following we denote the 
quantity 2 by 

2=-H(A)=~p(u)du, p(u)>O. (3.19) 
A 

The set of functions FI(A)* is a measure on ( - o %  oe): 

Let A =  ~)a  i where the intervals {ai} are pairwise 
i=l 

disjoint. Then the process n(t, A) equals ~ n(t, ai) and 
as a consequence i 

Fl(A)=Z (n(t, al))/t= ~ lI(ai) (3.20) 
i i=1 

with II(ai) > 0 because n(t, a 3 > O. The independent 
increment process y(t,A) with jump widths z~eA is 
given by 

n(t, A) 
y(t, A) = ~ ziO(t- ti) (3.21) 

i=1 

with z i=y( t [ ) - y ( t [ ) eA .  In other words, the process 
y(t,A) is the sum (not number) of the jumps of the 
process y(t) that occur up to time t and fall in the set 
A. It may be looked upon as a restricted generalized 
Poisson process with a random variable z i varying in 
the interval A. For the special choice A={1}, we 
obtain the process y(t, z= 1) in (3.3). As a generali- 
zation of the Poisson increment dy(t, z = 1) we study 
the properties of the process n(e, A): 

n(e, A) = n(t + e, A) - n(t, A), (3.22) 

which is a Poisson counting process with parameter 2 
=H(A). Noting that 

(n(e, A)) = ]elM(A) (3.23) 

we consider the process t/(e, A) of vanishing mean 

t/(e, A) = n(e, A) - [el//(A). (3.24) 

* The density p(u) may in general contain &functions 
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By virtue of the characteristic function in (3.2), we 
recover the following statistical properties: 

(r/(~, A) 2) = laIH(A) (3.25 a) 

(r/(g, 1)3) = leIH(A) (3.25 b) 

(r/(z, A) 4) = [el H(A)(a + 3 I~IH(A)). (3.25 c) 

A very important property of the process ~/(t,A) is 
that in the limes of mean square (1.i.m.) 

t 

rl(dt, A) tl(dt, B) = lim ~ q(A t, A) q(d t, B), t > t o 
to l a t i n 0  j 

= 1.i.m. n(t - to, A ~ B) 

= l . i . m . ~ ( t - t o , A r ~ B ) + ( t - t o ) H ( A ~ B  ). (3.26) 

To prove this relation, we set 

x = ~I(A t, A) ~I(A t, B) - n(A t, A r~ B). (3.27) 

By noting that t/(A t, A) and ~/(A t, B) are independent 
for A ~ B = ¢ ,  we find from (3.25a) ( x ) = 0 .  Forming 
the variance ¢7(x) 

a(x) = (x  2) - ( x )  2 (3.28) 

we find 

a(x) = a [(r/(A t, A m/3) + r/(A t, A m B)) 

• (~I(At, Bc~.4)+~I(At, A m B ) ) - n ( A t ,  Ac~B)] 

=a[tl(At, A c~B ~ B c~A) tl(At, A c~B) 

+ rl(At, A c~B) rl(At, B c~A) +rl2(At, A c~B) 

- n (A  t, A ~ B)] 

< 3 { (rl(At, A c~Bw B ~A)  rl(At, A c~B)) 2 

+ (rl(At, A c~B) rl(At, B c-~fi,)) 2 

+ (r/2(A t, A ~ B) - n(A t, A c~ B)) 2 } 

= 3 IA tl2[El(A c~BvoB hA )  H(A roB) 

+ El(A c~ B) H(B c~.4) + 2(H(A c~ B))2]. (3.29) 

In the last step we made extensive use of the proper- 
ties in (3.25). Due to the term IAtl z in front of (3.29) 
the integral in (3.26) equals in the limit of mean 
square the random variable n ( t -  t o, A m B) ! Equation 
(3.26) may be written in shorthand form 

r/(A t, A) 2 = ~ ~(dt, A) 2 = 1.i.m. ~(A t, A) + A tEl(A) (3.30) 
At  

but it should be stressed that the integration over a 
nonzero interval is essential. Equation (3.30) has with 
~(dt, A) substituted by the increment dw=w(t+dt )  
-w( t )  of the Wiener process w(t) its well known 
analogue [18] 

(dw) 2 =dt with probability 1. (3.31) 

As in the theory of SDE for Fokker-Planck processes 
[7, 18, 21], it is this fact (Eq. 3.30) that in an SDE of 
the form 

T 

~o(x( t)) tl( dt , A) (3.32) 
0 

the final result does depend on the choice of the point 
x(t') with ti < t'~ < t~+ 1 ! Consequently, a stochastic in- 
tegral of the type in (3.32) cannot be defined uniquely. 
In the next section we will elaborate on a convenient 
definition for the stochastic integral with respect to 
the noise sources discussed in this section. 

4. Stochastic Integrals 

4.1• Stochastic Integrals with Respect 
to Generalized Poisson Noise d#(t) 

To start, let us first consider a process y(t) with 
independent increments• By considering the jump 
length as a random variable, we can represent y(t) by 
a generalized Poisson process (3.13) 

y(t) = (y(t)) + g(t), y(O) = Yo. (4.1) 

(4.1) can be recast in difference form 

/ d \ 
dy(t)= [dtt (y(t)) ) dt + d#(t). (4.2) 

With 0 = t o < t 1 < . . .  < t n = t denoting a partition of 
the time interval [0, t], we have 

y(t)=~dy(s)=y0+ (y(s)) ds 
0 0 

+ lim ~ #(ti+ 1) - bt(ti) (4.3) 
~ 0  i 

where 6=max( t i+l - t i ) .  More generally, we may 
i 

study the integral 

t 

f (#(s)) dl~(s) (4.4) 
0 

with f(t)  a random function satisfying y ( f2 ( t ) )d t  
< oo. Then we define the integral in (4.4) by 

t 

~f(#(s))dbt(s)=lim~f(#(ti))(#(ti+ O-#(ti)). (4.5) 
0 6 4 0  i 

With this definition we find the following properties: 

1) f(#(t))d#(t) =0 (4.6a) 
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= lim ~ (f2(ti))  2(zi z) (ti+ 1 - ti) 
6 ~ 0  i 

T 

= 2 ( z  2) ~ ( f2( t ) )  dr. (4.6b) 
0 

Hereby, we made extensive use of the fact that f(#(ti))  
and [# ( t i+ l ) -# ( t i ) J  are independent random vari- 
ables. In (4.6b) we made use of (3.18b) and assumed 
that the jump variables {z i} possess a common prob- 
ability ~. 
Let us now consider a general discontinuous process 
x(t) with no continuous component which in general 
does not possess independent increments. For the 
following, we denote the local increment of vanishing 
mean by 7(t, x(t), h) 

7(t, x(t), h) = x( t  + h) - x(t) - ( (x ( t  + h)) - (x ( t ) ) ) .  (4.7) 

As in the theory of the representation of Fokker- 
Planck processes [1, 7, 18, 20, 21], we represent the 
increment in (4.7) by the following stochastic integral 

~(t, x(t), h) = ~ c(t, x(t)) d#(t) (4.8 a) 
h 

---lim ~ c(t, x(t~))[#(ti+ ~)#(ti) ] (4.8 b) 
5 ~ 0  i 

with c(t, x) denoting some function and #(t) a "stan- 
dard" generalized Poisson process (3.13). In (3.13) we 
have assumed that the probability ~ for the jump 
length as well as the parameter 2 for the Poisson 
counting process do not depend on the state x(ti) at 
Poisson arrival time t i. If we allow for the measure of 
d#(t) to depend on time t and state x, we may 
alternatively write for (4.8) 

h)= 
h 

= lim ~ [-#t,, x ( t i ) ( t i +  1 )  - -  # t i , x ( t i ) ( t i ) ]  " (4.9) 
5 ~ 0  i 

Here the choice of the time point in (4.9) for the 
parameter values (t, x) of the measures (, n(t; 2) of #(t) 
is important; only with this choice do the jump 
variables that occur in the infinitesimal time interval 
[t i, ti+ ~] be independent of the parameter dependent 
Poisson counting process n(t) with 2=2t, x(t, ). In this 
context the function c(t,x) in (4.8) can be looked 
upon as the mapping, c(t,x), of the parameter de- 
pendent measure to the fixed "standard" measures 
~, n(t; 2) of the generalized Poisson process in (4.8). 

4.2. Stochast ic  Integrals  with Respect  to rl(dt, du) 

well represent the realization of a discontinuous pro- 
cess x(t) with no continuous component as a super- 
position of processes with jumps of a fixed length. 
First, let us again consider a process with inde- 
pendent increments y( t ,A)  (3.21). In terms of the 
Poisson counting process n(t, du), we can represent 
y(t, A) in the following form: 

y(t, A) = ~ un(t, du )=  l im ~ uin(t, Aui) 
A ~ 0  i 

(4.10) 

where 

e = max ]A ui] = max ]ui+ 1 - b/ i]"  (4.11) 
i i 

By noting that A = U A u i and {A ul} pairwise disjoint 
i = l  

sets we consequently obtain 

[y(t, A) - ~ u i n(t, A ul) [ 
i 

<-_ ~ [y( t, A ui) - ui n( t, A ui)[ 
i 

< ~ ~, n(t, A ui) = ~ n(t, A). (4.12) 
i 

For example, the generalized Poisson process in 
(3.13) has the representation 

y(t)= ~ un(t, du), d n ( u ) = 2 ~ ( u ) d u .  (4.13) 
- o o  

As before, we look for a representation of the incre- 
ment 7(t, x(t), h) of vanishing mean of a general discon- 
tinuous process with no continuous component. In a 
way analogous to that constructed in (4.9), we can 
write 

°/(t, x(t), h) = ~ (~ u~t ' x(dt, du)). (4.14) 
h 

The integral in (4.14) is hereby defined by 

T 

~ ~ Utlt, x(dt , du) 
0 

= lim ~ ~ utlt~ ' x(~i)(ti+, - t i, du). 
6 4 0  i 

(4.15) 

Because the dependence of the measure r/ on the 
parameters (t,x) causes a certain inconvenience, we 
go with the help of measure transforming mapping 
f ( t ,  x, u) to a representation of the form 

T T 

S ~ Utlt, x( dt, du) = ~ ~f( t ,  x(t), u) tl(dt , du) 
0 0 

= lira ~ ~f( t l ,  x(ti), u) tl(ti+ 1 -- ti, du). (4.16) 
8 ~ 0  i 

Instead of describing the sample paths in terms of a 
generalized Poisson process [see (4.8)], we can just as 

As in the theory of SDE for Fokker-Planck pro- 
cesses, where the methods and properties of the sto- 
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chastic calculus were developed long before physicists 
recognized its usefulness, the stochastic integral of the 
type in (4.16) was first considered by Ito [22]. The 
theory has been further developed by Gikhman and 
Skorokhod [23]. But as often occurs in such cases, 
these quoted texts are more or less in incomprehen- 
sible form for anyone not armed with a solid back- 
ground in the theory of stochastic processes from the 
measure-theoretic point of view. We therefore prefer 
to follow a more pedestrian approach with emphasis 
on the physical essential ideas and relations. Let us 
summarize some important features of the stochastic 
integral in (4.16): 

('!, ) 1) f ( t ,x(t) ,u)q(dt ,  du) = 0  t z > t  i (4.17a) 

t2 

= ~ S( f z ( t ,  x(t), u)> p(u)dudt (4.17b) 
tl 

1 
3) lira ~ (y"(t, x(t), dt) 7re(s, x(s), ds)) 

d,~ o (dt) 

= ~ fn+m(t, X, u) p(u) ducS( t -  s) (4.17c) 

where x(t) = x. 
The properties in (1), (2), (3) above follow from the 
fact that f ( t ,  x(t), u) within the definition of the sto- 
chastic integral in (4.16) is independent of tl(dt, du) (Ito 
definition, [23]). By use of a Stratonovich-like de- 
finition for (4.16), the relationship between the two 
stochastic integrals reveals a complicated fluctuation 
induced drift [15] as well as additional stochastic 
terms (see Appendix A). 
If a process x(t) satisfies the Ito-SDE 

dx = a(t, x) dt + 5 f (t, x(t), u) tl(dt , du) (4.18) 

the total differential of the process g(t, x(t)) satisfies 
[233: 

4) dg(t, x) = E~(t, x) + g'(t, x) a(t, x) 

- g'(t, x) 5f(t ,  x, u) p(u) du] dt 

+ ~ {g[t, x(t) +f( t ,  x(t), u)] 

-g( t ,  x(t))} n(dt, du). (4.19) 

5. Langevin Description of Integro-Master Equations 
for Markovian Processes 

5.1. Langevin Description in Terms 
of Generalized Poisson Noise Increments 

Let us introduce the probability ~,,y and pt, y 

~, . ( z  = x - y) = W(x ,  y; 0 / 4 , .  > o, 

p , . , ( z = x _ y ) = ~ 5  e ,oz 

1 ~ (ico) j 

with 

(5.1) 

~,,.(z) dz  = 5 W(x,  y; t) dx/ .Z. .  = 1, ( z>p = 0 

and 

(5.2) 

)~t,v = )~(Y t) = S W(x, y; t) dx (5.3) 

~t,y gives the probability for a jump of length z when 
the value of the process x(t) prior to the jump was y. 
In the following we will show that a discontinuous 
irreversible process x(t) with no continuous com- 
ponent obeying (2.1) is represented stochastically 
equivalent by the (Ito)-SDE 

dx =dyt, x =a(t, x) dt + dl~t,x. (5.4) 

Hereby a(t, x) is equal to the first Kramers-Moyal mo- 
ment [the drift-term in the master equation (2.1)] 

a(t, x )=ai ( t  , x)= S ( z -  x ) W (z, x; t) dz (5.5) 

and yt,~(s), lit,~(s) are generalized Poisson processes 
with parameter dependent Poisson counting process 
n(dt; 2(t, x)) and a parameter dependent jump proba- 
bility ~t,~ and p,,~ respectively. 
If we denote by 0(co, t) the characteristic function of 
the process x(t) of (5.4), we obtain [12] 

~t ~b(co, t ) = / e x  p i cox( t ) (exp( iodx( t ) ) - l l x ( t ) )  \ 
dt / .  (5.6) 

For the expectation (expicodx(t)[x(t)) we obtain 
from (5.4) 

(exp icodx(t)lx(t)> = (exp icody,,~lx(t)). (5.7) 

Further, the probability, P, of two and more jumps is 
of order o(dt) such that 

(exp iody,,xlx(t)) = P  (no jumps) 

+ ( e x p  iooz>t,~P (only one jump in dr) 

= 1 --)Lt,~dt + {(exp io~z) 2}t ,~ dt + o(dt). (5.8) 

With the results derived in the previous sections, we 
are now prepared sufficiently to study the SDE- 
description for a given master equation (2.1). 

Hereby, we make explicit use of the definition of the 
stochastic integral in (4.9), where the probability for a 
jump to occur in the infinitesimal interval [ t+dt ,  t] is 
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independent of the jump variable z. Thus we have 

0 
Ot ~b fro, t) = ((exp i co x(t)) [ - 2,, x(o 

+ {(exp iooz} 2},. x(O]}. (5.9) 

Observing (5.2) we find by use of a Fourier inversion 
the master equation result in (2.1) 

~(xt) = -2( t ,  x)p(x, t) +~ W(x, y; t)p(y, t) dy. (5.10) 

If the total jump frequency 2(t,x) becomes inde- 
pendent of the parameters (t, x), the SDE description 
in (5.4) allows a simple solution method for the 
conditional probability R(xt]xoO ) of the master equa- 
tion in (2.1): In this case the jump variables z are 
independent of the time-homogeneous Poisson 
counting process n(t; 2(t, x)=2)  at all times! The so- 
lution for R(xt]xoO) is consequently given by t h e  
expression 

R(xt[xoO ) = ~ Pj(t) rj(x; Xo) (5.11 a) 
j = 0  

with 

(,Zt)J 
Pj(t) = ~-.T e x p -  Zt. (5.11b) 

The term rj(x; Xo) is the probability of finding the 
jump Xo~X after exactly j jumps have occurred. 
Clearly we have 

ro(X; Xo) = a(x - Xo) (5.11 c) 

rt(x; Xo) = ~:~o(x) = W(x, x0)/~ (5.11 d) 

and because the random variables of the jumps are 
independent of the Poisson arrival times 

rj(x; Xo)=5~, , ( z=x-x ' ) r  j l(x'; xo)dx' (5.11e) 

j = l , . . . .  

In general, the solution to (5.10) is obtained by set- 
ting 

R(xtlxoO ) = ~ vi(x, Xo; t) (5.12) 
i = O  

where the sequence of functions {vi(X, Xo; t)} obeys 
the system of equations 

~o = - 2 ( t , x ) v o ;  Vo(X, Xo;O)=a(X-Xo) 
~)i = - -  I~(t, X)  V i -]- f W ( X ,  X ' ;  t) V i_  1 (X ' ,  X 0 ; t )  dx'; 
vi(x, xo; O)=0. (5.13) 

If the total jump frequency depends only on the 
parameter t, i.e., 2(t,x)-2(t),  we obtain for the so- 
lution of (5.13) 

t 

Vo(X , Xo; t) =exp  - ~ 2(s) dsb(x -Xo) 
0 

t t s 

vi(X, Xo; t ) = e x p - !  2(s)ds! ,(exp 52(u)dU)o , 

• ~ W(x, x'; s) v i_ ,(x', x o, s) dx'ds. (5.14) 

5.2. Langevin Description in Terms of rl(dt , du) 

Given a Markovian irreversible process x(t) with no 
continuous component and backward generator 
F+(t) of the form (2.10), 

F +(t)= ~, a,( t ,x)(•  )" 
. = l - - n !  & ' 

(5.15) 

We look in this subsection for a stochastically 
equivalent (Ito)-SDE in which the structure of the 
noise is extracted explicitly in the form of multipli- 
cative noise: 

dx =al ( t, x) dt + S f ( t, x( t), u) tl( dt, du). (5.16) 

In what follows we show that the SDE in (5.16), 
interpreted in the sense of (4.16), describes the process 
x(t) in (5.15) if the function f ( t ,x ,  u) in (5.16) obeys 
the set of equations 

Sff(t, x, u)p(u)du =a,(t, x), n =2, 3 .. . . .  (5.17) 

For the measure p(u)du in (5.17) we require a finite 
total jump frequency 

~p(u) du=2 < oo. (5.18) 

In order to prove the proposition in (5.16-5.18), let us 
calculate the backward generator of the (Ito)-SDE in 
(5.16) by using the property in (2.9). Considering 
(5.16), where with h>0,  x(t)=y, 

t+h 

x ( t+h)=y+ ~ at(s,x(s))ds 
t 

t+h 

+ ~ ~f(s, x(s), u) rl(ds , du) (5.19) 
t 

we introduce the process 6if(t, y, h) 

t+h  

6~(t,y,h)= S al(s,y)ds 
t 

t+h 

+ ~ 5f(s, y, u) tl(ds, du). (5.20) 
t 

The difference g(x(t + h)) - g(y + a2(t, y, h)) will be de- 
noted by z(h). With these definitions we can write for 
(2.9) 
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1 
lim {(g(x(t +h) ) ) -g (y )}  
h+0/~ 

= lim 1 h ~ o ~ { ( g ( y + 6 ~ ( t , y , h ) ) ) - g ( y ) + ( z ( h ) ) } .  (5.21) 

By use of the (generalized Ito) rule in (4.19), we 
obtain 

The Langevin equation in (5.16) may alternatively be 
written as 

2=a l ( t  , x) + ~(t, x) (5.28) 

with ~(t, x) a "generalized process" 

~(t, x) = lim J f (t, x( t), u) q(dt, du)/dt. (5.29) 
dt~0 

(g(y + 62(t, y, h)) -g(y)  
t+h 

= ~  ! [g ' (Y+a2( t ' y ' s - t )a l ( s 'Y ) )  

+ ~ {g(y + (~2(t, y, s - t) +f(s ,  y, u)) 

- g(y + ~%2( t, y, s - t)) - g' (y + 6~2( t, y, s - t ) )  

• f(s,  y, u)} p(u) du] ds) .  (5.22) 
I 

Thus we have in the limit h ~ 0  and noting the 
convergence of 62 ~ 0 for h ~ 0 

(F + (t) g)(y) = a,(t, y) g'(y) - 2g(y) 

- v(t, y) g'(y) + 5 g(Y + f ( t ,  y, u)) p(u) du 

+ lim (z(h))/h (5.23) 
h~0 

with 

v(t, y) = 5 f( t ,  y, u) p(u) du. (5.24) 

The expression for (z(h)) is complicated. However, it 
has been shown in [24] that (z(h)) obeys the in- 
equality 

(Iz(h)l) =< C(1 + lyl) h3/2 (5.25) 

SO that the last term in (5.23) approaches zero. By 
virtue of (2.11), we obtain for the backward equation 
of the conditional probability R(x t lys), t > s, of x(t)* 

0 
~s R(xt ly  s) 

= - (a l(s, y) - v(s, y)) 0@ R (x t l y s) + 2R(x t l y S) 

- ~ R(x, tly +f(s ,  y, u), s) p(u) du. (5.26) 

The Kramers-Moyal expansion of F+(t) is con- 
sequently given by (5.15) with a,(yt), n=2,  3 .... given 
by (5.17). This proves the proposition. 
A possible continuous component of the Markov 
process x(t) can simply be included in the SDE (5.16) 
by adding the (Ito)-SDE of a Fokker-Planck process 
xc(t) 

dxc( t) = a ~( t, x) dt + be(t, x) dw. (5.27) 

• (5.26) is the appropriate relation in order to solve the "moment 
problem" in (5.17) 

The statistical mean and correlation function of this 
random force over q(dt, du) is then, by virtue of 
(4.17a) and (4.17c) with (5.17), given by 

(~(t, x)) = 0 (5.30a) 

( ~(t, x) ~(s, x) ) = az(t, x) (~(t - s). (5.30b) 

By noting the cumulant properties of the white Pois- 
son process, we find for the cumulant averages of 
~(tx) the result 

=an(tlX) C~(tl--t2)...(}(tn_ l-- t , )  , n> 2. (5.30c) 

It is important to point out that the properties of the 
fluctuating force ~(t,x) hold only within the (Ito)- 
definition of the stochastic integral in (4.16)! 
Finally, we would like to mention that the (Ito)- 
Langevin description of (5.16) with a parameter de- 
pendent measure q~.x(dt, du) is given by 

dx = a t (tx) dt + [. Urlt, x(dt, du) (5.31) 

where 

a=(tx)=~u=pt,x(u)du n=2,3  . . . . .  (5.32) 

Thus remembering that u refers to the jump length u 
= y - x ,  we obtain for Pt, x the explicit result 

p, ,=(y-x)  = W(y, x; O. (5.33) 

6. Examples 

In this section we elucidate the results and concepts 
with some examples. As a first example, we consider 
an integro-master equation describing nonlinear re- 
laxation with backward equation [x(t) time-homo- 
geneous] 

R(xly; t) = a(y) ~7 R(xly; t) 

- 2 S y  ~:-R(x[y; O - 2 R ( x l y ;  t ) + 2 R ( x l y + S y ;  t). (6.1) 
oy 
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By use of (2.8) we find for the transposed equation 
the master equation 

/~(x, t) = -~xx {(a(x) - 2Sx) p(x, t)} 

-2p (x , t )+  1 +2--~p ( I ~ S ,  t) .  (6.2) 

From (6.1) we immediately read off the correspond- 
ing (Ito)-SDE with multiplicative noise 

2 = a (x) + x ~ (t) (6.3) 

where ~(t) is a white Poisson process (3.9) with a 
jump length z=S.  The function f ( t ,x ,u)  in (5.16) is 
consequently given by 

f ( t , x , u )=xu  (6.4) 

and the measure p(u) 

p(u)=~a(S-u). (6.5) 

Tllus we obtain for the Kramers-Moyal moments 
a,(x) from (5.17) 

a,(x) = 2(xS)" n = 2, 3 ... .  (6.6) 

which is consistent with the Kramers-Moyal expan- 
sion of (6.1). It is interesting to compare the (Ito)- 
SDE in (6.3) with the corresponding Stratonovich 
definition (see Appendix A). The resulting master 
equation can be found by use of the results in [14, 
15]. A simple derivation can be obtained by noting 
that (6.3) is recast in the form 

5: = a(x) - 2S x + x y(t) (6.7) 

with y(t) a white Poisson process of nonvanishing 
mean 

y(t) = ~ S g)(t - ti) (6.8) 
i 

and using the fact that the Stratonovich integral, with 
respect to the noise y(t), can be calculated as if the 
functions involved were smooth [15]. Thus we find 
for the change in x due to one impulse from (6.8) 

X f = Xi e s .  (6.9) 

Now, recalling that the probability for one impulse in 
dt is 2dr and that a particle in (x ,x+dx)  after an 
impulse was in (e-Sx, e -Sx+dx)  before we find with 
dx i = e Sdx the master equation (see also [25]) 

8 
/}(x, t) = -~xx {(a(x) - 2Sx) p(x, t)} 

- 2p(x, t) + 2e-Sp(xe -s, t). (6.10) 

By expanding the master equation in (6.2) up to order 
S 2, we find 

8 
/5(x t) = - 8xx {a(x) p(x t)} 

X 2 
+ 2S 2 (p+ 2xp' + ~ p " ) + O ( S  3) (6.11) 

whereas in the case of (6.10) we have 

8 
~(x t) = - ~  {a(x) p(x 0} 

3 t I, +).S 2 2 p + g x p  + ~ p  O($3). (6.12) 

In the diffusion limit S --+ 0, 2 --* oo, 2S 2 --+ 1 we obtain 
from (6.11) the expected result 

8 82 
~(xt) = -~xx {a(x) p(xt)} +½ ~x 2 {x2p(xt)}. (6.13) 

From (6.12) we find the well-known fluctuation in- 
duced drift by Gaussian white noise 

cq 8 2 
/~(x t) = - ~ {(a(x) + ½ x) p(x t)} + ½ 0x ~ {x 2 p (x t)} (6.14) 

As a second example, we study the nonlinear model 
for Brownian motion introduced in [26]: Assuming 
that there is a finite probability that the particle will 
have undergone no collision for all subsequent time t, 
we have a master equation of the integro-type [26] 

/fl\V2 
/}(vt)= - 2p(vt) + 2 [~) ~ e x p -  f l ( v -  Tv')2p(v' t)dv '. 

(6.15) 

Here v denotes the stochastic variable of the velocity 
and fl is the Boltzmann factor. The stationary so- 
lution of (6.15) reads 

ps(v) = ] ~ ~  e x p - f l ( 1 - 7 2 )  v 2, 0 < 7 <  1. (6.16) 

Because the total jump frequency is independent of 
the parameters (t, v), we can immediately make use of 
the results in (5.11). The process v(0 obeying (6.15) 
can consequently be represented by an (Ito)-SDE of 
type (5.4) 

dr(t) =dyv(t ) (6.17) 

with jump probability fv0 given by 

(~o(z=V-Vo)= exp- f i (v -yVo)  2. (6.18) 

For the probability r;(v; Vo) in (5.11), we find explicity 
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]172 
r j ( v ~  %)= - -  e x p - : ( v - 7 ~ v o )  2 (6.19) 

\7"C Cj / cj 

with 

It is a pleasure to thank Prof. Kurt Shuler for his valuable 
comments. J. Ashwell's editorial assistance is also appreciated. 

cj = (72j - 1)/(72 -- 1), j = 1 . . . . .  (6.20) 

Thus, the conditional probability of the master equa- 
tion in (6.15) has the solution 

R(vlVo; t) 

= e x p - 2 t  6(V-Vo)+ 2y 1 n~r, tv;  Vo) (6.21) 

in agreement with [26] derived there by involved 
Fourier-Laplace methods. 

7. Conclusions 

In this paper we have considered the representation 
of Markov processes obeying an integro-differential 
master equation in terms of a stochastically equiva- 
lent Langevin equation. Such a representation is in- 
teresting in itself, but it also provides an understand- 
ing of the structure of the involved noise. In this 
context it should be mentioned that many of the 
statistical properties of the process can often be ob- 
tained more simply by addressing oneself to the SDE 
(e.g., see the solution of the master equation in Sect. 
5.1). 
Throughout this paper we have used an Ito-like 
definition for the various Langevin equations. The 
question of which definition is most appropriate for 
the description of a physical system may depend on 
the special problem. For a given physically correct 
master equation, this question is in principle a matter 
of taste. However, for the modeling of irreversible 
discontinuous processes, the author tends to favor the 
concept of an Ito-definition: The fluctuations are in 
general always present. Thus, prior to any statistical 
modeling, the drift a,(tx) in the master equation, 
which describes the average motion, should be 
known at least approximately. Because of the com- 
plicated structure of the fluctuation induced drift by 
using the Stratonovich interpretation [15] (see also 
Appendix A), knowledge of the "Stratonovich drift" 
in the SDE alone is of no use for a stochastic model- 
ing. The situation is of course different if one starts 
from a completely deterministic system and "adds" 
noise explicitly. In this case the desire might be that 
the difference between the solutions with smooth 
noise [non-Markovian process x(t)] and the ones 
with idealized white Poisson and white Gaussian 
noise is small, thus favoring a Stratonovich interpre- 
tation. 

Appendix A 

The "Stratonovich integral" (S) with respect to noise 
~l(dt, du) is defined by 

t 

~ ~ f(s, x(s), u) tl(ds, du) 
to 
S 

= lim 2 ~ f(tj ,  ½ x(tj) + ½ x(t~ +1), u) 
3 ~ 0  j 

• (q(tj+ ~, du) -  tl(tj, du)). (A.1) 

Using a Taylor expansion about x(tj) and the proper- 
ties of ~l(dt, du), we can calculate the relation between 
the Stratonovich integral and the Ito-integral of 
(4.18): The first correction is obtained by 

t t 

~f ( s ,  x(s), u) q(ds, du) = ~ ~f(s, x(s), u) ~(ds, du) 
to to 
S Ito 

+ lim ~ ~ f(rj, x(tj), u) ~ [~/(A t, du) 
6 ~ 0  j 

- ½ q( A t, du) ] rl( A t, du) + O( A t) (A.2) 

Ito 

+½ S x p(u)du ds+O(t-to). (a.3) 

In the step from (A.2) to (A.3), we have used the 
result of (3.30). We see from (A.3) that by use of the 
Stratonovich definition for (4.18), not only the drift 
term is modified by a fluctuation induced drift but 
also the higher Kramers-Moyal diffusion moments 
(see also Eq. (3.33) in [15])! 

References 

1. Graham, R.: Springer Tracts Mod. Phys. 66, 1 (1973) 
2. Stratonovich, R.L.: Topics in the theory of random noise. Vol. 

1, 2, New York: Gordon Beach 1963 
3. Van Kampen, N.G.: Phys. Rep. 24, 171 (1976) 
4. Green, M.S.: J. Chem. Phys. 20, 1281 (1952) 
5. Haken, H.: Rev. Mod. Phys. 47, 67 (1975) 
6. Thomas, H.: Springer series in electrophysics. Vol. 2. Noise in 

physical systems, D. Wolf (ed.). Berlin, Heidelberg, New York: 
Springer 1978 



\ 

282 P. H~inggi: Langevin Description of Markovian Integro-Differential Master Equations 

7. Ryter, D.: Z. Physik B30, 219 (1978) 
8. Hynes, J.T., Deutch, J.M.: Physical Chemistry XIB. Non- 

equilibrium problems - projector operator techniques, D. Hen- 
derson (ed.). New York: Academic Press 1975 

9a. Grabert, H.: Z. Physik B27, 95 (1977) 
9b. Grabert, H., H~inggi, P., Talkner, P.: J. Stat. Phys. 22, 

No. 4 (1980) 
10. Oppenheim, I., Shuler, K.E., Weiss, G.H.: Stochastic processes 

in chemical physics - the master equation approach. Cam- 
bridge: MIT Press 1977 

11. Brissaud, A., Frisch, U.: J. Math. Phys. 15, 524 (1974) 
12. H~inggi, P.: Z. Physik B30, 85 (1978) 
13. Bedeaux, D.: Phys. Lett. 62A, 10 (1977) 
14. H/inggi, P., Talkner, P.: Phys. Lett. 68A, 9 (1978) 
15. H/inggi, P.: Z. Physik B31, 407 (1978) 
16. Onuki, A.: J. Stat. Phys. 19, 325 (1978) 
17. H~nggi, P.: Helv. Phys. Acta 51, 183 (1978) 
18. H~inggi, P., Thomas, H.: Time-Evolution, Symmetries and Re- 

sponse Theory of Stochastic Processes, Physics Reports (to 
appear) 

19. Grabert, H., Green, M.S.: Phys. Rev. A19, 1747 (1979) 
20. Doob, J.L.: Stochastic Processes. New York: J. Wiley 1953 
21. Arnold, L.: Stochastic Differential Equations. New York: J. 

Wiley 1974 
22. Ito, K.: Jap. J. Math. 18, 261 (1942); Proc. Imp. Acad. Tokyo 20, 

519 (1944) 
23. Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equa- 

tions, Part II, Berlin-Heidelberg-New York: Springer 1972 
24. Ibid., p. 290 
25. Leibowitz, M.A.: J. Math. Phys. 4, 852 (1963) 
26. Keilson, J., Storer, J.E.: Quart. Appl. Math. 10, 243 (1952) 

P. H~inggi 
Department of Chemistry - B-014 
University of California, San Diego 
La Jolla, California 92093 
USA 


