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Abstract. If a k denotes the number of integral ideals with norm k, in any finite 
Galois extension of the rationals, we study sums of the form ~ a~ (l = 2, 3 . . . .  ), 

k<~x 
along with the integral means of the 2e-th power (~ real, ~/> 1) of the absolute 
value of the corresponding Dedekind zeta-function. The two averages are related 
if Q = n / 1/2, where n is the degree of the Galois extension, 

w 1. Let  K be an  a lgebra ic  n u m b e r  field o f  finite degree  over  the 
ra t ionals  Q. I fak deno tes  the n u m b e r  o f  integral  ideals in K w i t h  n o r m  
k, t h e n  the D e d e k i n d  ze ta - func t ion  ~K o f  the field K is def ined  by  

oo 

~ x ( s ) =  ~ a k k  -s, s = ~ r + i t ,  
k = l  

for  ~r > 1. T h e  object  o f  this no te  is the p r o o f  of  the fol lowing 

T h e o r e m  1. I f  K is a Galois extension o f  Q o f  degree n > 1, then for 
every e > 0 and any integer l >~ 2, we have 

aik = XPlr + 0(xl-2"-'+~), as x ~ oe, 
k<~x 

where Px denotes a suitable polynomial o f  degree n t- 1 _ 1. 

The  case l = 2 o f  the above  sum was first cons ide red  in [2], where  it 
was shown  tha t  

a~ ~ c x ( l o g x )  "-l, as x ~ ~ ,  
k<~x 

for  a sui table  cons t an t  c = c (K). 
I f  l = 2, a nd  K is a quadra t i c  field, the t h e o r e m  yields the e r ror -  

t e r m  O (xl/2+'). If, in addi t ion ,  D = - 4, where  D is the d iscr iminant  
o f  K, t hen  ak deno tes  the n u m b e r  o f  integral  so lut ions  o f k  = x 2 + y2, 
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solutions which differ only in order  or sign not  being counted  as 
distinct. In  that  case, S. RAMANUJAN [5] gave the formula  with the 
error- term O(x3/5+~), and a p roof  of it was later published by 
B. M. WILSON [8]. It is classical, on  the other  hand,  that  

E ak = CX "~ O ( x I - 2 / ( n + l ) ) .  

k~x 

The proof  of T h e o r e m  1 is based on an estimate (Lemma 2) of the 
mean-value of ICK(S)I 2e, for any real ~ ~> 1, in a half-plane that  
includes a par t  of the critical strip. Such an estimate is first obtained in 
the case in which ~ is an integer by means of the approximate  
functional  equat ion  for CK, and then  proved in general with the help of 
a two-variable convexity theorem due to R. M. GABRmL [3]. When  
combined  with the wel l-known me thod  of F. CARLSON [1], it yields an 
asymptot ic  result on  the mean-value of I Cx(S)l 2-~ in a suitable half- 
plane (Theorem 2). 

w 2. The  connexion between the sums considered in T h e o r e m  1 
and the Dedek ind  zeta-function is given by the following 

Lemma 1. Let l denote an integer >1 2. l f  K is any Galois extension of  
Q of  degree n > 1, and 

oo 

D,(s) = ~ a~ k -S ,  a >  1, 
k = l  

then 
Dl (s) = r ~x'-' (s) U{ (s), 

where Ut(s) denotes a Dirichlet series, which is absolutely convergent 
1 for a > 7. 

Proof  This has been proved in the case I = 2 in [2, pp. 56--58], and 
the a rgument  in the general case is not  essentially different. We give it 
here only for the sake of completeness.  

It is known  that  ak is multiplicative, and ak ~ k ~, for every e > 0 
[2, L e m m a  9]. Hence we have 

Dt(s)r (s) = I-I ut,p(s), a > 1, 
P 

where the product  runs over all rational primes p,  and 
oo oo 

Ut, v ( s ) = ( E  atp,,,p-'~)/( 2 al,,,,p-"') "'-', a > 0 .  
m = 0  m = 0  
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It is plain that  for every e > 0, 

U ,p(s) = 1 + O ( p  

uniformly for a ~> �89 and all primes with ap = 0 or ap = n. 
Thus if ap takes no other  values, except possibly for finitely many 

primes p, then the product  1--I Ut, e (s) converges absolutely for a > �89 
e 

and the lemma follows. To  show that this is the case, let (p) denote 
the principal ideal in K generated by p, with the factorization 

where ~ ,  are distinct prime ideals in K with norm pf", ~ = 1 ,2 , . . . ,  v. 
Then  the integers e,,f~ satisfy the relation 

v 

e . L  = n.  

Suppose now t h a t p  is unramified in K, so that  el = e2 . . . . .  e, = 1. 
Since K is Galois, all ~ ,  are conjugate,  so that  3q = J 2 . . .  = f ,  = f ,  
say, and the above relation yields f v  = n, whence 

0, ifO < m < f ,  

ap . . . .  n/f, i f  m = f 

Since the number  of  primes p ramified in K is finite, the lemma 
follows. 

Lemma 2. I f  K is any algebraic number f ie ld  o f  degree n > 1, ~x the 
associated Dedekind zeta-function, ~ any real number, and ~ >~ l, then 

T 

S]~K(~ + i t)J2e dt ~ T ,  
0 

for 1 -  1 / 0 n < a <  1. 

Proof  If  D denotes the discriminant of  K, with rl real and 2 r2 
imaginary conjugates,  then ~K (s) satisfies the approximate  functional 
equat ion (cf. [2, Equat ion  (65)]) given by 

~l~(S)= ~ akk -~ + B 2~-j A ( 1 -  s) ~ akk,_ 1+ 

(1) 
+ O (It{ ("/2)(1 - I/"-")log ltl), 

for 0 ~< ~r ~< 1, where 
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x = IDl~/Z(ltl/2~)'/2 , B = 2r~/21Dl-~/2, and A (s) = Fr ' (s /2)r~(s) .  

Let us first assume that ~ is an integer, say q = j ,  where 
j =  1 , 2 , . . . .  Then it follows f rom (1), by Stirling's formula and 
the inequality between the arithmetic and geometric means, that 

T 

~lCr(a + i t)12Jdt ~. I (T ,  a) + T ~-2~)njI(T, 1 - a) q- 1, (2) 
0 

for 1 - 1/jn < a < 1, where 

T 

I (T ,o)  = II ~ akk-"- i t l2;dt .  
0 k<~x 

Now 

where 

I ( T , a ) =  ~ ak, ak2...ak2, i (  k , . . . k j  ~,t 
k, ..... I~j=~ (k l . . . k2 j )  ~ r' 

(3) 

T ' = m i n ( T ,  max 2zt(k~/IDll/2)21"), 
l <~v~2j 

so that the integral in (3) vanishes, unless k = k~. . .  kj ~ T nil2 and 
l = kj+l . . ,  kEj ~ T "j/~. Further,  if k > l, it is of  the order 

1 1 k (k/ )  v2 

log(k//) = log(1 + (k - / ) / / )  < k - - ~  ~< 1 + k - - ~ -  / ' 

while ak ~ k ~, for every e > 0, by [2, Lemma 9]. Considering 
separately the sums which correspond to k = l and k # l, we obtain 

( < r E + E (kO 1 
k ~ r "in k, I < T'v'/2 I k 

k # l  

The first sum on the right-hand side is 

T, if a > �89 
'~  T l+(n j /2 ) ( l+ ' -2~  if a < �89 

for a small enough e > 0, while the second sum gives 

T njO+~-~ + ~ ( l /m) ~ ( k (k  + m)) 0/2)+C~/2)-~ 
O < m ~ TMI 2 O < k ~ TnJl 2 

T ~j<t+'-~), i f 0 < a <  1. 

Hence we obtain 
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~ T +  T n./(l+'-~, if�89 < ~r < 1, 

I ( T ,  ~) < (T,/O+,._~) ' if ~r < �89 

It follows that 

I ( T , a )  < T, i f ~ > l -  1~in. 

Similarly we obtain 

T ~1-2~)".iI(T, 1 - ~) ~ T nj(l+e-a), if �89 < ~ < 1, 

from which we have 

(4) 

T(1-2~)n/ I (T ,  1 - a) ~ T, if ~ > 1 - 1~in. (5) 

The lemma now follows f rom (2)--(5), if 0 is a positive integer. If it is 
not, we use a two-variable convexity theorem due to R. M. GABRIEL 
[3], which implies that for ~ < ~r < fl < 1, we have 

T 

(j" [~K(~r + i t)] I/(q)+q'~)dt)qi'+q'a <~ (6) 
0 

T T 

< (S [ ~t<(ot + i t)[ l/~, dt)q~.. (S I ~/<(fl + i t)[ l/~ dt)q,~, 
0 0 

where 2 > O, ~ > O, and 
r - - t 7  (7--CX , q ' - ~ - - -  

q --  fl - ~ fl - ~ 

I fe  is not an integer, so that 0 > 1, le t j  denote the positive integer 
which satisfies the condition: j < 0 < J  + 1, so t h a t j  ~> 1. 

We shall apply the convexity theorem with 

1 1 1 1 1 1 
_ _  = ; = ; 

2 = 2 j ' / ~  2 ( j + l )  ~ ~ + e n  j n  f l = ~ + � n  ( / + l ) n '  (7) 

so that ~ < ~r < r, since j < 0 < J + 1. Fur ther  we have 

1 1 I 1 1 
f l - ~ - - n j ( j +  l ) '  f l - ~ =  - = ' Qn ( j + l ) n '  a ~ j n  on  

so that 

f l - a  j ( / ' +  l ) - j 0  ~r-  q =  = , q ' = - - =  
fl-  e fl-  

and 

a(/  + 1) - j ( j  + I) 

( j +  1) - 0  0 - J  1 

q 2 + q ' # =  29 + 20 - - 2 0 "  

(8) 
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The convexity theorem as stated in (6) now yields the inequality 

T T T 

[r + i t)] 2~ dt ~ (~ ]~t~ (~ + i t) lZJ dt) ~:. (~ Ir + i t)]2q+l) dt) S, (9) 
0 0 0 

where 2' = 202q,  ~' = 20#q ' ,  and 2 ' +  # ' =  1. 
I f  (r lies in the range 

1 1 1 
1 - - -  < ~ < 1 - - - - ~  , ( 1 0 )  

0n 0n ( j +  1)n 

then we have 0 < ~ < ~ </~ < 1 on the one hand,  and  

1 1 
, > 1 - - -  / ~ > 1  

j n '  ( j +  1)n 

on the other. The  lemma now follows f rom (9) and its already proved 
validity in the case in which 0 is an integer >~ 1, provided that  ~r lies in 
the range given by (10). If, however,  ~r lies in the range 

1 1 
1 - - - +  ~ < ~ <  1 ,  ( 1 1 )  

on ( / '+  1)n 

then ~ >  1 -  1 / ( j+  1)n, since 20 > 2 j > ~ j +  1, and by H61der's 
inequality, together  with the first par t  of the proof,  we obtain 

T T 

Ir -t- i t)[ 2~ dt ~ (~ [;t~(cr + i t)[ 2q+1) dr) "~ T l-~ 
0 0 

which completes the p roo f  of the lemma. 

w 3. To  prove T h e o r e m  1, we introduce an auxiliary C ~ funct ion ~, 
on  (0, ~ ) ,  for u >/2, as follows: 

1, fo rO < y ~ <  1, 

~u(Y)= O, fo ry>~  l + l / u ;  

its derivatives satisfy the condi t ion 

~r) (y) ~ ur, r = 0 ,  1 ,2 , . . .  , 

where the implicit constants  depend  only on r. 
If  we consider the Mellin t ransform 

~3 

Mu(s)= f q~u(y)yS-' dy, ~ r > 0 ,  
0 
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then 
1 l + l / u  

M~ r) (1) ----= ~ (logy)r dy 4- O( ~ (logy)r dy) 
0 1 (12) 

= ( - -  1)rF(r+l)+O(U-r-l),  as u - - ,oo ,  

for r = 0, 1 , 2 , . . . .  On repeated integration by parts, we also have, 
for r = 1 ,2 , . . .  , 

l ) r  ~(r) ( y ) y S + r - l d y  < ~ , ( 1 3 )  

+ 

uniformly for �89 ~< a ~< 2, and u ~> 2. 
By Mellin's inversion formula, and Lemma l, we have 

~, a~ %,(k/x) = (1/2 z~i) ~ D,(s)M~(s)xSds = (14) 
k = l (2) 

tl / = (1/2sti) ~ ~/~ ' (s)Ul(s)M~(s)x~ds,  
(2) 

where ~ denotes integration along the line a -- ao in the direction of  
(o0) 

increasing imaginary part. By the definition of  %, and since a~ ~ k ~, 
we have 

a~ cp.(k/x)= ~ a~ + Z a~ ~.(k/x)= ~ ark +O(x'+~/U). 
k=l k<~x x<k<x(l+I/u) k<~x ( 1 5 )  

The intcgrand in (14) is regular for a > �89 except for a pole of  order  
n t- i at s = 1. If we denote its residue by Res, we deduce from (12) that, 
uniformly for x />  1 and u ~> 2, we have 

Res = x Px (log x) 4- 0 ((x/u) (log x) n, ,- 1), (16) 

where/oK is a polynomial of  degree n t-~ _ 1, whose coefficients do not 
depend on %. Hence by Cauchy's theorem, together with (13) and the 
estimate 

I~ic(~ 4- it)[ ~ ]tl (n(l-~)/2)+~ 

for 0 ~< a ~< 1, we obtain f rom (14) 

oo 

a~k %(k/x) = Res 4- (1/2zti) ~ ;~:' '(s) Ut(s).Mu(s).xSds, (17) 
k = 1 (00) 

where a0 is such that 

8 Monatshefte ffir Mathematik, Bd. 95/2 
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1 > a o = l - 2 / n t + 6 >  1 - 2 I n  t. 

Now, for G = a0, we have Ul(s) = O(1), and  

IM.(s)l ~ (Isl-~), if Itl < u,  
while 

I M u ( s ) l ~ l s l - l ( u l s l - ~ ) ,  i f l t l > ~ u ,  

because of (13). Hence 

1r I ~ (% + i t ) .  Ul(s).M,(s).xSJds 
(~o) 

Ir ' (a0-1-i t ) l .  1 q-lt~----[ + f Ir ' ( ~ ro+i t ) l . ~ d t  
Itl u Itl>~u 

x ~~ l o g u ,  (18) 

if we integrate the last two integrals by parts, and use L e m m a  2. Thus  
(17) and (16) yield the relation 

a t k ~,(k/x) - x PK (log X) ~ (X/U) (log X)"' ,_ l + X~0 (log U). 

If  we combine this with (15), and  choose u = x I ~", we obtain 
T h e o r e m  1. 

Remark. I fn  = 2, l = 2, T h e o r e m  1 follows f rom the known  mean- 
value T h e o r e m  [2] 

T 

( 1 / T ) ~ l ~ ( a + i t ) 1 2 d t = O ( 1 ) ,  for ~ > � 8 9  
0 

w 4. If  K is any algebraic number  field of degree n > 1, and j is 
any positive integer, we have 

oo 

r  ~ a j ( k ) k - ' = l - [ ( 1 - N ~ - S ) - J ,  for a > l ,  (19) 

where ai(k)= ~ ak, ak:.., ak,, and the product  runs over all 
klk2...ki=k 

prime ideals ~ in K. Here N ~  denotes the n o r m  of ~3. 
By L e m m a  2 we have 

T 

~l~K(~+iOi2Jdt~T,  for 1 -  1 / j n <  ~ <  1, (20) 
1 

and because of  the absolute convergence of  ~ ak k -~ for a > 1, this 
k = l  
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holds also for a > 1. By a theorem of  F. CARLSON [1, (a)] on general 
Dirichlet series, it follows that  (20) holds for a > 1 - 1/j n. 

Since {~K (s)} j is regular except for a pole at s = 1, and is of finite 
order  in t, by another  theorem of  CARLSON [1, (b)] we have 

lim ( l /T)  S ] ~ ( ~ + i t ) ]  zjdt = a2(k) .k  -2~ ~> 1 - 1/jn. (21) 
T ~  oo 1 k =  I 

This result can, in fact, be upheld  for any real o ~> 1 in place of the 
integer j. 

If  e is any real number ,  with ~ > 0, then define ~ ; ( s ) =  
= exp {e log (~: (s)}, where log ~K (s) is uniquely defined by the require- 
ment  

l o g ( 1 - N ~ 3 - ~ )  - ' - - -  ~ (1/k(U~3)~s), ~ > 1, 
k ~ l  

so that  
log r (s) = ~ ~ (1/k (N~3)ks), 

~_~ k =  1 

the double series converging absolutely for ~ > 1. Let 
Or3 

~:(s )=  ~ a o ( k )  k -~ ,  a > l ,  (22) 
k = l  

so that  when ~ is a positive integer j ,  we have (19). 
Let 

HM(S)= I~ (l - N ~ - S ) - l '  
N ~3 < M 

where M is an integer, M > 0. Then  for any real ~o > 0, we have 

{HM(s)} e =  I-I (1 - U~-~)-~~ = Z a~(k) k-~,  (23) 
N ~ < M  k = l  

say, the series converging absolutely for a > 0, with a~ (k) = a o (k) 
for 1 ~< k < M, and 0 ~< a~ (k) ~< ao (k) for all k >~ 1. Hence 

T co 

l i m ( 1 / T ) S I H M ( a + i t ) l Z e d t =  ~{a~(k)}2k -2~, for a > 0 ,  
T-*oo  I k = l  

and v 

lim lim ( l /T)  ~ ' l H ~ ( ~ + i t ) l Z e d t  = ~ {a~(k)}2k -2~, for ~ > �89 
M--,~ r-- ,~  1 k = l  ( 2 4 )  

If  Q is real, ~ >~ 1, then, as in Lemma  2, we have 
8* 
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T 

( l /T)  S ]~K(~ + i t )  -- HM(tr + i t)12~dt 
1 

T 

( ( I /T)  ~ I(K(~ + i t )  -- l lM(~  a t- i t)12Jdt)Z'• (25) 
1 

T 

• ((1 / T) S ] (K (fl q- i t) - //M (fl + i t) [2 (j+ l) dt) ~', 
I 

where  ~ , e , /~ ,2 ,2 ' , # , # '  are as before ,  2 ' +  #'---  l, and  ~ > 1 - l / on .  
T h e  func t ion  {r (s) - HM (s)} j is regular  except  for  a pole  at  s = 1, 
and  is of  finite o rde r  in  t. F u r t h e r  

T 

( 1 / T ) f l ( K ( ~ + i t ) - - I 1 g ( ~ + i t ) l Z i d t  = O(1) ,  ~r> 1- -  1 / j n ,  (26) 
1 

because  o f  L e m m a  2, and  (24). Hence ,  by  CARLSON'S T h e o r e m  [1, (b)], 

T m 

l im ( l /T )  ~]~x(~ + i t )  - l l ~ ( ~  + it)12.idt = ~ a2j, g ( " k -2~ , 
T ~ o v  1 k =  I 

say, the  series conve rg ing  abso lu te ly  since ~ > 1 - 1/j n >>. �89 F u r t h e r  
aj, M(k)  = 0 for  k < M,  a n d  0 ~< aj, M(k)  <~ aj (k)  for  all k ~> 1. Hence  

T 

lira l im ( l /T)  ~ ]~K (c~ + i t) - HM (~ + i t)12./dt --- 0 .  
M ~ o o  T-*oo I 

Similar ly  
T 

l im lira ( l /T )  ~" ]~K(fl + i t )  -- HM(~ -t- i t ) [2q+Odt  -= 0 ,  
M - - * ~  T-'-, ~ 1 

since r > 1 - 1/(j + 1) n. It  fol lows tha t  

T 

l im l im ( l /T )  .[]~K(~ + i t )  -- I IM(~ + i t ) lZ~dt  = 0 ,  
M ~  r ~ o  l (27) 

for  ~ > 1 - 1 / e n .  

Since 

T T 

( I[(x(cr  + i t)12odt) l/2e ~ (IIHM(,r + i t )J2edt)  l/2e + 
1 1 

T 

and  
-1- (~lr  + i t )  -- HM(~r A- it)12e) 1/2~, 

I 
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T T 
(~IHM(a + it)12edt) ~/2e <~ (~lr + it)12edt) I/2~ q- 

1 1 

T 

+ (~ I~,r (o + it) - HM(o + it)}Z~dt) 1/2~, 
1 

we obta in  f rom (24) and  (27) the fol lowing 

Theorem 2. I f  9 is any real number, ~ >>, 1, then 
T c~ 

l i m ( 1 / T )  j ' l ~ t c ( o + i t ) l Z ~  ~ {aQ(k)}2k -2~, ~r> 1 -  1/en, 
T ~  oo 1 k =  1 

where K is any algebraic number f ieM of  degree n > 1, and ~: the 
associated Dedekind zeta-function. 

We m a y  remark,  in conclusion,  tha t  in the case of  the R i e m a n n  
zeta-funct ion r (s), s t ronger  results than  L e m m a  2 are known,  which 
yield in mos t  cases sharper  asympto t ic  est imates for  sums of  the 
fo rm ~ dim (k), where  dm (k) is the number  of  ways of  expressing k as 

k<.<.x 

a p roduc t  o f m  factors,  a n d / i s  any  integer  ~> 2. See [6, w167 7.9, 7.19, and  
Ch. XI1] and  [4]. 

M e n t i o n  m a y  be made  also of  some related results a n n o u n c e d  
in [7]. 
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