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A model for disordered superfluids and superconductors 
is considered in terms of the Bogoliubov-de Gennes 
equation with a random order parameter field. Two 
characteristic cases are distinguished: model I with a 
real order parameter (time reversal invariant system) and 
model II with a complex order parameter (broken time 
reversal invariance). The fluctuations of the order param- 
eter close the gap in both models, and we investigate 
the states at the center of the filled gap. The two models 
have distinctive properties in terms of the quasiparticle 
states due to different symmetries. Model II exhibits only 
localized quasiparticle states at the band center. In con- 
trast, the fluctuations of the real order parameter of mod- 
el I can be described by a nonlinear sigma model which 
leads to a transition from localized to extended states 
for dimensions d > 2. 

Noninteracting quasiparticles in a superfluid or a super- 
conductor can be described in a first order approxima- 
tion by the Bogoliubov-de Gennes (BG) equation [,1-3]. 
This is an equation of motion for the two-component 
quasiparticle field 7 j (r, t): 

- - i ~  l/J---- [-(-- V2-t-~/) 0-3-[- z~l O-l--A 2 (72] ~. (1) 

{aj} are the Pauli matrices and A1 (A2) the real and 
imaginary part of the order parameter A, respectively. 
Starting from a microscopic theory of the superfluid the 
order parameter can be evaluated by solving a self-con- 
sistent (BCS) equation [1]. Since this equation is non- 
linear, solutions are only known for homogeneous sys- 
tems where A is uniform or periodic in space. In inhomo- 
geneous systems, however, it might be very difficult to 
find solutions even in finite systems where we can apply 
numerical methods [4]. In general, if there are random 
terms (e.g. random potentials [,1, 2] or random cou- 
plings) in the microscopic theory, the order parameter 
will also be random in space. Although its distribution 

will be determined by the distribution of the microscopic 
randomness through the BCS equation, we can apply 
the universality hypothesis that qualitative properties 
will not be affected by the details of the specific distribu- 
tion. On the other hand, it might be very difficult to 
determine the microscopic randomness from an experi- 
ment with real materials, whereas it is easy to measure 
the disorder of the order parameter. Therefore, it seems 
to be more physical to start with an effective model 
which accounts for the observable disorder of the order 
parameter field A. 

Starting from the universality hypothesis we can eval- 
uate qualitative properties as the gap structure or the 
localization properties of the quasiparticle states in the 
average system using a specific distribution for the order 
parameter. This approach applies to a number of physi- 
cal situations. For instance, there are inhomogeneities 
in superfluid 3He due to nucleation of 3He-A in the 
3He-B-phase. Another example is 4He with a disordered 
vortex structure [-5] or high T~ superconductors in a 
magnetic field with a frozen inhomogeneous vortex 
structure [6], where the order parameter vanishes inside 
the vortex core. These systems have in common that 
the order parameter has a very short coherence length 
such that it can fluctuate on short scales. From this point 
of view the BG equation is a phenomenological ap- 
proach to a number of inhomogeneous superfluid sys- 
tems. 

It is convenient to define the model, which is given 
by the BG Eq. (1), on a hypercubic lattice A. The lattice 
constant is of the order of the coherence length of the 
order parameter. Then V 2 in (1) is the lattice Laplacian. 
The BG equation has been studied extensively in the 
literature for a homogeneous order parameter field A 
and a random potential #(r) [1, 2] or for a deterministic 
space dependent A(r) in the case of normal-supercon- 
ducting interfaces [2, 7]. Numerical simulations have 
been performed recently [-8, 9] in the case of a random 
A (r) in a homogeneous potential #. Two different models 
were distinguished: one with a real order parameter field 
and another one where the order parameter is complex 
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with a random phase. It was found in the simulations 
that the quasiparticles are localized in one dimension 
for both models [8]. The situation is different in two 
dimensions [9], however, where it turned out that only 
the model with real A leads to localization but not the 
random phase model. Therefore, one suspects that the 
models belong to different universality classes which ex- 
hibit qualitatively different properties. The purpose of 
this article is to discuss the different effects of a real 
and a complex order parameter in terms of symmetries 
and symmetry breaking, and the consequences for the 
existence of localized or extended states. In contrast to 
the simulations of Refs. 8, 9 we will not study the case 
of a random phase but randomly independent real and 
imaginary parts of the order parameter (model II). This 
situation could be realized in systems where the time 
reversal symmetry is broken by magnetic disorder (e.g. 
in the vortex phase of superconductors) or in vortex sys- 
tems of 4He, since the phase of the order parameter is 
changing by a multiple of 2 rc if one goes around a vortex. 
In contrast to model II we will also consider a model 
where the phase fluctuations of the order parameter are 
neglected (model I). In this case the remaining global 
phase can be gauged away. The independent fluctuations 
of the real and imaginary part in model II will lead 
to new results which deviate from the random phase 
model. 

As it is well known [8, 9] model I is invariant under 
time reversal transformation whereas model II is not. 
This can easily be seen in the BG equation: if 7* is a 
solution of (1) then ~ ' =  i0" 2 ~ is a solution of the time 
reversed equation: 

�9 ~/,  ~72 (2) l ~  ~ - [ - ( - -  q - # )  o 3 q - A t  O l - q - A 2  o 2 ]  ~t r'tt. 

We notice that the order parameter field transforms 
under time reversion as A --+ A*. On the other hand, there 
is a global gauge transformation ~g ~ UT* which trans- 
forms the phase of the order parameter A. The unitary 
transformation U can be written as U=~o0-o+~30"3 
with ao=[exp(i~oO+exp(iq~2)]/2 and ~3=[exp(iqh) 
-exp(i~p2)]/2. Then A transforms as A~exp[i(c#l  
-~o2]) A. This phase transformation means in terms of 
model II that we apply a global transformation inside 
the random ensemble or, in other words, only the ran- 
dom ensemble of model II is invariant under this global 
gauge transformation. 

Let us now consider the Green's function which corre- 
sponds to (1). This is a 21A] x2lAI matrix (IAI is the 
volume of the lattice A) 

G(~m)=[(--g2+#)0-s+A10-1-A20-2+i~m6o] -1, (3) 

where we have obtained the Matsubara frequency ~m 
after a Fourier transformation with respect to t. This 
Green's function can also be considered as a result of 
a BCS approximation of a many-particle system subject 
to Cooper pairing [1]. The order parameter of the latter 
is indeed A. The Matsubara frequency can then be identi- 
fied with the inverse temperature fl of the thermodynami- 
cal system [1] a s  ~m=~rn/fl. 

The time reversal transformation reads in terms of 
the Green's function 

t t. # :g s0"2G(r,r ;~,,)sa2=[G(r,r,~m)] (s=i). (4) 

~,, is here regarded as a complex parameter. In particu- 
lar, (4) implies for a real order parameter (i.e. A2 = 0) 

! /. s0"2 G(r, r ; ~,~) sa2 = G(r, r ,  - ~m)- (5) 

Thus, only the Matsubara frequency changes the sign 
under this transformation. (4) implies that the diagonal 
elements of G(r r'; ~,,) are complex conjugate to each 
other (with a minus sign); i.e., 

t / .  IGu(r,r ;~m)12=-Gu(r,r ,r (i#j). (6) 

The expression on the 1.h.s. can be used as a localization 
criterion: a quasiparticle state is localized with a localiza- 
tion length ~ if this quantity decays exponentially on 
the length scale ~. 

Up to here the time reversal transformation was only 
a discrete transformation. For  the real order parameter, 
however, one can generalize this transformation for the 
Green's function to a continuous transformation T 
= C 0-o -{- S 0  2 a s  

T-  1G(r, r'; ~m 0-0) T -  1 = G(r, r'; ~,, T 2) (7) 

with the constraint c2-s2= 1. This is apparently a con- 
tinuous generalization of (5) where the Matsubara fre- 
quency plays the role of a symmetry breaking field as 
before. Therefore, both models are subject to continuous 
symmetries. However, there is a fundamental difference 
between these symmetries: the symmetry transformation 
T of model I is non-compact (due to the hyperbolic con- 
straint c 2 - s 2 =  1) whereas the unitary symmetry trans- 
formation of model II is compact. This situation can 
be compared with that of a single particle in a random 
potential [10]. Then the order parameter A vanishes and 
(1) describes the dynamics of the particle and the conju- 
gate hole in a random potential #. The continuous gener- 
alization of the time reversal transformation is cer o 
~- S1 0-1 + $2 0"2 with the constraint _2 _2 ~2 c - ~1 - ~2 = 1 instead 
of C0"o +s t  0"1 in (7). Due to this analogy we expect simi- 
lar properties for model I as we found for the particle 
in a random potential. For instance, there are only local- 
ized states in d < 2 dimension, a result which was indeed 
found in the simulation [9]. The compact symmetry of 
model II, on the other hand, might be responsible for 
a qualitatively different behavior. This will be discussed 
in the following for model I and II by means of two 
effective models which take the symmetries into account. 

The first characteristic quantity of interest is the aver- 
age density of states (DOS). For  both models the DOS 
can be obtained by an analytic continuation ~m--+ --iE 
+ e. The DOS then reads 

1 
- - -  lira Im ~, G11 (r, r; - i E  + g). ( 8 )  pA(E)= ,~lAl~o r~A 

A consequence of property (4) is a symmetric DOS 

Pa (E) = PA (-- E). (9) 
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In a pure system (i.e. A uniform) there is gap of width 
2 I A [. This gap is affected by disorder (i.e. if A is random), 
since the bands arc broadened and, therefore, the gap 
is reduced or even completely filled for an appropriate 
distribution of A. In general, the fluctuations of A are 
not restricted (e.g. they are Gaussian) and we expect real- 
izations of the order parameter field with no gap [11]. 
This raises the question if the weight of gapless realiza- 
tions of A(r) is such that (p (E=0) )~>0 .  Indeed, the 
latter was found in the case of a real A for a sufficiently 
broad distribution [12] (i.e. for any Gaussian). A positive 
DOS at E = 0 is related to a breaking of the symmetry 
in (4) or (7) because the imaginary part of G in the limit 
e-+0 is an order parameter for the symmetry similar 
to the magnetization in a ferromagnet. On the other 
hand, {m( = iE-e) is the symmetry breaking field similar 
to the external magnetic field in the ferromagnet. If the 
imaginary part of G is discontinuous at {,, = 0 (i.e. there 
is a step) the symmetry under the transformation (4) or 
(7) is spontaneously broken. Thus, the symmetry is spon- 
taneously broken if the gap is filled in the average system 
due to the DOS in (8). Now we shall discuss the possibili- 
ty of spontaneous symmetry breaking and its conse- 
quences. To this end we consider the matrix element 
G~s(r, r; {m) of the Green's function with random distrib- 
uted A (r). Instead of evaluating the average of the matrix 
element (G(r, r; {,,))a directly, we introduce a random 
matrix field Qr such that this expectation value can be 
expressed by the expectation value of the matrix field: 

(Gij(r, r; ~m)) 1A C;C (Q~J)Q. (lOa) 

Furthermore, a correlation function of matrix elements 
of the Green's function can also be expressed by a corre- 
sponding correlation function of the matrix field: 

<Gu(r, r'; ~,,) Gaj(r, r'; {r~)>Z OC <Q~a Q~!>o.. (10 b) 

The correspondence between the distribution of the 
Green's function and the distribution of the matrix field 
Qr has been discussed in Ref. 10 for a particle in a ran- 
dom potential by means of the replica trick. Later it 
was suggested independently in Ref. 13 and Ref. 15 that 
this correspondence can also be constructed using a com- 
bination of complex and Grassmann matrix elements 
for the field Q, (sometimes incorrectly called "supersym- 
metric approach"). Using the second method for model 
I with Gaussian distributed A ,, the correspondence can 
be expressed formally [13-15] by relating the 2 x 2 ma- 
trix G(r, r; e) with a 4 x 4 matrix as 

iP,] (11) 

where the diagonal elements are complex fields and the 
off-diagonal elements are elements of a Grassmann alge- 
bra. The extension to the 4 x 4 matrix takes care of the 
fact that the representation of the "distribution density" 
exp(-S1) in 

( " ' > o = S . . - e x p ( - S 0  I~ dQ, (12) 
reA 

is normalized; i.e., 

exp(-S~) I~dQ, = 1. (13) 

The integration goes over a Hermitean graded matrix 
field [I6]. An appropriate distribution can also be con- 
structed for model II, where we need two independent 
Hermitean matrix fields Qt,  Q2 which are related to 
the two independent components A~, A 2 of the complex 
order parameter field. Details of the construction method 
can be found in the literature. The notation follows that 
of Ref. 17, where also paths of integration for the matrix 
field are discussed. 

With (A j ) = 0  and (A2)=  (A 2) =4g/v the action S~ 
is found for v = 1, 2 (i.e., model I and model II, respective- 
ly) as 

S~ = fgg ~ Tr g~(Q~,, + (v - 1) Q~,,) 

+ log det g41 (Ho + ieTo - 271/2 Q1 7~/2 
- 2 ( v -  1) y~/2 Q2 y~/2) 

with 

Ho =( ( - -  V2 q-#) if3 0 ) 
0 ( -- V 2 "[- #) 0" 3 

and o). 

(14) 

(15) 

(16) 

detg and Trg are the determinant and the trace operators 
with respect to the 4 x 4 graded matrix field Qj, r, where 
the index refers to the size of the matrix [13-16]. With 
this notation, the Q-field scales with 1/g in the expecta- 
tion values of (10). 

The integration over Qj.r and P~,r can be performed 
in saddle point (s.p.) approximation, whereas the Grass- 
mann elements O are treated as fluctuations. The s.p. 
equations read 

3 [ v  Tr(Q2 + (v -  1) Q2) +log det (Ho + i e0.o 
[zg 

-2a~/2 Qi 0.~/2- 2( v -  1)0.~i2 Q2 0.1/2)]= 0 (17a) 

v yr(pZ+(v_l)pza)+logdet(Ho+ie0.o 6 

--20.~/2 iP1 0.1/2 -2i(v-- 1)0.~12 P2 ~ =0. (17b) 
J 

These equations are identical if we set P j = - i Q j .  From 
(17) we obtain for the uniform s.p. solution 

al12 Q~ 0.1/2 +(v-1)0.~212 Qz 0.~z/2=(q~) 1 q~ ) (18a) 

and the vanishing commutator for v = 2 

E0.3, (0.1/2  U-4/2 Q2 4/2)] =0 (18b) 
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with the s.p. conditions 

qla=(~)a_, ... ~ 2q~l-#+ie+h(k) 

q22 = -q*~ 

dk l . . ,  dka (19) 

(20) 

and sign(Iraqi1)= - s i g n  5. h(k) is the Fourier transform 
of the d-dimensional lattice Laplacian V 2 

d 

h,k,= l ( - n =< kj < 7z). (21) 

A s.p. solution with q, ~ 0  breaks only the continuous 
symmetry of model I, whereas it does not break the sym- 
metry under the global gauge transformation U of model 
II. Nevertheless, it breaks the discrete time reversal sym- 
metry of the random ensemble of model II which leads 
to a non-zero DOS at E--0.  The latter can be evaluated 
from the average Green's function 

(G(r,  r; e))z ~-/g [qo 0"3 --iql ao], (22) 

where qo = - 2 Re (q, 1) and q, = - 2 Im (q ~ 1 )" The calcula- 
tion simplifies essentially when we set # =0. Then the 
real part of the s.p. Eq. (19) yields qo = 0. The imaginary 
part can be evaluated using the density 

;[ p'(~:) =--1 lim Im ... - cos kj-~c-ie 
,~,~0 - - ~  --~z j = l  

dkl  dke 
2re "" 2re" 

(23) 

Thus we obtain a nonzero density of states at E = 0 ,  
since 

1 1 
q l = q 1 4 g  y K2+q{p'(K)dK~2gu. (24) 

- 1  

The approximation is here related to a constant approxi- 
mation of the density p' on the interval [ -  1, 1]. This 
calculation can be extended to # :4= 0, where we get qo 4= 0. 
In particular, qoocg such that the shift of the chemical 
potential is small for weak disorder (g ~ 0). Then we ob- 
tain again ql 4= 0 if # is inside the band of V 2 not too 
close to the band edges. 

In order to investigate localization properties of the 
quasiparticle states at E -- 0 we shall evaluate the correla- 
tion function of the Q-field on large scales. This means 
that we must also include fluctuations around the s.p. 
solution. For  this purpose it is important to discuss the 
effect of symmetry breaking again. Because the continu- 
ous symmetry of model I is spontaneously broken, we 
expect massless modes which will dominate the long 
range properties. On the other hand, since the continu- 
ous symmetry of Model II is not broken, there is no 
reason to expect massless modes. The mass terms can 
be calculated from the Gaussian fluctuations 3 q, 3p, ~p 
and ~, where 3ql+4(,-1)~Q~ , 3q2+4(,-1)+1 q3+4(~-~2a) 

1 2  �9 2 1  5q2+4(v-a)-~Sq3+4(v-1)~Q. , q4+4(v-1)~,Qv , 

and with the corresponding expressions for P~a, OU. The 
action S~ reads in terms of the Gaussian fluctuations 

4 v  

E 
# , # '  = 1 

+25 , (k )  • , ( -  k)] dek 

with the stability matrices 

1 
[1 ( k ) = ~ ( K  --2gB T A(k) B1) , 

I2(k)_I_{K-gBr~ A(k)B~ -gBr A(k)B2 
- g k  -gB~s K-gUr2 A(k)U2] ' 

where 

(L (k))., ~, [a q. (k) a q., ( -  k) + a p. (k) a p., ( - k) 

(25) 

(26) 

( oolt 2 0 0 , 
K =  0 2 

\ 0  0 0 

o 

A(k)= A2(k) 

\ ~  o o 

and 

0 0 

~ t A2(k) 00 

0 Al(k)* 

(:20 i) 
1 1 0 0 1 

B l = z  0 2i 0 ' 

i 2 0 i 

t! 0 1 2i 0 
B2 = 1  1 0 0 1 " 

i 0 - 2  i 

(28) 

Here we have 

A1 (k)=~ S... ~ a(k')a(k'-k)dk'~...dk'a (29a) 

and 

4 i f A2 (k)= - (2~) ~ Re ... a(k') a(k'-k)* dk'~.., due 
- ~  -7 r  

with (29b) 

a (k)= [ - h (k) + # + q o + i(e + q 1)] - 1 (29 c) 

In particular, we obtain from (29 a) with ~ --* 0 

A l ( k = 0 ) = - l / 2 g  

dkl  . . .dka + (~)d_ ""_~ [_h(k)+#+qo~+q2 

4iql ~ ~ -h(k)+#+qo 
(2re) a _, "'" _~ {[-- h ~ i ~ # + q ~ -  q2}2 dk l . . ,  dkd. 

(30) 



Furthermore, we have A2(k=O)=-l/g from the s.p. 
Eq. (19). The non-Hermitean part of Iv is irrelevant for 
the stability matrix (it leads to oscillations). Considering 
now only the Hermitean part we can evaluate the small- 
est eigcnvalue of Iv(k = 0) which dominates the behavior 
of the quasiparticle states. Using again #--0, we obtain 
due to A1 (k = 0)= A l(k = 0)* in this case for the smallest 
eigenvalue of the Hermitean part of I2 (k = 0) 

32 tc 2 
4[1/g+2Al(k=O)] = (-~)~ ~ [-is _~_ q212 Pt(K) dx~4/g ;  

(31) 
i.e., the Gaussian fluctuations for model II are massive 
as expected. Taking into account that the correlation 
function (Eq.(10b)) scales with g-2, the correlation 
length and, therefore, the localization length of the quasi- 
particle are proportional to g- 

For model I we find that the modes 6q3, c5p3, 03 
are massless if e ~ 0. This massless part reads in terms 
of the Gaussian action for small k 

St~�89 ~+b ~ k2][~q3(k)6q3(-k) 
j = l  

+6p3(k) g)p3(-k)+2tflz(k) ~ff3(-- k)] ddk (32) 

with coefficients a, b > 0. This means that the quasiparti- 
cles are diffusing. However, the diffusion coefficient 
b/aqa, obtained in Gaussian approximation, is not cor- 
rect: due to the massless fluctuations we need a renor- 
malization from higher order than Gaussian terms. This 
might change the result of the Gaussian approximation 
drastically. For instance, the diffusion coefficient can be 
renormalized to zero. The effect of those higher order 
terms will be given in the following effective theory of 
the massless modes of model I. 

e ao has fixed the symmetry breaking s.p. solution (18). 
However, any other choice of the symmetry breaking 
term e T 2, with e arbitrarily small, may be used. There- 
fore, the global symmetry of the model under the trans- 
formation T generates a s.p. manifold if e = 0: 

T (lO)T=-�89 q22 (33) 

Since e ~ 0, it does not cost much energy to restore this 
global symmetry in the symmetry broken case (e=~0). 
This fact is reflected by the massless mode in (32). The 
massless mode is very sensitive to the interaction of the 
fluctuations. Consequently, the Gaussian fluctuations 
are not sufficient as an approximation, and we must take 
into account the fluctuations along the invariant s.p. 
manifold. The fluctuation field can be expressed by the 
symmetry transformation as 

~1 "er/1 - 2 o ~ o - 3 Q r = T ~ ,  (34) 

where T is the graded 4 x 4 generalization of the transfor- 
mation [16] T. In particular, we have 

37 

From the global symmetry of $1 follows that only non- 
local terms contribute to the action. Thus the logarithmic 
term in (14) can be expanded up to second order in 
gQ: 

1 
$1 ~ Trg4a [(73 V cSQ) z] + ie Tr g4A(7 j cSQ), g -  (36) 

where g' is a renormalized g. Equation (36) is a nonlinear 
sigma model similar to that found for the particle in 
a random potential [10, 13], except for different field 
cSQ defined in (34). This difference reflects the different 
symmetries related to both problems. Nevertheless, in 
a renormalization group calculation we found no indica- 
tion for extended states in dimensions d<2  analogous 
to the particle in the random potential but only for d > 2. 

In conclusion, we have found that there is a non-zero 
density of quasiparticles at the band center E = 0 in both 
models. It means that the gap is closed due to the ran- 
dom fluctuations of the order parameter. Although we 
have only considered the case of an order parameter 
distribution with mean zero, the filling of the gap can 
be found also for other distributions [12]. The nature 
of states in the filled gap depends on the symmetry of 
the BG equation: The quasiparticle states of model I 
may undergo a transition from localized to delocalized 
states if d > 2 with decreasing strength of disorder. The 
quasipartMe states at the band center of model II, on 
the other hand, are always localized in any dimension. 
Thus, the fluctuations of the real and the imaginary part 
of the order parameter means always strong disorder. 
In terms of symmetries, this implies the absence of a 
spontaneous breakdown of a non-compact symmetry. 
Our results demonstrate that a spontaneously broken 
non-compact symetry seems to be crucial for a localiza- 
tion-delocalization transition. The transition can be un- 
derstood in terms of a renormalization group calculation 
for the massless modes. This has not been presented in 
this article because it is closely related to earlier work 
[10, 13]. 

The complete destruction of the gap by impurities 
in the superfluid has serious consequences for the stabili- 
ty of these systems. In a superconductor, for example, 
quasiparticles near the Fermi surface lead to metallic 
transport due to dissipation unless the quasiparticle are 
localized and the temperature is low. Therefore, the lo- 
calization of the low energy quasiparticles is important 
for the stability of the superconducting state in a disor- 
dered material. The effect of impurities is particularly 
interesting in type II superconductors with short coher- 
ence length (e.g. high Tc superconductors) in a magnetic 
field. If the magnetic field is strong enough the supercon- 
ductor will be in the mixed phase with magnetic vortices. 
Due to the short coherence length the vortices will be 
frozen in a disordered configuration ("vortex glass"). As 
we mentioned in the beginning, this system can be de- 
scribed by model II. The frozen (or pinned) vortices can- 
not contribute to the transport in the superconductor. 
According to our calculation, the low energy quasiparti- 
cles are localized by the disorder caused by the vortices. 
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Consequent ly ,  neither the vortices no r  the low energy 
quasiparticles lead to dissipation. Thus  the superconduc-  
tor is stable. 
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