__Archives

Arch Virol (1995) 140: 1473-1482 Vifr()l()gy

© Springer-Verlag 1995
Printed in Austria

Nucleotide sequence analysis of two nuclear inclusion body and coat
protein genes of a sweet potato feathery mottle virus severe strain
(SPFMV-S) genomic RNA

Brief Report

M. Mori**, J. Sakai', T. Kimura', T. Usugi?, T. Hayashi’**, K. Hanada!,
and M. Nishiguchil*

"Kyushu National Agricultural Experiment Station, Kumamoto, *Japan International
Research Center for Agricultural Sciences, Okinawa Branch, Okinawa, Japan

Accepted April 7, 1995

Summary. Recombinant DNA molecules containing cDNA of a sweet potato
feathery mottle virus severe strain (SPFMV-S) RNA genome were constructed
and the partial nucleotide sequences were determined for three DNA inserts,
which cover 4.2 kb from the 3'-terminus excluding the poly (A) tail. This region of
the genome consists of an open reading frame of 1340 amino acids (a.a.) and a 3-
non-translated region of 224 nucleotides. The protein products expected were
6K, (53 a.a.), Nla (435 a.a.), NIb (521 a.a.) and CP (315 a.a.). Among Nla, NIb
and coat proteins, the NIb protein was found to be the most conserved (59-68%)
when compared to the corresponding proteins of other distinct potyviruses.

*

Sweet potato feathery mottle virus (SPFMYV) is a member of the potyvirus group
and is transmitted by aphids in a non-persistent manner [16]. SPFMYV is wide-
spread throughout the world in cultivated areas of sweet potato [18]. Usugiet al.
[28] reported three viruses from diseased sweet potato in Japan including
SPFMYV, sweet potato latent virus, and sweet potato symptomless virus. The
SPFMYV isolate was referred to as an ordinary strain of SPFMV (SPFMV-0),
and caused slight damage to the sweet potato. They further isolated another
strain of SPFMYV, designated as SPFMV-S, which causes “Obizyo-sohi” disease
on the fleshy roots of sweet potato [29] which is similar to the russet crack disease
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previously reported [7]. The virus particles of SPFMV-O and -S are 850-880 nm
long and SPFMV-S is serologically discriminated from SPFMV-O as well as
from SPFMV-RC [29].

Potyviruses have a positive sense, ss RNA genome which encodes a large
polyprotein. After translation, the polyprotein is cleaved into a set of mature
proteins including coat, nuclear inclusion body a (NIa) and b (NIb), 6K,,
cytoplasmic inclusion body (Cl), 6K, P3, helper component protease (HC-Pro)
and P1 proteins [23]. The coat protein gene of plant viruses including potyviruses
has been used to produce transgenic plants resistant to viruses [5].

As a step toward genetically engineering virus resistance in sweet potato as
well as a contribution toward efficient diagnosis of this virus, we have begun to
elucidate the genome organization of SPFMV-S RNA. The 3-terminal 2.3 kb
nucleotides of the SPFMV-0O genomic RNA [15], and the coat protein gene and
3-non-coding region of two other strains (RC and C) of SPFMV [1] have been
reported. In this paper, we present the sequence of 4.2 kb nucleotides from the 3"
terminus of SPFMV-S RNA and compare the deduced amino acid sequences
of the encoded proteins including 6K,, NlIa, NIb and CP with those of other
SPFMYV strains and other potyviruses.

Virus particles of SPFMV-S were purified from infected Ipomoea nil leaves
(60-100 g) which had been stored at —85 °C as previously described [28]. The
genomic RNA was prepared by a previously described method [17] with the
following slight modification. The RNA was prepared by phenol extraction
followed by ethanol precipitation instead of sucrose gradient ultracentrifugation.

Two ng of RNA was used for cDNA synthesis. cDNA was synthesized by the
method of Gubler and Hoffman [10] using the cDNA Synthesis Kit (Pharmacia-
LKB)and oligo-(dT),, ,; primer, and connected to the CIP (alkaline phosphatase
from calf intestine) treated EcoR1 site of pBluescript II SK+ (Stratagene). E. coli
(HB101) was transformed with the ligated mixture. Transformants were used for
colony hybridization with a probe of **P-labeled 2.3 kb EcoR1 fragment, which
contains the 3~terminal region of the cDNA of SPFMV-O [15]. Plasmid DNAs
were purified by the rapid preparation method [26], digested with EcoRI and
electrophoresed. pVC1 and pVC2 carried DNA inserts, 1.8 kb and 3.5kb, respec-
tively. The 3.5 kb insert was divided into two EcoRI fragments, 2.3kband 1.2kb.
Each fragment was subcloned into the EcoRI site of pBluescript II SK+ and
designated pVC2a and pVC2b (Fig. 1). To further clone the upstream region of
the genome, oligo nucleotides PR35 (5~ ACAAACTCCCCATGACG-3"), which
is complementary to the 961 bp to 977 bp in Fig. 2, was synthesized using the
model 391 PCR-mate DNA synthesizer (ABI) and used as a primer for cDNA
synthesis. This primer and TimeSaver cDNA Synthesis Kit (Pharmacia-LKB)
were used for cDNA synthesis. As a result, pVC3 containing 1.0 kb cDNA was
obtained (Fig. 1).

DNA sequencing was conducted by the dideoxynucleotide chain term-
inator method [25] using the 373A DNA sequencer (ABI) and Dye Primer
Cycle Sequencing Kit (ABI). Double stranded DNA templates were generated
from the ordered deletion plasmids constructed by the Erase-a-base system
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Fig. 1. A tentative map of the 3-terminal region of SPFMV-S. Vertical lines indicate the
proposed cleavage sites for NIa-Pro. The vertical dashed line indicates the proposed internal
cleavage site in the Nla. 3-NTR indicates the 3-non-translated region. Also shown is a map
of the SPFMV-S cDNA clones used for subcloning and sequencing. Square represents the
sequenced region. The positions of the EcoR1 sites are indicated (E). CP Coat protein

(Promega). All sequences were determined in both directions. Sequence data
were analyzed with software from DNASIS (Hitachi, Japan) or GENETYX
(SDC, Japan).

pVCl, pVC2a and pVC3 were selected for sequencing. The sequence of the
3'-terminal 4244 nucleotides is shown in Fig. 2 together with the unique large
open reading frame (ORF) encoding 1340 amino acids (excluding the stop
codon). The 3-non-translated region (NTR) is 224 nucleotides excluding the
poly (A) sequence, which is as long as that of the SPFMV-O strain [15], however,
two bases longer than those of RC and C strains [1]. pVCI contains 20 adenine
residues at the 3-terminus.

The 3-NTR of SPFMV-S is homologous to the corresponding regions of
SPFMV-0 [15], RC, and C strains [1], showing 97.7%, 97.3%, and 98.2%
identity, respectively. The nucleotide sequence necessary for the unique 3™
terminal secondary structure as previously described [15] is completely conserved
and shown by the horizontal arrows in Fig. 2.

By analogy to the proteinase cleavage sites of other potyviruses [23], the cleav-
age sites by Nla-proteinase were predicted. Each of the proposed SPFMV-S Nla
proteinase cleavage sites occurs between glutamine (Q) and either threonine (T),
serine (S), or glycine (G). Table 1 shows the conserved amino acid sequence
around each of the four proposed SPFMV-S Nla proteinase cleavage sites, as
well as the deduced consensus cleavage site sequence and the Nla internal
cleavage site sequence. The resulting CP, N1b, Nla and 6K, are 315, 521, 435,
and 53 a.a. in length, respectively.

The identity of the SPEFMV-S proteins with those of the other potyviruses is
listed in Table 2. It appeared that the NIb region is highly conserved (59%0—68%)
and that PPV and TuMYV are the ones most closely related to SPFMV-S. The
close relationship between PPV and SPFMV in the coat protein region has been
reported previously [1].

The amino acid sequence of CP has been predicted for three strains[1, 15]. A
multiple alignment of the amino acid sequence of the CP is shown in Fig. 3.
SPFMV-S CP shares 97%, 98% and 84% identity with those of O, RC and C
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TCG TAA GAA AAG CCT TTT TGG TTC GTG ATC BAG CC ~(A), 4244
- ot

2. Nucleotide sequence of the 3-terminal region of SPFMV-S. The predicted amino
acid sequence of the open reading frame coding for the putative polyprotein is shown.
Horizontal arrows below the nucleotide sequence indicate an inverted repeat [15]. The amino
acids which form the potential CI/6K /NIa-VPg/NIa-Pro/NIb/CP cleavage sites proposed
in this article are double underlined and the cleaved peptide bonds are indicated by vertical
arrows. The nucleotide sequence data reported in this paper will appear in the DDBJ,
EMBL, and GenBank Nucleotide Sequence Databases under the accession number D38543
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Table 1. The deduced cleavage sites recognized
by the Nla proteinase in the SPFMV-S

polyprotein

Cl/6K, SCVLHQ/T
6K,/Nla QTVQHQ/G
Nla/NIb IQVYAQ/T
NIb/CP LEVYHQ/S
Nla internal SLVGHE/S
cleavage site

S
Consensu V- HQ/T
cleavage site A G

Sites were identified by comparison with the
determined and/or proposed sites in several poty-
virus polyproteins [23]

Table 2. Comparison of SPFMV-S proteins with those of other potyviruses

NIa
6K, VPg Pro NIb CP
TEV [2] 42% 49% 53% 64% 50%
TVMV [6] 30% 51% 49% 60% 44%
PVY [24] 43% 52% 50% 61% 50%
PPV [14] 51% 57% 65% 68% 54%
PSbMV [11] 34% 46% 44% 59% 48%
PeMV  [30] 44%, 52% 51% 60% 49%
PRSV [31] 25% 50% 48% 60% 49%
TuMV  [20] 38% 58% 63% 66% 32%
IGMV [9] 36% 50% 36% 60% 47%
PVA [21] 38% 52% 56% 60% 51%

strains, respectively. Usugi et al. showed that the reaction of SPEFMV-S with
antiserum against SPFMV-RC in PAS-ELISA was weaker than that of
SPFMV-O [27], indicating that the S strain is serologically more closely related
to the O strain than the RC strain. This suggests that the amino acid substi-
tutions at position 13 (N and D) and 21-23 (INP and NIF) in Fig. 3, found in the
coat proteins of the S and RC strains, may affect the antigen/antibody inter-
actions.

A DAG amino acid triplet is found close to the N-terminus (Fig. 3), which is
conserved in aphid-transmissible potyviruses and has been shown to be involved
in the aphid transmissibility [3, 4]. SPFMV-S is reported to be highly transmitted
by aphids [29].
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Fig. 3. Amino acid alignment in the region of the coat protein of SPFMV-S, -O [15], -RC
and -C [1] strains. Bars indicate identical amino acid residues. DAG triplet [3] is boxed

The NIb protein of SPFMV-S shows 59 to 68% identity with those of other
potyviruses (Table 2). On the basis of sequence similarity with other positive-
stranded viruses, NIb was proposed to be the RNA-dependent RNA polymerase
[23]. The consensus motif [S (T) GXXXTXXXNS (T) (18 to 37 a.a.) GDD],
which is conserved in a variety of both animal and plant positive-stranded
RNA viral RNA-dependent polymerases [12], is present in the deduced NIb
protein in a position similar to that of other potyviruses, starting at position 8§14
(Fig. 2).

The Nla protein is divided into two domains, the N-terminal VPg domain
and the C-terminal proteinase domain [23]. The internal cleavage site is also
found in the Nla protein of SPFMV-S, yielding a N-terminal VPg of 192 amino
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acids and a C-terminal protease of 243 amino acids. The former domain shows
46% to 58% identity and the latter 36% to 65% identity with the corresponding
domains of other potyviruses (Table 2). The catalytic triad of Nla proteinase,
His (H), Asp (D) and Cys (C) [8] is conserved in SPEMV-S (polyprotein positions
307, 342 and 412; Fig. 2). Alignment of the potyviral polyprotein sequences
shows that the location and spacing of these three amino acids is strictly
conserved in the potyviral Nla proteases including that of SPFMV-S. A Tyr (Y)
residue in the VPg domain, which links the TVMYV VPg to the genomic RNA
[19], is also conserved in the potyviral VPg domains including that of SPFMV-S
(polyprotein position 132; Fig. 2).

The 6K, protein shows 25% to 51% identity with those of other potyviruses
(Table 2). The function of the 6K, protein is still uncertain. Recently, it was
reported that the 6K, protein of the TEV is membrane associated and involved
in viral replication [22]. A hydrophobicity profile [13] of the 6K, protein of
SPFMV-S showed a central hydrophobic domain (data not shown), which is
structurally conserved in all potyvirus 6K, proteins and may function as an
anchor by direct insertion into the lipid bilayer [22].
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