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Abstract. Due to their increasing applicability in modern industry, flexible manufacturing systems (FMSs), their 
design, and their control have been studied extensively in the recent literature. One of the most important issues 
that has arisen in this context is the FMS scheduling problem. This article is concerned with a new model of 
an FMS system, motivated by the practical application that takes into account both machine and vehicle schedul- 
ing. For the case of a given machine schedule, a simple polynomial-time algorithm is presented that checks the 
feasibility of a vehicle schedule and constructs it whenever one exists. Then a dynamic programming approach 
to construct optimal machine and vehicle schedules is proposed. This technique results in a pseudopolynomial- 
time algorithm for a fixed number of machines. 
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1. Introduction 

The increasing role of flexible manufacturing systems (FMSs) in modern industry creates 
the need to analyze their behavior and to work out methods for their design and control. 
Several questions arise in this context. According to Schmidt (1989) and Stecke (1985), 
these may be divided into several groups: design problems, planning problems, scheduling 
problems, and control and monitoring problems. The present article concerns a schedul- 
ing problem and is motivated by the practical difficulties associated with the implementa- 
tion of an FMS by a major North American manufacturer of helicopter parts. 

The large number of papers in journals and special volumes on FMSs devoted to the 
scheduling problem (see, e.g., Kusiak 1986b; Kusiak 1986c; Kusiak and Wilhelm 1989; 
Schmidt 1989; Stecke and Suri 1985; Stecke and Suri 1988) reflects the importance of this 
area for the efficient utilization of an FMS. However, as pointed out in Kusiak (1986a), 
the majority of these papers deal with either part and machine scheduling (Afentakis 1985; 
Carrie and Petsopoulos 1985; Chang and Sullivan 1984; Erschler et al. 1984; Finke and 
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Kusiak 1987; Srishkandarajah et al. 1989; Stecke and Solberg 1981) or with automated guided 
vehicle (AGV) routing (e.g., Villa and Rosetto 1985; Yao 1985). One of the few exceptions 
is Kusiak (1988) who takes into account tools, fixtures, and pallets as well as machines. 

In the present article, two issues, i.e., part and machine scheduling and vehicle routing, 
are considered together within a framework of FMS scheduling. The objective is to con- 
struct a schedule of minimum length that takes into account both problems. The organiza- 
tion of the article is as follows. Section 2 contains the description and modeling of a specific 
FMS. In section 3, a procedure for vehicle routing is presented, assuming that a produc- 
tion schedule is given. Section 4 deals with simultaneous operation and vehicle scheduling 
based on a dynamic programming procedure. Some conclusions and possible extensions 
are given in section 5. 

2. Description and modeling of the system 

The FMS under consideration has been implemented by a manufacturer (Pratt & Whitney) 
producing parts for helicopters. A schematic view of the system is presented in Figure 1, 
and its description is as follows. 

Pieces of raw material from which the parts are machined are stored in the automated 
storage (AS) area (1). Whenever necessary, an appropriate piece of material is taken from 
storage and moved to the input station (2). This function is performed automatically by 
computer-controlled pallet changers. Then the piece is transported by an AGV (7) to the 
desired machine (6), where it is automatically unloaded at the machine's input buffer (8). 
Every machine in the system is capable of processing any of the required machining opera- 
tions. This versatility is achieved by having a large number of tools and fixtures that may 
be used by the machines. 
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tFigure 1. An example FMS system. 
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Each tool magazine (4) of each machine has a capacity of up to 130 tools, which are 
used for the various machining operations. The tools of the magazines are arranged in two 
layers so that the longer tools can occupy two vertical layers. The tools are changed 
automatically. Fixtures are changed manually. It should be noted that a large variety-- 
almost 100 quite different parts--can be produced by each machine in this particular FMS. 
Simpler part types require one operation and about 30 tools, and the most complicated 
parts need about 80 tools. Therefore, the tool magazines have sufficient capacity to stock 
the tools for one to several consecutive part types in a production schedule. In addition, 
the tools are loaded from a large, automated central tool-storage area (3), which is located 
close to the machines. No tool competition is observed, since the storage area contains 
more than 2000 tools (including many multiple tools) and there are four computer numer- 
ically controlled (CNC) machines. 

The delivered raw material is mounted manually onto the appropriate fixture and later 
processed by the tools, which are changed according to a desired plan. The tool technology 
of this particular system allows the changing of tools during execution of the operations, 
thereby eliminating the setup times of the tools required for the next operation and occa- 
sionally the transfer of a tool to another machine (to validate completely the no-resource 
competition). The only (negligible) transition time in the FMS that could be observed was 
in fact the adjustment in size of the spindle that holds the tool whenever the next tool is 
exchanged with the previous one. 

After completion, the finished part exchanges its positions with the raw material of the 
next operation that is waiting for processing. The part is then automatically transported 
by an AGV to the inspection section (9). Parts that pass the inspection are transported and 
unloaded at the storage area (10). 

We see that the above system is very versatile due to the usage of many tools and large 
tool magazines. As pointed out in Jalkumar (1986) and Jaikumar and Van Wassenhove (1987), 
a common tendency of FMSs is to become so versatile that most of the operations on a 
part can be accomplished by just one or two machine visits. As a result, many systems 
consist of identical parallel machines. On the other hand, the existence of a large number 
of tools in the system allows one not to consider resource (tool) competition. Hence, our 
problem here reduces in fact to one of simultaneous scheduling and routing of parts among 
parallel machines. The inspection can be postponed in this analysis, since it is performed 
separately on a first-come-first-served basis. 

Following the above observations, we can model this type of FMS using elements described 
below. We assume as given a set of n single-operation par t  types T1, Tz, . • . ,  Tn that are 
to be processed on a set of m parallel identical machines PI, P2, • • . ,  Pro, m not being 
a very large number. (Here parallelism means that every machine is capable of processing 
any part.) For its processing, every operation Tj requires one arbitrary machine and 
specified amounts of additional resources (Bla~.ewicz et al. 1986), such as renewable 

resources, i.e., different tools used throughout a processing of the operation, and 
nonrenewable resources, which represent raw material. Operation Tj should be granted 
one machine and the required resources during the noninterrupted processing time of length 
pj. From the preceding remarks, one may assume that there are enough resources of both 
categories and that the only scarce resource for which the operations should compete is 
the machines. Setup times connected with changing tools are assumed to be zero, since 
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tools can be changed on-line during the execution of operations. Setup times resulting from 
changing part fixtures are included in the processing times. 

As mentioned above, machines are identical except for their locations, and thus they re- 
quire different delivery times. Hence, we may assume that k (k <_ m) automated guided 
vehicles (AGVs) V1, V2, . • . ,  V~ are to deliver pieces of raw material from the storage area 
to specified machines (or buffers) and the time associated with the delivery is equal to ri, 
i = 1, 2, . . . ,  m. The delivery time includes loading time at the storage area and unloading 
time at the required machine. During each trip, exactly one piece of raw material is delivered; 
this is due to the dimension of parts to be machined. After delivery of a piece of raw material, 
the vehicle takes a pallet with a processed part (possibly from another machine), delivers 
it to the inspection stage, and returns to the storage area (1). The round trip takes A units 
of time, including two loading and two unloading times whose sum is equal to a. 

It is apparent that the most efficient usage of vehicles in the sense of a throughput rate 
for parts delivered is achieved when the vehicles are operating in a cyclic mode with cycle 
time equal to A (because then no idle time in the vehicle schedule exists). In order to avoid 
traffic congestion, we assume that starting moments of consecutive vehicles at the storage 
area are delayed by a time units. Note that this way of operating may result in an accumula- 
tion of raw material or finished parts at the machines. In particular, raw materials will 
accumulate at a given machine early in the process if several deliveries are made while 
the first part is being manufactured. Conversely, if several short operations are performed 
on a machine towards the end of the production schedule, the result will be an accumula- 
tion of finished parts that will have to be collected by separate vehicle trips after the pro- 
duction schedule is completed. On average, however, a vehicle delivering raw material to 
a machine will be able to collect a finished part from the same machine, and so accumula- 
tion of raw materials and finished parts should remain low. Although our model does not 
explicitly include the scheduling of collection of finished parts, an allowance of a time 
units is made in order to allow two deliveries and two collections per vehicle trip. This 
assumption ensures that vehicle congestion will never occur; however, the assumption results 
in a slight overestimation of the time required for the vehicle schedule. This overestima- 
tion is limited by the facts that a should be small with respect to A and that the proportion 
of trips in which vehicles are unable to collect finished parts is also small. 

The problem is now to construct a schedule for machines and vehicles such that the whole 
task set is processed in minimum time. 

It is obvious that the general problem stated above is NP-hard, since it is already NP- 
hard for the nonpreemptive scheduling of two machines (cf. Coffman 1976). In the follow- 
ing two sections, we will consider two variants of the problem. In the first, the production 
schedule (i.e., the assignment of operations to machines) is assumed to be known, and 
the objective is to find a feasible schedule for vehicles. This problem can be solved in 
polynomial time. The second problem consists of finding a composite schedule, i.e., one 
taking into account the simultaneous assignment of vehicles and machines to operations. 

3. Vehicle scheduling for a fixed production schedule 

In this section, we consider the problem of vehicle scheduling given a production schedule. 
Suppose that a (possibly optimal) nonpremptive assignment of operations to machines in 
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Figure 2. An example production schedule. 

time is given (see figure 2). This assignment imposes certain deadlines dj  on the delivery 
of pieces of raw material to particular machines, where dj i denotes the latest time by which 
raw material for part Tj should be delivered to machine Pi. (The operation corresponding 
to this part starts on machine Pi at time dj.) Lateness in delivery could result in exceeding 
the planned schedule length C. Below we describe an approach that allows us to check 
whether it is possible to deliver all the required parts to their destinations (given some 
production schedule); if so, a feasible vehicle schedule will be constructed (i.e., a feasible 
assignment of parts to vehicles in time). Without loss of generality, we may assume that 
at time 0 there is already at every machine a piece of material to produce the first part; 
otherwise, one should appropriately delay starting times on consecutive machines (see 
figure 3). 

Our vehicle scheduling problem may now be formulated as follows. Given a set of 
deadlines dj ,  j = 1, 2 . . . . .  n and delivery times from the input station to particular 
machines ri, i = 1, 2, . . . ,  m, is it possible to deliver all the required parts on time, i.e., 
before the respective deadlines? If the answer is positive, a feasible vehicle schedule should 
be constructed. In general, this is equivalent to determining a feasible solution to a Vehicle 

Rout ing  wi th  T ime Windows  (see e.g., Desrochers et al. 1988). Let T O and T,+I be two 
dummy operations representing the first departure and the last arrival of every vehicle, 
respectively. Also define two dummy machines Po and Pm+I on which T O and T,+ 1 are 
executed, respectively, and let 7o = 0, rm+l = M, where M is an arbitrary large number. 
Denote by i(j)  the index of the machine on which Tj is executed. For any two operations 
Tj,  Tjj,, let  cjj ,, be the travel time taken by a vehicle to make its delivery for operation 
Tj, immediately after its delivery for Tj: 

~ Tiq, ) -- Ti(j) if 7"iq, ) ~_ Tiq ) 
c j j  , L. -- 7iq, ) -- "riq ) if 7iq, ) < "riq ) 

( j , j '  = 0 . . . . .  n + 1 ; j  # j ' ) .  
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If rj + cjj, < rj ,, define a binary variable xjj,  equal to 1 if and only if a vehicle makes 
its delivery for Tj, immediately after its delivery for Tj. Also, let uj be a nonnegative 
variable denoting the latest possible delivery time of raw material for operation Tj (j --- 
1, . . . ,  n). The problem then consists of determining whether there exists values of the 
variables satisfying 

~ Xoj, = ~ Xj,n+ 1 = k 
j ' = l  j = l  

(1) 

n+l  n+l  

Z Xjl---- Z Xlj'= 1 
j=0 j '=0 
j#l j '#l 

(I = 1, . . . ,  n) (2) 

uj - uj,  + Mx~,  <- M - cjj,, ( j ,  j '  = 1, . . . ,  n;  j # j ' )  (3) 

o <_ uj <_ d] (4) 

In this formulation, constraint (1) specifies that k vehicles are used, while constraint (2) 
associates every operation with exactly one vehicle. Constraints (3) and (4) guarantee that 
the vehicle schedule will satisfy time-feasibility constraints. They are imposed only if xz, 
is defined. This feasibility problem is in general NP-complete (Savelsbergh 1985). However, 
our particular problem can be solved in polynomial time because we can use the cyclic 
property of the schedule for relatively easily checking of the feasibility condition of the 
vehicle schedule for a given production schedule. The first schedule does not need to be 
constructed. When checking this feasibility condition, one uses the operation latest transpor- 
tation starting t imes,  defined as follows: 

s j = d j - r i ,  j =  1 ,2  . . . .  , n .  

The feasibility checking is given in lemma 1. 

l .emma 1. For a given ordered set of latest transportation starting times sj, sj <_ sj+l, 
j = 1, 2, . . . ,  n, one can construct a feasible transportation schedule for k vehicles if and 
only if 

/ ] -1 ;  a+ [ / - F  / ] k - l ]  a 

for al l j  = 1, 2 . . . .  , n, where rj/k] denotes the smallest integer not smaller thanj/k. 

Proo f  It is not hard to prove the correctness of the above formula taking into account the 
fact that its two components reflect, respectively, the time necessary for an integer number 
of cycles and the delay of an appropriate vehicle in a cycle needed for a transportation 
of the j th  operation in order. • 
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The conditions given in lemma 1 can be checked in O(n logn)  time in the worst case. 
I f  one wants to construct a feasible schedule, the following polynomial-t ime algorithm will 
find one whenever one exists. The basic idea behind the algorithm is to choose for transpor- 
tation a part whose deadline, less corresponding delivery time, is minimum--i .e . ,  the most 
urgent delivery at this moment.  This approach is summarized by the following algorithm. 

Algorithm 1 

1. S e t t  = 0, l = 0. 
For all the operations (parts) to be delivered to machines, calculate their latest transpor- 

tation starting times. 
2. At moment  t, when a vehicle is ready for loading at an input station, consider the set 

of  remaining operations and calculate their slack times : 
s l j = s j - t .  

I f  all are nonnegative, go to step 3; otherwise stop (no feasible vehicle schedule exists). 
3. Choose a part with the minimum value of slj and load it onto the vehicle. 

Set l = l + 1. If  1 ___ k - 1, then t = t + a ;  otherwise, t = t - (k - 1)a + A and I = 0. 
I f  there are any operations undelivered to corresponding machines, then go to step 
2; otherwise, stop. • 

A basic-property of algorithm 1 is proved in the following theorem. 

T h e o r e m  1. Algorithm 1 finds a feasible transportation schedule whenever one exists. 

Proof Suppose that algorithm 1 fails to find a feasible transportation schedule while such 
a schedule S exists. In this case there must exist in S two parts T i and Tj such that sli < 
slj and Tj has been transported first. It is not hard to see that by exchanging these two 

½ 

O o  

Ti. O. +~'k ,, ~ 
i 1 
i [ 

I i 

I 
I 

t I 

i 
I 

J I 

' I 

1 , 

' (k-1)o A A+a 

l l 

1 1 

A+l)a  A+o 
I t - -  

Figure 3. An example vehicle schedule. 
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parts, i.e., transporting T i first, we do not cause the infeasibility of the schedule. Now 
we can repeat the above pattern as long as such a pair of parts violating the earliest slack- 
time rule exists. After a finite number of such changes, one gets a feasible schedule con- 
structed according to algorithm 1, which is a contradiction. • 

Let us now calculate the complexity of algorithm 1 considering the off-line performance 
of the algorithm. Then its most complex function is the ordering of operations in nondecreas- 
ing order of their slack times. Thus, the overall complexity would be O(n logn). However, 
if one performs the algorithm in the on-line mode, then the selection of the operation to 
be transported next requires only linear time, provided that an unordered sequence is used. 
In both cases, a low-order polynomial-time algorithm is obtained. We see that the easiness 
of the problem depends mainly on its regular structure following the cyclic property of 
the vehicle schedule. 

To illustrate the use of the algorithm, consider the following example. Let the number 
of machines m, the number of operations n, and the number of vehicles k be equal to 3, 
9, and 2, respectively. Transportation times for respective machines are r~ = 1, r2 = 1.5, 
r3 = 2 and cycle, and loading and unloading times are A = 3, a --- 0.5, respectively. A 
production schedule is given in figure 4a. Thus the deadlines are d] = 3, d~ = 7, d 2 = 6, 
d ] = 7, d4 a = 2, and d93 = 8. They result in the latest transportation starting times s4 = 0, 
s5 = 2, s6 = 4.5, s7 = 6, s8 = 5.5, and s 9 = 6. The corresponding vehicle schedule 
generated by algorithm 1 is shown in figure 4b. Part T 9 is delivered too late and no feasi- 
ble transportation schedule for the given production plan can be constructed. 

The obvious question now is what to do if there is no feasible transportation schedule. 
The first approach consists of finding operations in the transportation schedule that can 
be delayed without lengthening the schedule. If  such an operation is found, other opera- 
tions that cannot be delayed are transported first. In our example (figure 4a), operation 
T 7 can be started later and instead Tg can be assigned first to vehicle V1. Such an exchange 
will not lengthen the schedule. However, it may also be the case that the production schedule 
reflects deadlines that cannot be exceeded, and therefore the operations cannot be shifted. 
In such a situation, one may use an alternative production plan, if one exists. As pointed 
out in Schmidt (1989) it is often the case at the FMS planning stage that several such plans 
have been constructed, and the operator chooses one of them. I f  none can be realized because 
of a nonfeasible transportation schedule, the operator may decide to construct optimal pro- 
duction and vehicle schedules at the same time. One such approach based on dynamic 
programming is described in the next section. 

4. Simultaneous task and vehicle scheduling 

In this section, the problem of simultaneous construction of production and vehicle schedules 
is discussed. As mentioned above, this problem is NP-hard, although not strongly NP- 
hard. Thus, a pseudopolynomial-time algorithm based on dynamic programming can be 
constructed for its solution. 

Assume that tasks are ordered in nonincreasing order of their processing times, i.e., Pl 

>-- P 2  >- . . .  P n - 1  ~ Pn" 
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Figure 4. Production and nonfeasible vehicle schedules. 

Such an ordering implies that longer tasks will be processed first and that processing 
can take place on machines further from the storage area--a convenient fact from the view- 
point of vehicle scheduling. 

Now let us formulate a dynamic programming algorithm using the ideas presented in 
Graham et al. (1979). 

Define 

x j (  h ,  t2, .... t~)= f 
t rue ,  if operations T1, Tz . . . . .  Tj can be scheduled on 
machines P1, Pz . . . .  , Pm in such a way that Pi is busy in 
time interval [0, ti], i = 1, 2 . . . . .  m (excluding possible idle 
time following from vehicle scheduling) and that the vehicle 
schedule is feasible; f a l s e ,  otherwise 

where 
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f t r u e ,  if ti = 0, i = 1, 2, . . . ,  m 
Xo ( t l ,  t2 tm) 1 

~.false, otherwise 

Using these variables, the recursive equation can be written in the following form: 

m 

Xj ( t l ,  t 2 . . . . .  tm) = V [x j -1  ( t l ,  t2 . . . . .  t i - 1 ,  ti - p j ,  t / + l  . . . . .  tm) 
i=1 

A Zj; ( t l ,  t2, . . . ,  t i _ l ,  ti, ti+ 1 . . . .  , tin) ] 

where 

~- t rue ,  i f  t i - -  p j  --  7 i >-- ( Uj/k7 - 1) A 

Zj; ( t l ,  t 2 . . . . .  ti, ti+ 1 . . . . .  tin) = "~ + [j -- ( r j /k7 - 1) k - 1] a o r j  <_ m 
[ f a l s e ,  otherwise 

is the condition of vehicle schedule feasibility, given in lemma 1. 
Values of xj(.) are computed for t i = 0, 1, . . . ,  C,  i = 1, 2, . . . ,  m, where C is an 

upper bound on the minimum schedule length C*ax. Finally, C*ax is determined as 

C*ax = min {max { t l ,  t 2 . . . . .  tin} : X n ( t l ,  t2, . . . ,  tm) = true } 

The above algorithm solves our problem in O(nC m) time. Thus, for fixed m, it is a 
pseudopolynomial-time algorithm, and can be used in practice, taking into account that 
m is rather small. 

To complete our discussion, let us consider once more the example from section 3. The 
above dynamic programming approach yields schedules presented in figure 5. We see that 
it is possible to complete all the operations in 11 time units and deliver them to machines 
in 8 units. 

5. Conclusions 

In this article, the model of an FMS has been introduced, taking into account both machine 
and vehicle scheduling. Minimization of maximum operation completion time was the 
criterion. A simple polynomial-time algorithm can be used to find a feasible vehicle schedule 
(whenever one exists), provided that a production schedule is given. For a fixed number 
of machines, a pseudopolynomial dynamic programming approach solves both problems, 
constructing optimal production and vehicle schedules. Various extensions of the model 
are possible and worth considering. Among them are those including different routes for 
particular vehicles, an inspection phase as the second stage machine, resource competi- 
tion, and different criteria (e.g., maximum lateness). These issues are currently under 
investigation. 
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