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We have investigated the spin-1 Ising model on the sim- 
ple cubic lattice with bilinear, biquadratic interaction 
and anisotropic energy (BEG model). We have been spe- 
cially interested in the case of antiferro biquadratic inter- 
action, because the interaction will cause the competition 
with bilinear interaction and anisotropy. A two-sublat- 
tice ordering, so called the staggered quadrupole (SQ) 
phase, occurs as long as biquadratic interaction is nega- 
tive large enough. We have obtained a full phase diagram 
in the whole interaction parameter space (for the positive 
bilinear interaction) by the Bethe approximation, and 
found several kinds of phase transitions, such as succes- 
sive, re-entrant and double re-entrant transitions. These 
transitions are also confirmed by Monte Carlo simula- 
tions on simple cubic lattices. 

1. Introduction 

The Blume-Emery-Griffiths (BEG) model was originally 
proposed for the description of the phase transition in 
He3-He 4 binary fluid [1 ], but later, many authors have 
investigated the BEG model as a spin system of rich phase 
transitions (a pioneer work is [2]). The partition function 
of the spin-1/2 Ising model with annealed site impurities 
in any dimension or any lattice can be also transformed 
into that of the BEG model [3]. The BEG Hamiltonian 
is given by 

~ -- Jl Z SiSj-  J2 Z S~ Sf - D Z $2, (1) 
n . n .  n . n .  i 

where S i= 1, 0, 1, the sum n.n. is over nearest neighbor 
pairs, and D is the single-ion anisotropy energy. For spe- 
cial case of J2 = 0, it is called the Blume-Capel model 
[4, 5]. Most of recent works on the phase transition of 
the BEG model have been devoted to the case of the 
antiferromagnetic biquadratic interaction (J2 < 0) (for 
example, [6-8]), because it may be expected to give a rich 
phase diagram due to competition of interactions. As 

long as the biquadratic interaction J2 is ferromagnetic 
(J2 > 0), both of the ferromagnetic (J1 > 0) and antifer- 
romagnetic (J1 < 0) phase are compatible with this in- 
teraction. On the other hand, when antiferromagnetic J2 
interaction and D = 0 are introduced, one spin of the 
interacting spin-pair is assumed to take 0 and the other 
spin prefers to take any of 1, 0, or - 1  in the ground 
state. Thus the highly degenerate spin arrangement named 
as a staggered quadrupole (SQ) phase comes out [6, 7]. 
Here we will show that the BEG model exhibits various 
complicate phase transitions such as successive phase 
transition, re-entrant and double re-entrant phase tran- 
sitions against the temperature. While the former ana- 
lytical studies [8] were not enough to reveal these rich 
phase diagrams, because he overlooked a two-sublattice 
ordering. The ground state energy of the spin arrange- 
ment assumed by him is shown to be higher than our 
(SQ) phase in a certain range of parameter. 

On the whole range of parameter space 
( - o o < J = - J 2 / J l <  + o o , - o o < D <  +oo), we have 
obtained a phase diagram on the simple cubic lattice by 
the Bethe approximation (for square lattice, see [9]). The 
occurrence of re-entrant phase transitions on a simple 
cubic lattice is confirmed by Monte Carlo simulations. 

The article is organized as follows. In Sect. 2 we in- 
vestigate the spin arrangements of the two-sublattice for 
the ground state. In Sect. 3 their phase diagram is ob- 
tained by the Bethe approximation. The results of Monte 
Carlo simulations on simple cubic lattices are given in 
Sect. 4. Final Sect. 5 is devoted to a summary. 

2. Definition of phases 

At first, we consider the spin arrangements in the ground 
state of the BEG model in the case of J1 > 0. As long as 
the two-sublattice ordering on the bipartite lattice is con- 
cerned, we introduce following three arrangements. We 
denote here (Si, $i) as the spin state on the A and B 
sublattice. 
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Fig. 1. The phase diagram (d-Y plane) and the spin arrangements 
in the ground state of the BEG model on a hyper-cubic lattice 

Case 1, perfect 0 ordering. Both S i and Sj. take the 
value O. 
Case 2, ferromagnetic ordering. (Si, Sj) takes (1, 1) or 
( -  1, - 1) and it has trivial double degeneracy. 
Case 3, staggered quadrupole ordering. (Si, Sj) takes either 
(0, 1) or ( 0 , -  l) randomly, so its residual entropy be- 
comes �89 in 2 per spin. 

The ground state enery Eg depends on the parameter 
J=- J2/J1, d -  D / z J  1 (z is the coordination number). The 
phase diagram of the ground state is shown in Fig. 1 as 
a function of  J and d and their ground state energy Eg 
is as follows. 

1. Eg=O d<=O and J ~  - 1 - 2 d  

2. E g = � 8 9  J > - l - d a n d  

J>_ - 1 - 2 d  

3. Eg=�89  d>=O and J ~  - -  1 - d .  

Let us introduce the four order parameters describing 
the ordering for the two-sublattice (A,B);  m A = ( S A ) ,  
qA = ( $ 2 ) ,  rne = (SB) ,  qe = ( S ~ )  and define the next 
five phases at non zero temperature. 

i. One-sublattice phases 
0. spherical phase (disordered phase) (S) 

m A = m e = 0 and q A  = q e  = 2/3 

1. quadrupole phase (Q) 

m a = m B = 0  and qA=qB:~2/3 

2. ferromagnetic phase (F) 

m a = me=l= 0 

ii. Two-sublattice phases 
3. staggered quadrupole phase (SQ) 

m A = m e = 0 a n d  q A  # :  q e  

4. ferrimagnetic phase (FR) 

m A ~ m e and qA :r qe. 

Here these order parameters are bounded to be ]mAI 
<= qA =< 1 and ] m e ] =< qe =< 1. In the highest temperature 
limit, Si takes either 0, 1 or - 1 in the complete random 
way. Thus we have a spherical (S) phase when order 
parameters become qa = qe = 2/3 and m A = m e = 0. The 
order parameter q is deviated gradually from 2/3 when 
the temperature is decreased. The perfect 0 phase in the 
ground state belongs to the (Q) phase, because its order 
parameters are given by q,~ = qe= 0 and m A = m e =  0. 
When J is positive large enough and D is also positive, 
we have the ferromagnetic (F) phase in the lowest tem- 
perature. The (FR) phase, which was referred in [2], have 
never appeared in the whole temperature range. 

When Jl < 0, the whole phase diagram is unchanged 
except the (F) phase is replaced by antiferro (AF) phase, 
because the Hamiltonian (1) is conserved under simul- 
taneously changing J1 ~ - J 1  and the inversion of  every 
spin in one sublattice. Hereafter the exchange parameter 
J~ can be assumed to be positive without loss of gener- 
ality. 

3. The Bethe approximation 

To obtain the phase diagram we have applied the Bethe 
approximation [10] to the BEG Hamiltonian. For  con- 
venience, we introduce the magnetic field H. The one-site 
effective Hamiltonian ZA (1), yr of A and B sublattice 
are assumed to be written by 

7 f )  '~ = - z/4~ S~ - ZDA S 2 - I4SA -- D S.f (2) 

~ 8  (*) = -- zHBS B - zDBSeB -- H S 8 - D $2~, (3) 

and the two-site effective Hamiltonian ZA(~ 

z2 = _ j l & s  e 2 - J 2 S ~ S e -  H S A -  H Se 

- D S 2 A - D S ~  

- - (z- -  1 ) H a S a - ( z -  1 )HeS  B 
--  (z  - - 1  ) D A S• - (z  - 1) D e SeB, (4) 

where the parameters HA, He, DA and D B are to be de- 
termined from the condition of minimizing the free en- 
ergy. The free energy F corresponding to the Bethe ap- 
proximation can be given as follows [11 ]. 

- f l F =  ~ In Tr p}l~ 
i 

+ ~, [ lnTrp~) - - InTrp}~) - - lnTrp}O l (5) 
n.n. 

= �89 zN ln  Tr ,, (z) I-" A , B  

+�89 - z) N[ln Tr p]l> + In Tr p(B1)], (6) 

where the density matrices ,,(~ ,,(1) and ,~(2) ~a , ~'B ~'AB are given 
by 

p(l) = exp ( -- fl Yd'A(~)), (7) 



207 

p(~l) = exp ( -  fl Y~(l)), 

p(2)  = ~ ( 2 ) ' 1  
A,E e x p ( - f l  Jg~A.BI" 

(8) 

(9) 

Differenciating the free energy function with respect to 
H A, He, D A and DE, we have 

OF OF OF OF 
- O .  ( 1 0 )  

~H~ ~I-I e ODA ~De 

The explicit forms of (10) are 

X(HA, He, DA, DE) 
Z (2) (HA, He, DA, DE) 

2 exp { fl (D + zD A )} sinh { fl (H § zH A)} 
--l  + 2exp{fl(D+ZDA)}Cosh{fl(H+ZHA) } rnA' 

(11) 

X(HE, HA,D~,DE) 
Z (2) (HA, HE ' DA ' DB ) 

2 exp { fl (D + zDB) } sinh {/3 (H + ZHE) } 
-- 1 + 2 exp { fl (D + zDE) } cosh {/3 (H + zHe) } = me' 

Y(HA, HE, DA, De) 
Z (2) (HA, HB, DA, De) 

2 exp { fl (D + z D A)} cosh {/3 (H + zHA) } 
1 + 2 exp { fl (D + zDa)} cosh {/3 (H + ZHA)} - - q A ,  

(12) 

(13) 

Y(HE, HA, D~, DE) 
Z (2) (HA, lib ' DA ' DB ) 

2 exp {/3 (D + ZDB) } cosh {13 ( H +  zHE) } 
-- 1 + 2 exp {/3 (D + zDE) } cosh {/3 (H+ zHB) } = qE, 

where 
(14) 

X(HI,  112, D1, D2) 
- 2 e x p [ / 3 { D  + (z--1)D~}] 

• sinh [ fl{ H + (z-- 1)H,} 

+2exp[ f l {J2+2D+(z- -  1)(D, +02)}]  

• {exp (flJt) sinh [fl{2 H +  (z - l) (H~ + H2)}] 

+ exp ( - fi J~ ) sinh [ fl { (z - 1 ) (H~ - H 2)}]}, (15) 

Y(HI, / /2 ,  D~, D2) 
= 2 e x p [ / 3 { D + ( z -  1) D,}] 

•  1) H,}] 

+ 2 exp [/3{Jz + 2 D + (z - l) (D~ + 02)}] 

• {exp (flY,) cosh [/3{ 2 H +  ( z -  l) (H  t + H2)}] 
+ exp ( -- flJ, ) cosh [fl{(z -- 1) (H~ - H2)}]}, (16) 

Z ~23 (Hi, 142, DI, D 2 )  

= 1 + 2 e x p [ / 3 { D + ( z -  1)D~}] 

• cosh [~{H+ (~ -  1) H,} 
+ 2 exp [/3 {D + (z -- 1 ) D2} ] cosh [/3{ H +  (z - 1) H2} ] 

+ 2 e x p [ f i { J 2 + 2 D + ( z -  1)(D~ +D2) }] 
• 1)(H~ + H2)}] 
+ exp ( - /3J ,  ) cosh [/3{(z - 1) (H, - ~)}]}. (17) 

When H = D = O ,  the self-consistent equations (11-14) 
include, as expected, the solution H A = H E = 0  and 
D A ~ D E = 0 in the highest limiting temperature. This re- 
presents the spherical phase where the same probabilities 
of distribution appear for S =  - 1 ,  0 and 1. In the (Q) 
phase, the order parameter q(=qA-~-qB) is always de- 
pendent on the temperature. Hereafter we try to find the 
ordered phase under the condition H =  0 and D ,  0. We 
consider first a one-sublattice phase where qA = q E = q  
and m A -= m E = m. The critical frontier for vanishing the 
(F) phase is determined by setting m - ,  + 0. On the other 
hand the critical frontier for vanishing the (SQ) phase is 
given by I q A -  qBi ---+0 under the condition m A = mE-=-O. 
These conditions lead the relation among J, d, and T. In 
order to avoid the quasistable solutions, we also have 
compared the free energies corresponding the (Q), (F) 
and (SQ) phases each other. 

The phase diagrams are shown separately in Fig. 2a 
for d =  1.0, 0.5, 0.0, - 0.5 and - 1.0 and in Fig. 2b for 
d =  0.0, - 0.05, - 0.1, - 0.2, - 0.25 and - 0.4. One can 
see the general aspect of the phase transitions of the BEG 
model. At the low temperature the (F) phase generally 
appears when J (  = Jz/J~) is positive and large enough, 
while the (SQ) phase appears when J is negative and large 
absolute value. When d = 0, these two phases meet at the 
point J =  - 1 and T =  0. As d increases from zero the 
area of the (F) and the (SQ) phases expand, and thus 
they look like overlapping each other. In this region the 
first-order phase transition occurs between the (F) and 
(SQ) phases. 

In the case of d < 0 the phase diagram is, as shown 
in Fig. 2b, turned to be more complicated. The areas of  
the (F) and (SQ) phases become to separate each other 
and there happens no phase transition in the intermediate 
J. Moreover a tricritical point appears on the critical 
frontier of the (F) phase [12]. Specially when d is small 
absolute value, the re-entrant transition, that is, 
( Q ) ~ ( F ) ~ ( Q )  may occur for the restricted J. As for the 
(SQ) phase one can see the re-entrant transition appears 
more generally when d < 0 and J < 0. This should not 
be surprised, because the ground state is the perfect 0 
ordering, and its symmetry belongs to the (Q) phase. 

Other complex phase transitions are found as de- 
scribed in following. 

(a) Successive transition ( Q ) ~ ( F ) ~ ( S Q )  when d >  0 
and J is slightly smaller than - 1 - d .  

The transition from the (F) to the (SQ) phase is of  
first-order. 

It is seen from Fig. 2b that four types of re-entrant 
transitions occur in the vicinity of small d as follows. 
(b) Re-entrant transition (Q)--+(SQ)~(Q) when d =  
-0 .05 ,  - 0 . 1  or - 0 . 2  and J <  - 1. 
(c) Re-entrant transition (Q)~(F)--+(Q)  when d =  
- 0.05, - 0.1, - 0.2 or - 0.25 and J is slightly smaller 
than - 1 - 2 d.  
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Fig. 2a, b. The phase diagram for the several 
values of d is plotted in J~Jz/Jl and the reduced 
temperature plane, a d= 1.0, 0.5, 0.0, - 0.5, - 1.0 
and b d=0.0, -0.05, -0.1, -0.2, -0.25, -0.4. 
The right-side lines indicate the (Q)~(F) phase 
transition, and left-hand lines the (Q)--*(SQ) 
phase transition. When d > 0 both phases overlap 
each other, and the first-order (F)--,(SQ) 
transition appears, a tricritical point appears on 
the critical frontier of the (F) phase. Here the 
solid lines and the broken lines indicate the 
continuous and first-order transition, respectively 

(d) Re-entrant and successive transition ( Q ) ~ ( F )  
-~ (Q) - , (SQ)  when d = 0  and - 1.05 < J <  - 1.0. 
(e) Double re-entrant transition ( Q ) - - * ( F ) ~ ( Q ) ~ ( F )  
when - 0 . 2 < d < - 0 . 3  and J is slightly larger than 
- 1 - 2 d. All re-entrant transitions are found to be con- 
tinuous except the lower transitions (Q)--,(F) in the 
case (e). 

Here cases (b) and (c) have been obtained by various 
methods in former papers. For  instance, (b) : mean field 
approximation [1,2], Monte Carlo method [6], [7] 
(J~ = 0), (c): the Bethe approximation, renormalization 
group method, Monte Carlo method (these are one-sub- 
lattice treatments and D = 0 see [13]). For (a), Blume et 
al. [1] and Chen et al. [2] did not show to appear the 
successive transition although they took into account the 
two-sublattice ordering. In order to confirm the appear- 
ance of  the above-mentioned complex phase transitions, 
we have performed Monte Carlo simulations. We will 
refer to (a), (d), (e) later in this paper. 

4. The Monte Carlo simulation and thermal properties 
in the ordered states 

Simulations were executed by the Metropolis algorithm 
on N(  = L • L •  L)  sited simple cubic lattices with a pe- 
riodic boundary condition in all lattice directions, where 
L is the linear size of  the system. Thermal quantities are 
estimated after discarding the first 10 000 Monte Carlo 
steps (MCS), and typical observation times are over 
100 000,--200 000 MCS. We use the binning method for 
error estimates [14]. The supercomputer HITAC S-820/ 
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Fig. 3a, b. Temperature dependence of order parameters for the 
successive transition (Q)~(F)~(SQ); a Monte Carlo simulation 
on the simple-cubic lattice of L • L • L (L = 10, 14, 18), b the Bethe 
approximation 
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updating about 2 •  107 spins per s. The simulations are 
performed for the case of  special values of parameters 
with which above-mentioned interesting phase transitions 
are expected to appear. 

Ui0 

Fig. 6. Fourth-order cumulant Ul0 versus U~8 obtained by Monte 
Carlo simulations around the transition (Q)~(F). If L is large 
enough, the transition temperature or fixed point is drawn when 
the size dependency in U's disappears i.e. U~0= U~s. The critical 
exponent v =0.63 (line 2)+0.05 and Tc= 1.65 -+0.01 are estimated 

4.1. Successive transition (Q)~(F)- -*(SQ)  

Here we set the interaction parameters to be J =  - 8 / 5 ,  
d =  1/2 which are shown as an arrow (a) in Fig. 2a. Order 
parameters obtained by the Monte Carlo method (MC) 
are shown in Fig. 3a, and those by the Bethe approxi- 
mation (BA) are shown in Fig. 3b. Specific heat by MC 
and BA are in Fig. 4a and b respectively. 

As seen from Figs. 3a and 4a, the lower phase tran- 
sition ( F ) ~  (SQ) should be assigned as a first-order tran- 
sition because the jump of  order parameters appear and 
the specific heat has very sharp peak. The specific heat 
by BA involves a latent heat shown as a delta function 
singularity at this transition in Fig. 4b. If the transition 
is the second-order, the specific heat by BA represents 
the finite jump at the transition temperature. The esti- 
mation of  this first-order transition temperature by BA 
is proved to be 1.08, which is near to 1.05 obtained by 
MC. The susceptibility obtained by MC, as shown in 

Fig. 5, looks to diverge sharply when L = 10 at the lower 
transition temperature, but not to diverge when L =  14 
and 18. The reason may be attribute to the region of  
transition where the susceptibility becomes divergent must 
shrink rapidly to a point of the transition temperature 
when the lattice size L approaches infinity in the case of 
the first-order transition. 

The higher transition ( Q ) ~ ( F )  looks a continuous 
transition, because the magnetization appears continu- 
ously and the order parameter q has a weak kink at the 
transition temperature, as seen from Fig. 3a. The esti- 
mated transition temperature from MC is given by 1.65, 
which should be compared to 2.02 estimated from BA. 
This ferromagnetic transition accompanies the strong 
peak of  susceptibility, as shown in Fig. 5. While the spe- 
cific heat is found to have a small peak as shown in 
Fig. 4a. 

We have attempted further to estimate the more ac- 
curate critical point T c and critical exponent v by use of 
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Binder's fourth-order cumulant UL, which is defined by 
UL=(<M4>-3<M2>2)/<M~> 2 [15], where M :  ~, S, 

i 

and L denotes the linear size of  the lattice. We plot U~s 
versus U10 in Fig. 6 for several temperatures. The tem- 
perature where U L (T) = U L, (T) (L, L" >> 1) can be iden- 
tified with T c and the gradient of the curve of  MC data 
at T c gives ( L ' / L )  1Iv. We have concluded that 
Tc= 1.65• and v = 0 . 6 3 + 0 . 0 5 .  This result shows 
the transition belongs to a three dimensional Ising class. 

4.2. Re-entrant transition ( Q ) ~ ( F ) ~ ( Q ) - - + ( S Q )  

We have used the values J =  - 3 1 / 3 0  and d = 0  in MC, 
which are shown as an arrow (d) in Fig. 2b and used 
values J =  - 1.05, d =  0 in BA. Since D = 0, only J1 and 
J2 are competing. This coupling parameter is near to the 
triple point at the absolute zero as seen in Fig. 1. The 
order parameters and specific heats are plotted in Figs. 7a, 
b and 8 a, b respectively. Here the thermal quantities are 
averaged over 30 000,-~ 50 000 MCS. 

The lower transition (Q)---,(SQ) is proved to occur at 
extremely low temperature and to be of continuous tran- 
sition from the temperature dependence of the order pa- 
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Fig. 8a, b. Temperature dependence of specific heat for the re- 
entrant transition (Q)~(F)~(Q)--,(SQ); a Monte Carlo simula- 
tion (L = 12, 16, 20), b the Bethe approximation 

rameters qA and qB. A sharp peak of specific heat by MC, 
as seen in Fig. 8a, is compatible with the second-order 
transition. 

The magnetization of the (F) phase in the intermediate 
temperature seems to be very weak as seen from Fig. 7a. 
Nevertheless the (F) phase may be concluded to exist, 
since its magnetization m increases when the lattice size 
increases. The specific heat at the both transitions 
(Q)--*(F) and ( F ) ~ ( Q )  have no sign of singularity. This 
behavior is found in the next double re-entrant phase 
transition in Fig. 10a as well. On the other hand the sus- 
ceptibility on MC indicates the existence of the singular- 
ities which is not shown here. Lushnikov studied the two 
and three dimensional spin- l /2  Ising model with an- 
nealed site and bond impurities [3, 16], and concluded a 
third-order transition, because the temperature-deriva- 
tive of  the specific heat has anomaly at the transition 
temperature. Thus these transitions are possible to be of  
third-order, but our MC data on specific heat have not 
enough to answer whether the ( Q ) ~ ( F )  transition is a 
second or third-order transition. 

4. 3. Double re-entrant transition (Q) ~ (F)--* (Q)--* (F) 

Here we have used J =  - 1/2, d =  - 89/360 in MC, which 
is shown as an arrow (e) in Fig. 2b and J = - 0 . 3 2 5 ,  
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Fig. 9a, b. Temperature dependence of order parameters for the 
double re-entrant transition (Q)--+(F)--,(Q)~(F); a Monte Carlo 
simulation (L= 12, 14, 18), b the Bethe approximation 
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Fig. 10a, b. Temperature dependence of specific heat for the double 
re-entrant transition (Q)~(F)--+(Q)--+(F); a Monte Carlo simu- 
lation (L= 12, 14, t8), b the Bethe approximation 

d =  1/3 in BA. The order parameters obtained from MC 
and BA are shown comparatively in Fig. 9a, b. Here the 
initial state in the simulation is set to be all S i = 1 at the 
lowest temperature and then temperature is grown up. 
The phase transition between the lowest (F) phase and 
the intermediate (Q) phase exhibits a jump of  order pa- 
rameter at T=0.56 ,  as shwon in Fig. 9a, and a sharp 
peak of  specific heat is found at the same temperature as 
shwon in Fig. 10a. This result is compatible with the first- 
order transition expected by BA shown in Fig. 10b. 

The magnetization in the (F) phase at the intermediate 
temperature shows the considerable size-dependency in 
contrast to the lowest (F) phase. This (F) phase involves 
the strong fluctuation even in the ordered state due to 
the competition of interaction parameters. The specific 
heat in the re-entrant (F) phase, as shown in Fig. 10a, 
has a kink at T =  0.76, but it has scarcely singularity at 
the higher transition temperatures. 

We have also attempted to determine the critical point 
in more precisely by use of the size dependence of fourth- 
order cumulant U L. The critical point is shown in Fig. 11 
and Tc= 0.76 and 1.10( __ 0.02) are obtained. The fourth- 
cumulant suggests that the exponents v for both of these 
transitions are the same value obtained in 4.1. 
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Fig. ll. Temperature dependence of fourth-order cumulant U L for 
the double re-entrant transition (Q)~(F)-~(Q)--,(F) by Monte 
Carlo simulation (L= 12, 14, 18). Tc-0.76 and 1.10(+0.02) 

5. Summary 

The phase diagram of the Blume-Emery-Griffiths model 
has obtained in the full J 1 - - / 2 -  D parameter space by 
the Bethe approximation. We have found several re-en- 
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trant  phase transitions and first-order successive transi- 
t ion depending on interaction parameters.  The occur- 
rence o f  the re-entrant  phases are confirmed by Monte  
Carlo simulations on simple cubic lattices. It  should be 
noted that  the specific heat o f  re-entrant  phase transit ion 
shows the gentle behavior.  

This study was carried out under the Institute of Statistical 
Mathematics Cooperative Research Program (91-ISM.CRP-37). 
We have partially used the HITAC S-820/80 at the Institute for 
Molecular Science. 
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