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Abstract. If g, denotes the number of integral ideals with norm %, in any finite
Galois extension of the rationals, we study sums of the form ) a;(/=2,3,...),

k<x
along with the integral means of the 2o-th power (p real, ¢ > 1) of the absolute
value of the corresponding Dedekind zeta-function. The two averages are related
if g =n'"/2, where n is the degree of the Galois extension.

§ 1. Let K be an algebraic number field of finite degree over the
rationals Q. If g, denotes the number of integral ideals in K with norm
k, then the Dedekind zeta-function {x of the field K is defined by

k()= Y ak ™, s=o+it,
k=1

for ¢ > 1. The object of this note is the proof of the following

Theorem 1. If K is a Galois extension of Q of degree n > 1, then for
every ¢ > 0 and any integer l 2 2, we have

Y al =xPx(logx) + O(x'"2"""*9), as x - 0,
k<x
where Py denotes a suitable polynomial of degree n'™' —1.

The case / = 2 of the above sum was first considered in [2], where it
was shown that

Y al ~cx(logx)" ', as x > oo,
k<x
for a suitable constant ¢ = ¢ (X).
If /=2, and K is a quadratic field, the theorem yields the error-
term O (x'2%9). If, in addition, D = — 4, where D is the discriminant
of K, then a, denotes the number of integral solutions of k = x? + 2,
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solutions which differ only in order or sign not being counted as
distinct. In that case, S. RAMANUIAN [5] gave the formula with the
error-term O (x**%), and a proof of it was later published by
B. M. WiLsonN [8]. It is classical, on the other hand, that

Y oap=cx+ O(x'HThy
k<x
The proof of Theorem 1 is based on an estimate (Lemma 2) of the

mean-value of {{x(s)|*¢, for any real o> 1, in a half-plane that
includes a part of the critical strip. Such an estimate is first obtained in
the case in which ¢ is an integer by means of the approximate
functional equation for {, and then proved in general with the help of
a two-variable convexity theorem due to R. M. GABRIEL [3]. When
combined with the well-known method of F. CArRLsoN [1], it yields an
asymptotic result on the mean-value of |4 (s)|?¢ in a suitable half-
plane (Theorem 2).

§ 2. The connexion between the sums considered in Theorem |
and the Dedekind zeta-function is given by the following

Lemma 1. Let I denote aninteger > 2. If K is any Galois extension of
Q of degree n > 1, and

0
Dis)y= Y akk™, a>1,
k=1

then .

Di(s) =% () Ul(s),
where Uj(s) denotes a Dirichlet series, which is absolutely convergent
for o > 1.

Proof. This has been proved in the case / = 2in[2, pp. 56—58], and
the argument in the general case is not essentially different. We give it
here only for the sake of completeness.

It is known that g, is multiplicative, and a; < k°, for every ¢ > 0
[2, Lemma 9]. Hence we have

Dis)ig" ) =[1U,(), o>1,
F4

where the product runs over all rational primes p, and

U ) = (Y apup ™)/ (L amp™™)"", ¢>0.

m=0 m=0
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It is plain that for every ¢ > 0,
U,p(s)=140@*)

uniformly for o > § and all primes with @, =0 or a, = n.
Thus if a, takes no other values, except possibly for finitely many
primes p, then the product || U, (s) converges absolutely for ¢ > 3,

14
and the lemma follows. To show that this is the case, let (p) denote
the principal ideal in K generated by p, with the factorization

@) =Bi... BT,

where P, are distinct prime ideals in K with norm pf“, x=12,...,m
Then the integers e,, f, satisfy the relation

v
Y ef.=n.
=1

Suppose now that p is unramified in K, sothate; = e; =... =¢,= 1.
Since K is Galois, all 3, are conjugate, so that fi=/f,...=f, =/,
say, and the above relation yields f» = n, whence
{0, if0<m<f,

Aym ==

’ nlf, if m=f.
Since the number of primes p ramified in K is finite, the lemma
follows.

Lemma 2. If K is any algebraic number field of degree n > 1, (g the
associated Dedekind zeta-function, ¢ any real number, and ¢ 2 1, then
T

flex@+inedt < T,
0
forl —ljgn<o< 1.

Proof. If D denotes the discriminant of K, with r| real and 2r,
imaginary conjugates, then ¢ (s) satisfies the approximate functional
equation (cf. [2, Equation (65)]) given by

_ 40 —5) - '
Cs= aks+B231______ aks1+
K() kéx g A(S) kéx g
+ 0 (| og 1)),

for 0 < o < 1, where

(1)



102 K. CHANDRASEKHARAN and A. GoobD

x=|D|"2(|t)2m)"?, B=2"2"*|D|""2, and A(s) = " (s/2) I"*(s).

Let us first assume that o is an integer, say o=/, where
j=12,.... Then it follows from (1), by Stirling’s formula and
the inequality between the arithmetic and geometric means, that

T

[l +inlYdt < I(T, ) + T' 2V I(T, 1~ )+ 1, (2)
0 .

fo.r 1—-1/jn <6 <1, where

T
IT, =Y axk""|¥dr.

0 k<x
Now
=] T .
A, Ay, - - Ap,, k]...kj )lt
I(T,0) = 2 ( dt, €))
' k|,..§cj=l (ky...ky) ; Kjpi.. .k
where

T’ = min (7T, max 2z (k,/|D|"%)¥"),
1<vg2j

so that the integral in (3) vanishes, unless k =k, ...k; < T"/* and
I=kjy.. ks < T"72 Further, if k > [, it is of the order

1 _ 1 < k <1+(kl)l/2
Togle) dog(+ G =) k=1~ Tu=r

while a, <k, for every ¢>0, by [2, Lemma 9]. Considering

separately the sums which correspond to & =/ and k # [, we obtain
(kD'

lk — li) )

I(T, 0’) £ T Z kE*-Za + Z (k l)(e/Z)—a (1 +
k < T2 ki< T )
k#l
The first sum on the right-hand side is
Ta v if o> -;— s
< { 1+(nj2)(14+e—20) ; 1
T 3 lf o< R

for a small enough « > 0, while the second sum gives

Tnj(l+e—¢7) + Z (l/m) Z (k(k‘ +m))(1/2)+(s/2)~u <

0<m<g T O<k < T"i?
LT if0<o< 1.

Hence we obtain
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T+ T”j(l+€_a)’ lf% <o < Ia
I(T, O') < {Tn_/'(l+€~a)’ if ¢ < %
It follows that

IT,0)<T, ifo>1-1/jn. )
Similarly we obtain
TU2M [(T)1 — o) < T+ if L <5< 1,
from which we have
T2 (T, 1 ~e)<T, ifo>1-1/jn. (5)

The lemma now follows from (2)—(5), if ¢ is a positive integer. If it is
not, we use a two-variable convexity theorem due to R. M. GABRIEL
[3], which implies that for « < 0 < g < I, we have

T
(IICK(G+l‘t)|l/(q;~+q’ll)dt)4)-+q'ﬂ < (6)
0

T T
< (flex(a+ i) d)?-(flex B+ in|dn*,
0 0

where 4 > 0, u > 0, and
B—o o—a

/3 & » 4 = ﬂ — N
If o is not an integer, so that o > 1, let j denote the positive integer
which satisfies the condition: j < o <j+ 1, so thatj > 1.
We shall apply the convexity theorem with

q:

1 1 1 1 1
I=—, u= sa=o0+———; f=o0+-—— , (7
T s o i T o i
so that « < 0 < 8, since j < p <j+ 1. Further we have
P 1 5 1 I 1 1
TR T T, o= H - =TT T,
njG+1) on G+nn " " jn on
so that
-0 jG+D—jeo  o-a_ o(+D—-ji+1)
B—a 0 p—a e
i+ 1) — —-j 1
and qH_q,#:(/ ) e e/ 1

20 20 29
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The convexity theorem as stated in (6) now yields the inequality
T T T
flex(o+inPedt < (fleg(a+in|Ydny - (flex (B + i)V dn~, )
0 0 0
where ' =2p0lq, ' =2ppuq’,and '+ p' = 1.

If o lies in the range

1 ! <o<l ! + !
- <q - ,
en en (+Dn

then we have 0 < « < 0 < 8 < 1 on the one hand, and

(10)

1
>1—-——, f>1——
g PTG m
on the other. The lemma now follows from (9) and its already proved
validity in the case in which g is an integer > 1, provided that ¢ lies in
the range given by (10). If, however, ¢ lies in the range
1
l - —+— o<
en G+ 1Dn
then ¢>1—1/G+ D)n, since 20>2j=j+ 1, and by Holder’s
inequality, together with the first part of the proof, we obtain

T

T
“CK(G + it)lz“" dt < (§ |CK(0 + l-t)|2(i+1)dt)9/(i+l)_ T e/U+1)
0 0

1, (11)

which completes the proof of the lemma.

§ 3. Toprove Theorem 1, we introduce an auxiliary C* function ¢,
on (0, 00), for u = 2, as follows:

1, forO<y<1,

7. () = {O, fory = 1 + 1/u;

its derivatives satisfy the condition
D) <u’, r=0,1,2,...,

where the implicit constants depend only on r.
If we consider the Mellin transform

M,(s)= {9, 0)y' 'dy, ¢>0,
0
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then
1 1+ 1u
M (1)=[(logy)'dy +0( | (logy) dy)
0 i (12)
=(=D)'Te+D)+0u "), asu—oo,
for r=0,1,2,.... On repeated integration by parts, we also have,
forr=1,2,...,
(=D ® . 1 /u\r
M, (s) = o streid <—<~>, 13
) s(s+1)...(s+rﬂ1)£(p Oy dy < g ) (1)
uniformly for ¥ <o <2, and u > 2.
By Mellin’s inversion formula, and Lemma 1, we have
Y al g, (k/x) = (1/270) | Dy(s) M, (s) x"ds = (14)
k=1 @

=(1/2z0) [ % () Uls) M, (s) x° s,
@)
where [ denotes integration along the line o = oy in the direction of

{o0)
increasing imaginary part. By the definition of ¢,, and since a} < k°,

we have

o8

ah g ki)=Y a+ Y aiegkix)=73 a; +0(x'u).
1 k<x x<k<x(l4+1/u) k<x (15)

The integrand in (14) is regular for ¢ > } except for a pole of order
n'"'ats = 1. If we denoteits residue by Res, we deduce from (12) that,
uniformly for x > 1 and u > 2, we have

Res = x Py (logx) + O ((x/u) (logx)™ 1), (16)

where Py is a polynomial of degree n'~! — 1, whose coefficients do not
depend on ¢,. Hence by Cauchy’s theorem, together with (13) and the
estimate

|Cx (o +in)] < je =2+

for 0 < o < 1, we obtain from (14)

iai%(k/x):Res—{—(l/Zni) [ cr () Uls) M, (s)-x*ds, (17)
k=1 {a0)

where o, is such that
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1>0=1-2/n"+6>1—-2/n
Now, for ¢ = ¢4, we have Uj(s) = 0(1), and

M, ()] < (s]™h, if 7] <u,
while
IM, ()] < )s) " ls)™h, if 7| >u

because of (13). Hence
§ 18 (o +10)- Uls)- M, (s)- x*|ds <
(a0}

dt u
L8 (o +in) —— + % (oo +it -—dr)
(.,,L' Cokinl g+ 1 ot inl

< x®-logu, (18)

if we integrate the last two integrals by parts, and use Lemma 2. Thus
(17) and (16) yield the relation

Y. al ¢, (kx) — x Px(logx) < (x/u)(logx)"” =" + x*(logu).

If we combine this with (15), and choose u = x' ®, we obtain
Theorem 1.

Remark. If n = 2,1 = 2, Theorem 1 follows from the known mean-
value Theorem [2]

T
) [Iek(o+in)Pdi=0(1), for o> 4.
0

§4. If K is any algebraic number field of degree n > 1, and j is
any positive integer, we have

vo]

d)=Y ak)k=[[(1-NB 7, for o>1, (19)

k=1 R
where q;(k)= Y = @,a,...a, and the product runs over all
kyka.. =k
prime ideals P in K. Here N*B denotes the norm of P.
By Lemma 2 we have

T
fItx(o+in|¥di<T, forl—1jjn<o<l1, (20)
1

o0
and because of the absolute convergence of Y a,k ~* for ¢ > 1, this
k=1
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holds also for ¢ > 1. By a theorem of F. CARLSON [1, (a)] on general
Dirichlet series, it follows that (20) holds for 6 > 1 — 1/jn.

Since {¢x (s)} is regular except for a pole at s = 1, and is of finite
order in ¢, by another theorem of CARLSON [1, (b)] we have

lim (1/7) j |tx(c +iH)|¥dt = Z a; k)-k*, e>1—1/jn. 21)
T—w ’
This result can, in fact, be upheld for any real ¢ > 1 in place of the
integer j.

If o is any real number, with g >0, then define % (s)=
= exp {plog Lk (s)}, where log £ (s) is uniquely defined by the require-
ment

log(1-N$B~)~'= }: (E(NP*), o>1,

so that -
loglg(s) =3 Y (1/k(NB)*),

P k=1
the double series converging absolutely for o > 1. Let

0

()= a,(byk ™™, o>1, (22)

k=1

so that when p is a positive integer j, we have (19).
Let

()= [] A=NPH7,

NP<M

where M is an integer, M > 0. Then for any real o > 0, we have

{Ty@}e= ] A-NP )= Za(k)k e (23)

NB<M

say, the series converging absolutely for ¢ > 0, with a, (k) = a,(k)
for ] <k <M, and 0 < q,(k) < a,(k) for all k > 1. Hence

lim (1/Dj|HM(a+zt)[29dt Z{a;(k)}lk-za, for o>0,

T =1
and -
lim lim (1/7) leM(a +if)|*edt = Z {a,(k)}? k=%, for o>1
Mow T-o k=1

24

If o is real, ¢ > 1, then, as in Lemma 2, we have
8*



108 K. CHANDRASEKHARAN and A.GOOD
T
(UT) [ 1ex(o+ i) = My (o +in)*dt <
1
T . ’
< ((YT) flex @+ i0) — My (w4 i )7 d)* x (25)
1

T
x (T) §lex(B +i1) — My (B + )27+ oy,
1

where ¢,«,8,4,4', u, u" are as before, '+ p'=1,and 6 > 1 — 1/pn.
The function {Zx(s) — I, (s)} is regular except for a pole at s = 1,
and is of finite order in 7. Further

T

UDfIex(a+it) = Dy +inidt = 0(1), o>1-1/jn, (26)
1

because of Lemma 2, and (24). Hence, by CARLSON’s Theorem [1, (b)],

lim (1/7) j]CK(m +it) — My (e +if)|¥dt = Z a2y (k) k2,
=1

T oo

say, the series converging absolutely since « > 1 — 1/jn>3. Further
a; (k) =0for k < M, and 0 < g; (k) < a;(k) for all k > 1. Hence

lim lim (1/T)S |tx (@ +it) ~ My +i)|¥dt =

M- T-o

Similarly

lim lim (1/7) j |k (B +i1) — Iy (6 + i )20V dt =

M-ow T-w

since § > 1—1/(j + l)n It follows that

lim lim (1/T)j|CK(a+zt)-HM(a+zt)|29dt—0
Mo T-owx (27)
for 6>1—1/pn.

Since

T T
(f12x (o +in)2edp)t?e < (| Hy(o+ it)|2edr)'?e +
1 1

T
+ (Jlek(o +it) — Oy (o +iD)*9),
and !
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T T
([1Tu (o +in)*0d)'?e < ([Itx(o+in)0dn)'?e +
1 1

T
+ (flex(o +it) — My (o +in)|*ed)'?,
1
we obtain from (24) and (27) the following

Theorem 2. If ¢ is any real number, o > 1, then

T 0
im (YT) § |ex(o +in)*dt =Y {a,(R)}* k™%, o>1~1/en,
T k=1

-0 1

where K is any algebraic number field of degree n > 1, and (¢ the
associated Dedekind zeta-function.

We may remark, in conclusion, that in the case of the Riemann
zeta-function ¢ (s), stronger results than Lemma 2 are known, which
yield in most cases sharper asymptotic estimates for sums of the
form Z d’, (k), where d,, (k) is the number of ways of expressing k as

k<x
a product of mfactors, and /is any integer > 2. See [6, §§7.9,7.19, and
Ch. XII] and [4].
Mention may be made also of some related results announced
in [7].
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