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Abstract. The theory of frames and non-orthogonal series expansions with respect to 
coherent states is extended to a general class of spaces, the so-called coorbit spaces. 
Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabor- 
type expansions for modulation spaces, and sampling theorems for wavelet and Gabor 
transforms. 

1. Introduction 

In [FG1,2,3] a systematic theory of series expansions with respect to 
coherent states was developed. Given an integrable, irreducible, unit- 
ary representation zc of a locally compact group f# acting on a Hilbert 
space Jog, a suitable g e J/d and a sufficiently dense subsequence (xi)i~i 
in f~, we constructed series expansions of  the form 

f =  ~ ~i*c(xi)g 

Here the expanding functions ~r (xt) g ~ ~'~ are all of  a very simple form, 
namely, they lie in the orbit of  a single element under the representa- 
tion n-. In mathematics such expansions are usually referred to as 
atomic decompositions, in the terminology of physicists they are dis- 

cre te  expansions with respect to coherent states [KS]. 
The main objective of [FG2,3] was to show that such expansions are 

not limited to the Hilbert space ~ ,  but that they can be constructed 
for a wide class of Banach spaces, the so-called coorbit spaces. In 
general, the collection {n-(x;)g, i~ 1) is not linearly independent, hence 
the coefficients in such a non-orthogonal expansion are not uniquely 
determined. However, one can construct a map from functions f into 
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a Banach space of sequences (~) on/ ,  such that the coefficients depend 
linearly and continuously on f, and such that the norm o f f  is equiv- 
alent to the sequence space norm of the coefficients. 

A wealth of examples is obtained by specific choices of a group and 
a representation: non-orthogonal wavelet expansions for Besov- 
Triebel-Lizorkin spaces on R", the Gabor-type expansions for modula- 
tion spaces, and atomic decompositions for Banach spaces of analytic 
functions. To see how such decompositions arise as special cases from 
the general theory, we refer to [FG1] and Sections 3 and 5 of this 
article. For direct approaches to what seemed to be mutually disjoint 
theories until the discovery of the group theoretic approach, see 
[FJ1,2,3], [F2], [CR], [R], [JPR], [RT], [L], among others. 

In this paper we consider the following question which is rela-  
ted to the moment problem: given a discrete set of coherent states 
{re (x~) g, i ~ I}, under what conditions is a function f completely deter- 
mined by the moments or coefficients (rc(x~)g,f) and how could f be 
reconstructed from these coefficients? This is an abstract formulation 
of a problem that occurs frequently in applications, notably in signal 
analysis, image processing, and data compression. If we think of the 
representation coefficient x---> (Ir(x)g, f )  as a signal transform of f 
with g fixed [GMP], the question is (a) to what extent the continuous 
information ( l r (x)g , f )  can be compressed into the discrete informa- 
tion {Or(x~)g,f), ieI}, and (b) how the original signal f can be 
recovered from the discrete set of values (~r(x~)g, f ) ,  i t  L 

To be more specific, let us look at the case of the Hilbert space 24 ~ 
and take it for granted that every element f e  ~ has a stable, non- 
orthogonal expansion with respect to the coherent states rc(x~)g, i~L 
Then there exist functionals e~G 2/g and two constants A, B > 0 such 
that for every f e  o'4" 

f =  ~ (ei, f )  z(xi)g 
and ( ~  ,112 

A Ilfll ~e <~ I(e,, f)[2) ~ n [Ifllg (1) 

By duality one also obtains f = ~ (r:(x~) g, f )  e/and 
i 

B -1 Ilfll~e ~< I(Jr(x~)g,f)la/ ~< A-: LLf[I,r. 
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Thus,  question (a) above has an easy answer in Hilbert space. 
A set {e/, i~I} that satisfies (1) is called a frame for ~ [DS, Y]. This 

is a much weaker notion than that  of a basis, but  quite useful in many 
contexts. 

The concept of a frame for a Banach space is readily defined: 

Definition: A family {ei, ieI} in the dual B' of a Banach space B is 
a Banach frame for B, if 

(i) there is an associated Banach space Be of  sequences on I, such 
that the coefficient mappingf~- .  (ei,f)~z is continuous from B into Bd, 

(ii) the norms HflBJI and l[(ei,f)i~iIB~]l are equivalent, and 
(iii) there exists a bounded,  linear reconstruction operator S from 

Ba onto B, such that  S((ei, f ) )  = f  

In this paper, we lay the foundations for a theory of  coherent 
Banach frames, i.e. of  the form {~v(xi)g, ieI}, and we construct 
coherent Banach frames for the coorbit spaces. Their existence is by no 
means evident. It is a remarkable fact that in Hilbert space the norm 
equivalence (1) alone guarantees an efficient method for the reconstruc- 
tion o f f  and that condition (iii) is redundant  in this case (cf. [DS], [Y] 
for the reconstruction). For  Banach spaces, however, conditions (ii) 
and (iii) are independent,  and to find the reconstruction operator S 
poses additional difficulties. 

Because of many applications in signal processing the construction 
of special Hilbert frames (wavelet frames and Gabor  frames) has been 
a subject of intensive investigation in the past years, see [DGM], [D1], 
[HW]. The only example of  Banach frames is the "~b-transform" 
[FJ1,2,3] which is used to characterize distributions in Besov-Triebel- 
Lizorkin spaces. We are not aware of any other attempts to describe 
functions in this way. 

The construction of  Banach frames also gives new insights for 
coherent Hilbert frames: 

(a) The discrete set {xi, ieI} in (r need not  be a lattice, but  can be 
distributed irregularly in (r 

(b) Stability results for frames are an easy consequence of  the 
general theory (cf. Section 6). 

(c) The coefficient sequence (zc(x~)g, f)i~x is a sampling of the 
representation coefficient (zc(x)g, f ) .  The construction of  a coherent 
frame yields a sampling theorem for representation coefficients of  
integrable representations which is similar to the famous Shannon- 
Whittacker-Koternikov sampling theorem for band-limited functions. 

I* 
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The paper is organized as follows: the basic assumptions, facts on 
square-integrable representations, and some technical statements that 
are required from [FG2,3] are collected in Section 2. Some knowledge 
of [FG2,3] would be helpful, but we have tried to keep the exposition 
of the paper self-contained. Section 3 reviews the notion of coorbit 
spaces and provides a variety of examples. Section 4 is devoted to a 
detailed analysis of convolution operators on locally compact groups 
and their approximation by linear combination of translates of one 
factor. Using the local oscillation of a function, such an analysis can 
be carried out much simpler than in [FG2], and one obtains sharper 
estimates. Section 5 contains the main results of this paper, namely the 
construction of  coherent Banach frames for coorbit spaces. We have 
tried to keep the exposition accessible through a variety of relevant 
examples. In Section 6 the stability of Banach frames is discussed. 
Some complementary results show that the assumptions in the main 
theorems are also necessary. They demonstrate that the general frame- 
work of [FG1,2,3] and of  this paper is optimal. 

Acknowledgement: I want to thank my colleague HANS G. FEICHT~N- 
6ER for the permanent discussion on the subject. I thank the Depart- 
ment of Mathematics at McMaster University, in particular HANS 
HEINIG and ERIC SAWYER, for the hospitality and the excellent working 
conditions during a stay, where the first draft of this paper was written. 

2. Prerequisites 

This section contains the terminology and lists a few technical 
statements which were proved in [FG2, w 3] and [FG3, w 7]. Further- 
more, it explains the basic assumptions on function spaces, weights and 
representations that are made throughout the paper. 

2.1. Throughout this paper, f# will always denote a o--compact 
group, therefore all coverings and index sets under consideration will 
be countable. s or dx denote the left Haar measure of  if, A the Haar 
modulus, e ~ f# the identity element. 

The following operations on functions F on ff will be used: 
left translation by x ~ ff : LxF(y) = F(x-1 y), 
right translation RxF(y ) = F(y x) and 

the involution FV(y) = F(y-1); 

(H, F)  = 1 H(x )F(x )dx  whenever the integral is defined. 
de 
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2.2. Function spaces on ft. By Y we shall always mean a Banach 
space of functions on ff with norm 1[ �9 [Yr[ which satisfies the following 
properties: 

(i) Y is continuously embedded into L)oc (f#), the locally integrable 
functions on f#. (2.1) 

(ii) Yis a Banach lattice, i.e. if IF(x)l ~< ]G(x)l a.e. and G~ Y, then 

F e  Y and J}FJYJJ 4 }IG}u (2.2) 

(iii) Y is invariant under left and right translations. Set u(x) = 
=lllLxlYill and v(x)=A(x-1)lIIRx-~lYll[, the operator norms of  
translations on Y, then we require that 

(iv) L~, r ~_ r (2.3) 

and Y,L~ _~ y (2.4) 

are satisfied i.e. if F~ I1, G eL~ then 

F ,  Ge Y and IIF*GIYII <<. IIFIYll ilGIL~}I. 

Examples. weighted LP-spaces on f#, certain mixed norm spaces on 
f#, tent spaces etc. 

In the sequel we shall always consider pairs (Y, w) where w is a 
weight function on ff such that (for a constant C > 0) 

w (x)  >~ C m a x  {u (x) ,  u (x - I), v (x) ,  13 (x  - 1) A (x  - 1)} 
and (2.5) 

w (x) = w ( x -  1) A (x -~) 

In particular, w(x) >f 1, llflL~[] - If fVlL~, ][ and 

Y* L~ ~ Y (2.6) 

2.3. Sequence spaces. Given the compact set Q with non-void in- 
terior, a (countable) family X = (xi)i~z in fr is said to be Q-dense if 
[Ji~rx~ Q = if, and separated if for some compact neighbourhood V of 
e we have xi Vc~ xj V = qb, i # j ,  and relatively separated if X is a finite 
union of separated sets. 
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In the applications usually "lattices" are chosen for Q-dense and 
relatively separated families. The general theory, however, allows much 
more freedom and irregular "sampling" sets. 

Examples: The standard lattice in the n-dimensional Heisen- 
berg group N" x N" x T is (af, flrh, 1), f, theY" (a, t >  0); for the 
ax+b-group N x [R + the lattices (akfl n, fl"), k,n~7/ are used 
( a >  0, t >  1). 

Given a Q-dense, relatively separated family X = (xi)~ I in f#, the 
sequence space Ira(X) of Y is 

Ye(X) = { (~'i)~I" ~ 2~Lx~cQe Y (2.7a) 

with norm 

(2.7b) 

(where cQ is the characteristic function of  Q). Yd(X) is independent  of  
Q and X (cf. [FG2], Lemma 3.5), therefore we shall suppress the index 
X frequently. 

Example: L~(C~)d = I~, where m ' ( / ) =  m(xi). Thus the correspon- 
dence is natural, but  it may be more complicated for other function 
spaces. 

2.4. Maximal functions and convolution relations. Choose Q c fr 
compact  with nonvoid  interior and e e Q, then the (local) maximal 
function MF of F is defined to be 

MF(x) = I[Lxco. F[[~ = sup [F(y)I 
yexQ 

(2.8) 

MF(x) controls F in a neighbourhood of xs fg .  For  a function space 
Y on fr we define 

with norm 

Jr (Y) = {F such that  MF~ Y} (2.9a) 

IIFIJ/I(Y)I[ = [[MFIY[[, (2.9b) 

and write J~c(Y) for the subspace of continuous functions in J / ( I  0 .  
Then ~r --' Jg  (Y) ~ Y are continuous embeddings and J//(Y), 
J//c (10 are independent  of Q. The general theory of such spaces has 
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been worked out by H. FEICHTINGER in [F1], under the name of  
Wiener-type spaces, and has many applications in harmonic analysis. 
The control of  the local behaviour of  functions in J//c(Y) yields 
immediately the following 

2.5. Proposition ([FG2], Lemma 3.8). If(&)i~i is relatively separated 
and FeJgc(Y) ,  then (F(&)i~z) is in Ya(X) and 

flF(xi)i~zlYdl[ ~ CIIFIYI[, (2.1o) 

where C is a constant independent ofF. 

Working with nonabelian groups we shall need the right versions of  
these spaces: 

MRF(x) = ]JRxco. Flto~ and ~ , R ( y )  = {F such that MRFeY}  
(2.11) 

with the obvious norm IIFI~R(Y)/I = IIMRFIY][. 
The following convolution relation was proved in [FG3], Thin. 7.1, and 
is vital for our approach: 

2.6. Theorem. Assume that Y satisfies 2.2 (i) - (iv), then 

r ,  ~ (L~) _= ~r (r3 (2.12) 
and 

y ,  J/gc(L~ ) c ,//r (2.13) 

2.7. Square-integrahle representations. An irreducible, unitary, 
continuous representation Jr of  ~ on a Hilbert space aft is called 
square-integrable if for at least one representation coefficient 
(~(x)g, g) ( g ~ )  

f lQr(x)g, g}12dx < oo (2.14) 

(see e.g. [DM], [GMP], or any standard text on representation theory). 
In this case there exists a positive, densely defined self-adjoint 

operator A on ~ such that the orthogonality relations hold true: 

f (~r(x)g,,~) (*c(x)g2, f 2 ) d x  = (Ag2, Ag,)  (3q,A> (2.I5) 

for a l l f ,  f z ~  and gl, g iedomA.  If we write Ve(f)(x) = (Tc(x)g,f) 
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for the representation coefficients, then for a fixed g ~ d o m A  the 
m a p p i n g f ~  Vg(f) is from our into L 2 (fq) and intertwines re(x) and L x. 

For  the special choice g~ =g2 = g ~ d o m A  and IIAgll = 1, f l  = 
= 7r(y)g, f2 = f ~  one obtains the reproducing formula for the 
representation coefficients V~ ( f )  from (2.15)" 

V e ( f )  �9 Vg (g) = Vg ( f )  (2.16) 

This formula and its extensions are the very reasons for the unifica- 
tion of all the different examples mentioned in Section 1. 

2.8. As was pointed out in [FG2], it is necessary to require stron- 
ger integrability conditions on ~r, in order to handle other spaces 
than Hilbert space. Therefore, given a weight function w, i.e. 
w(xy )  <~ w(x) w(y) and w(x) >t 1 for all x, ycfq,  chosen as in (2.5), we 
shall always assume that the representation ~r is w-integrable: in other 
words 

~ w  = { g e ~ ' ~ l Q r ( x ) g ,  g ) l w ( x ) d x  < oo} is non-trivial. (2.17) 

With this assumption dw  ~ {0}, formula (2.16) can be easily analyzed. 
Note that the functions G: = Qr(x)g,  g )  are convolution idempotents 
in Llw whenever g is normalized by IIAg[[ = 1. Therefore the con- 
volution operator T F  = F ,  G is a bounded projection from Y onto the 
subspace Y,  G in the situation of (2.6). 

3. Coorbit Spaces and Examples 

We recall the definition of coorbit spaces and review their basic 
properties. Finally we show how the classical function spaces fit into 
this construction. For a detailed exposition of the abstract coorbit 
spaces we refer to [FG2], w and [FG3]. There it was shown how to 
attach an abstract Banach space ~ Y to a w-integrable representation 
7r and a function space Y on the group fq. Starting only with a Hilbert 
space given, the first problem is to provide spaces of "test functions" 
and "distributions". 

Whereas function spaces on manifolds, domains etc. are always 
defined as subspaces of distributions, of  all holomorphic functions etc, 
in our situation we first have to construct a suitably large object that 
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may serve as a reservoir for selection. Here is how this is done ([FG1] 
and [FG2]): 

3.1. Fix an irreducible, unitary, continuous representation iv on 
and a weight function w on f# (arising as in (2.5) from a function space 
Y on fq) such that dw r {0} and fix once and forever some nontrivial 
vector g e d~.  

Definition: ("Test functions" and "distributions") 

~ = ( f e ~ F  such that Vg(f) = (Tc(.)g,f)6Llw} (3.1a) 

with norm 

[[f l,g"~ I[ = II V~(f)lL~w 11 (3.1b) 

Then the anti-dual 1~ ovf~ , the space of  all continuous conjugate-linear 
functionals on J(f~, will serve as the reservoir for selection. 

~ and ~ 1 ~  are ~r-invariant Banach spaces with the continuous 
embeddings 

, ~  ~ ~ ~ ,_r ~ (3.2) 

and their definition is independent of  the choice of the analyzing vector 
g e d w .  (It follows from (2.15) and the symmetry of  the weight w, 
w = wVA -1, that ~ w  ~ = dw as sets, see [FG1], Lemma 4.2) The inner 
product on ~ x ~ f  extends to a sesquilinear form on ~ x Jg~~, 
therefore for g 6 ~ and f ~  ~ ~  the extended representation coef- 

ficients Vg(f) (x) = (rc(x) g, jr) are welI-defined. 

3.2. Let Y be a Banach space of  functions on f# with canonical 
weight function w satisfying conditions 2.2 (i)--(iv). 

Definition (the eoorbit of Y with respect to zc): 

with norm 

~o  Y =  {f8J~gw 1~" Ve0C)6 Y) 

[ I f l ~  Ytl = [I Ve(f)l rlJ 

(3.3a) 

(3.3b) 

Then cg~ y with this norm is a ~r-invariant Banach space, the 
definition is independent of  g e d ~ ,  and one obtains the obvious 
embeddings 

xgr --, cg~ y ~ ~ ~ (3.4) 
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Moreover, the basic spaces W, ~/g~. and J/gw ~~ can be identified with 
coorbits under To: 

= ff~ L 2 (f#), Ww ~ = cg~ L~ and 9f~ ~ = cg~ L~/w. 

These abstract spaces have been investigated thoroughly in [FG1], 
[FG2], [FG3]. [FG3] is devoted entirely to the Banach space structure 
of the coorbit spaces. We refer to these papers for more details and the 
proofs of the assertions. 

A square-integrable representation can usually be realized by opera- 
tors acting on a Hilbert space of functions on a homogeneous space of  
fr Therefore for a concrete realization of  Jr the elements in ff~ Y are 
indeed such handy things as functions or distributions or measures. 
The advantage of  this general definition is that - -  for frames, atomic 
decompositions, structure of the spaces - -  it does not matter in the 
least what the objects in cg~ y "are". 

3.3. Examples. In order to demonstrate the scope of the notion of  
coorbit space we give a list of  examples. It is a remarkable fact that 
almost all classical function spaces in real and complex variable theory 
occur naturally as coorbits of  certain integrable representations. We 
shall content ourselves with a few hints and refer to the literature for 
the standard theory of the mentioned spaces. In all of  the examples it 
can be checked that the assumptions of Section 2 on the representation 
rc and the function space Y are satisfied. 

(a) The Besov-Triebel-Lizorkin-Spaces. Let f# be the n-dimen- 
sional a x + b-group [R"x ~+ with multiplication (Y, t )0  7, v) = 
= (2 + t y, t v), 2, 37 e W, t, v e ~ + and rc (if, t) be the unitary representa- 
tion of  f~ which acts on L 2 (R") by translations and dilations, i.e. for 
f ~  L 2 (~n) 

~r(2, t) f ( f ) =  t - n / Z f ( ~ )  (3.5) 

(strictly speaking, Jr is not irreducible. Extending f~ by the orthogonal 
group O (n) and ~c by rotations, one is back with the assumptions in 
2.5). For  convenience the analyzing vector g is chosen to be a radial 
Schwartz function with all moments vanishing and the reservoir for 
selection shall be the space of tempered distributions modulo polyno- 
mials. Then a result of  TRIEBEL ([TD implies that 
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and 
B~,q = ~z, L~ e,q./2 - ,/e (3.6a) 

iv, q ~p,q cg~ T~ + ./2 (3.6b) 

where s e  N, 1 ~< p, q ~< 0%/) are the homogeneous Besov-spaces on N", 
P the homogeneous Triebel--Lizorkin spaces, LPl q a certain mixed 
norm space on ff and T p'q a tent space on ff (cf. [CMS]). Written out 
in detail, this means for example: f s  Fp, q, p < 0% iff 

f d S (  f ;  [([l~Q~, t)g, jg)lqt-q(s+n/2)d)TdtY/q n+l- I 0(7) 
~n tf - 21 <<. t 

(3;7) 

For  p = 0% the definition of T• 'q is different (see [CMS]), nevertheless 
BMO = / ) 0 2  and the smoothness spaces of  Sharpley-de Vore C p'a 
(coinciding with some P~,p) are coorbits. [SV] 

(b) The modulation spaces on ~ .  Let H= be the Heisenberg 
group N"x  N"x  T with multiplication (21,)71, 2"1)(22, ~72, 2"2) = 

= (& +22,  )71 +372, Vxrse~2~Y'), 2 .  ) 7 ~ " ,  r ~ T  and consider the 
Schr6dinger representation on H. of  L 2 ([~"): 

re(2, y, r ) f (2)  = reiY(e-2)f(2 - 2) (3.8) 

Then the modulat ion spaces M ; , q ( ~ n ) ,  S E ~ ,  1 ~<p, q ~< ~ ,  were in- 
troduced by FEICm'~NGER ([F2], [F3]) in formal analogy with the Besov 
spaces: 

f e Mp',q if and only if ~ [~ I(~r (2,)7, I:)g, f ) !  p d S c] q/p (1 + 1)71) =q d y < oe 
(3.9) 

(g being an analyzing vector in 50, the reservoir being 6e') or 

Mp, q = ~ L p'q (3.10) 

Among  the M;,q c a n  be found L2(~"), certain Sobolev spaces, the 
Bessel potential spaces and the Segal algebra So of FEmHTINGER ([F3]). 

(c) Similarly, modula t ion spaces can be studied on all locally com- 
pact abelian groups (cf. IF3]). 

(d) For  the B e s o v - T r i e b e l - L i z o r k i n - s p a c e s  on the Heisenberg 
groups H, (cf. [FS]) neither a new theory nor a new notat ion is required. 
The only adjustments to be made are the following substitutions: in 
example (a) replace IIi = by H,,, translations and dilations on ~ by the 
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corresponding operations on H., the group ~ by the semidirect product 
H. oc N+, R+ acting by dilations on H.. Then everything said in (a) 
carries over to the function spaces B~,q(H.) and ~,q(~.)  on H.. 

From the abstract point of view, the next example is nothing new 
and equal to example (b), but the actual appearance is quite different. 
We use the well-known fact that the unitary representations of the 
Heisenberg and the a x + b-groups can also realized on spaces of 
holomorphic functions: 

(e) The Bargmann-Fock spaces on C": It is convenient to write the 
Heisenberg group H. in a slightly different form: H. g C" x T with 
multiplication (% r0. (C 2, T2) = (C 1 -[- C 2, T 1 T2e iImel"e2/2) where cieC", 
r~ ~ T and c~. c2 denotes the standard bilinear form on C". The identifi- 

cation with ~.  of example (b) is given by (2, 37, r) ~\{-ff x/~ +-- {:f 're-i~y/2") 

For any a > 0 the Bargmann-Fock  representation o-a on 

~f a= {F holomorphic on C": f lF(z)[2 e-~lz'2 dz < oo} 
C n 

is defined by (3.11) 

o'a(c , "c) F(z) = re 4~ez- 1cl2/2 F(z - c/x/a) 

(cf. [B]). a~ and the Schr6dinger representation Jr (3.8) are equivalent 
by means of the intertwining operator T~: Lz(R ~) ~ ~ff~, sometimes 
called the Bargmann transform, 

T ~  -a z2 -2  
Rn 

12 ~2 + ~ / ~ z ~ ) f ( ~ ) d ~  = 

= e x P ( 2 ( x 2 + y 2 ) ) ( r c ( x / ~ x , - x / ~ y ,  e-ia:'Y)go, f )  

where x = Rez~ R", y = I m z e  N" and go(~) = e ~12 the Gaussian. 
By the general intertwining theorem of [FG2], Thm. 4.8, T. esta- 

blishes an isometric isomorphism between the coorbits with respect to 
iv and those with respect to o-a: 

f e  cg~ y~:~ T~fe c ~  y 
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Since T~ is essentially a generalized representation coefficient with 
respect to Jr, the coorbits w.r.t, o-~ are easily described. After a trivial 
manipulat ion we obtain: a holomorphic  function F on C n is in c g ~  y 

iff e x p ( - a l z l 2 / 2 ) F ( z ) e  g. (Observe that we can assume Y to be a 
function space on C n instead of  l~ n, because the action of  the torus T 
can be neglected.) 

The simplest examples are the coorbits of  LP: 

o~P~ = qYz~% LP = {F hoiomorphic on Cn: f ]F(z)[P e-palz?/Z dz < oo} 
c n 

(3.12) 

These spaces have recently emerged in the study of  Hankel operators 
o n  B a r g m a n n - F o c k  space a,~ [JPR]. Although rather different in 

their appearance, they have the same properties as the modulat ion 
spaces. 

(f) The Bergman spaces on the upper half plane. They are defined on 
U = { z ~ C : I m z > 0 } f o r p > 1  1, a > - l ,  by 

u 

(cf. [R]) and are related to the discrete series Zrm of SL(2, N). For 
instance, in [FGI], 7.3, the following identification was obtained 

A p'pmt2 = ~ o ~ r  m L p (3.14) 

3.4. Before we can deal with atomic decompositions and frames of  
general coorbit spaces, we need some facts from [FG1] and [FG2]. 

Theorem (the Correspondence Principle, [FG2], Prop. 4.3). Let Jr, Y 
and w satisfy the assumptions of  Section 2 and set G = Vg(g)e L~ for a 
fixed analyzing vector gEdw with normalization [[Ag[[ = 1. Then: 
A function Fe Y is of  the form V~ ( f )  for some f~  cg~ y if and only if 

F ,  G = F (3.15) 

In other words, g% Y is isometrically isomorphic to the closed 
subspace Y ,  G of  Y. In this case, 

F(x) = (L~G, F) (3.16) 
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exhibits the subspace Y ,  G as a Banach space with reproducing kernel. 
This theorem explains why the unification of  all the mentioned 

examples works. As soon as a space is known to be a coorbit with 
respect to a representation, one may forget its original definition and 
deal with certain functions on the group. The theorem describes the 
mechanism of transference between cg~ y and functions on ft. 

Definition: By a slight abuse of  notation, call the inverse operator  
f rom Y , G  onto cg~YVgl. The intertwining of Iv(x) and Lx by Vg 
implies that  

Vg' (LxG) = 7c(x)g (3.17) 

The theorem is essentially a consequence of the orthogonali ty relations 
for n ((2.15) and (2.16)). 

3.5. Dealing with coherent frames for cg~ y we need information 
about  the sequences ((~(xi)g, f))i~r, where (x3 is some Q-dense, 
relatively separated set. In other words, we need a control of  the local 
behaviour of the extended representation coefficients Vg (f) .  To this end 
we have to restrict the set of analyzing vectors. 

Definition ([FG1]). The set of basic atoms is defined to be 

= {g g, g )  

It follows immediately, that  

~ _~ ~ w  ~ (3.18) 
and that  

R 1 (To(x) g, g )  ~ J/{c (Llw) n ~g{c (Lw) (3.19) 

(because G = Vg (g) is continuous and V-invariant, G = G v, moreover 
FedgR(Y) iff FVedg(Y) is true in general). 

Remark: If  qr has a compact  invariant neighbourhood,  e.g. the 
Heisenberg group, then d ~  = ~ .  In general, however, d w  and ~w are 
different. See also Section 6. 

3.6. Applying Thin. 2.6 to the reproducing formula (3.15) yields the 
desired control of  the local behaviour of V~ (f) .  

Theorem ([FG3], Thin. 8.1). Let ~, Y, w be as in Section 2. I f  g6~w, 
then Vg (f)  ~ J/{~ (Y) for all f ~ ego y. In particular, if (xi)i~i is a relatively 
separated family in ~, then 

II(vg(f)(xf))~t[Yd(X)ll ~< c l l / I  cg~ YI] (3.20) 

with a constant C independent off .  
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4. The Analysis of Discretizafion Operators 
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In this section different types of  discretization operators are studied 
which finally lead to the general construction of  atomic decom- 
positions and frames. As a consequence of Thm. 3.4. this is equivalent 
to discretization of  the reproducing formula (3.15) 

F ~ ~ 2c~Lx G. (4.1) 

One way of  doing this is to approximate F = F ,  G = ~ F(y) Ly G dy 
by a Riemann type sum, as was shown in [FG2]. In the following we 
give a systematic treatment of  different approximations to the re- 
producing formula (3.15). The use of  "maximal functions" instead of  
a Cotlar-type decomposition of the discretization operators simplifies 
many arguments and enables us to construct both atomic decom- 
positions and Banach frames for the coorbit spaces. 

4.1. For the discretization of formula (3.15) we make use of  uni- 
form partitions of  unity ~ = (~., X, U) subordinate to (the compact 
neighbourhood of e) U _ ~ with the following properties: 

(i) X = (&);~ is a U-dense and relatively separated family in 
(2.3) such that 

(ii) supp ~, ~ xi U 
(iii) 0 ~< ~ ~< 1 for all i t  I 
(iv) • ~ --- 1 

i e I  

(4.2) 

It is convenient but not necessary to assume the functions ~ to be 
continuous. On the other hand, the characteristic functions of a par- 
tition of  ~, which is deduced from the covering (xi U)i~1 of  ~, are also 
admitted. With the symbol ~Uis always given the information on ~6, x~ 
and U. We order partitions of unity by inclusion of their neighbour- 
hood U and write ~-- ,  0 if U --, {e}. To avoid trivialities we furthermore 
assume that U is always contained in some fixed (large) compact 
neighbourhood Q _ ~. 

4.2. Discretization operators. We try to 
volution operator 

approximate the con- 

T: F ~  F* G (4.3) 
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by one of the following discretization operators 

T~,F = ~ (Ve, F) L~i G (4.4) 
i~ l  

S~,F = Z F(x~) ~ ,  G (4.5) 
i~ I  

U~,F = Z F(x~) ciL~ G, (4.6) 
i~ I  

where 7 ~ is a partition of unity as in 4.1 and c~ is the mass of ~ti: 
c; = ~ V;. T~, involves only the averages of F around the points x~ e fq 
and was therefore used in the approach of [FG2]. The pointwise 
evaluations at x~ make Sv and Uv more subtle to treat and it is to be 
expected that some kind of  "maximal inequality" shows up in the 
proof. Uv, is a combination of  T v, and S~,. 

4.3. Remarks (i) It is not clear apriori whether the formal ex- 
pressions (4.4)--(4.6) make sense at all and on which spaces they are 
bounded operators. Remember that in the reproducing formula (3.15) 
F = Vg ( f )  and G = Vg (g) for some g ~ dw.  In view of the identification 
of cg~ y with Y,  G we want to check the boundedness of the T, S, U 
on Y,  G. Moreover, (4.5), (4.6) and Thm. 3.6 suggest that g should be 
taken from Nw to get the desired estimates. 

(ii) Some comment is required on the meaning of the sum over I: 
we order the finite subsets of  I by inclusion, then ~i~t--- will be 
understood as the limit of  the net of  partial sums over the finite subsets 
of  L If the bounded functions with compact support are dense in Y, 
then this convergence should take place in the norm of Y, otherwise in 
a weak sense. 

R 1 Example: If g ~ Nw, i.e. G = Ve(g ) ~ J /c  (Lw) c~ ~c(L1), then 
(G(xi-ly))i~zsl~w (by Prop. 2.5) and by the same argument F ( x i )  = 

= Vg ( f )  (xi) e Ya (X) ___ l m~w (according to [FG2], Lemma 3.5). Therefore 
~i~zF (xi)Lxi G (y) is defined for all y e f# by l l~w - l ~w duality, hence the 

sum converges at least pointwise. In the sequel we show what else can 
be said about these sums. 

Since the index set is countable we could enumerate it in some way 
and then interpret ~ z . . .  as the limit of  the sequence of ordinary 
partial sums. Because Y and Ya etc. are Banach lattices, this is equi- 
valent to the first description. 
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With this interpretation in mind, it is never a problem to justify the 
use of  the distribute law (summation against convolution) or the 
interchanging of  sums and integrals. In the proofs these details will be 
omitted in most  cases. 

We need some preparation for the main results on the discretization 
operators: 

4.4. Lemma. For any F~ J/gc (I7) and any uniform partition of  unity 
tP subordinate to Q ~ ~ the jbllowing inequality holds true: 

~lF(xi ) l  ~ i l Jg(Y)  <~ C{IF[~'c(Y)I[ (4.7) 

with an absolute constant C depending only on Q. 
Proof: Note that  in 

the sum runs only over the finite index set 

Ix = {ieI: xQc~x~Q --/= dp} = {ieI: x iExQQ-~} .  

Therefore, we continue with 

A <~ IlL, coo-, . f l ]~ = M'(F)(x) ,  

where M '  is the maximal function taken with respect to Q Q -  1 

Therefore, 

It~lF(x~)l ~i[~r = [[M(~[F(x~)I ~'i)[Yll ~< IIM'(F)IY[[ ~< 

<~ C{[MFIYI[ -- CIIFIJ/r 

because different maximal functions yield equivalent norms on J / ( Y ) .  
(cf. 2.4. and [F1], Thin. 2) [] 

4.5. Finally we need a related maximal function for the description 
of local oscillations. (For function spaces defined by local oscillations 
see also [S]). 

Definition: If  U __ ~r is a compact  neighbourhood of  e, then 

Gff (x) = sup IG(ux) - G(x)l (4.8) 
u~U 

is the U-oscillation of G. 

2 Monatshefte f(ir Mathernatik, Bd. 112/1 
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4.6. Lemma.  (i) A function G is in J/l R (Llw) if and only if G e L~ and 
Gv ~ ~ L~ for one (and hence for all) compact neighbourhoods U of e. 

(ii) If, in addition, G is continuous, then 

(iii) I f  y ~ x U, then 

holds pointwise, i.e. 

lira [LGv~IL~II = 0 (4.9) 
U ~ {e} 

ILyG - LxGI <~ LyGff (4.10) 

IG(y- lz)  - G(x-az)[ <~ G ~ ( y - l z )  for all z ~ .  

Proof: (i) Take the maximal  funct ion M R of  (2.11) with respect to 
U. Then  

MRG(x)  = LIRxcv. GII~ < G~ (x -~) + [a(x-~)l (4.11) 

and consequent ly 

IIGI~'R(L~)I] _-IIMRGIL~w[ I <<. ] lc :#~r  1 --v ~,~w II + II G VlLlw 1[ = 

= Ilav~lZ~wll + [IGILLll (4.12) 

Since j///R (L~) ___ L~ and Gv ~ (x) <<. MR G (x -I) + [G (x)[ the converse is 
also obvious. 

(ii) If, in addition, G is continuous,  then by (i) G ~ ~ ' ~  (L~). Note  
that  U ~ Uo implies Gv ~ <~ Gffo, therefore for e > 0 a compac t  set 

K ___ f# m a y  be chosen such that  

f 
Gy (x) w (x) dx  ~ 

~K 
(4.13) 

for all U ~ U0. Since G is now uniformly cont inuous  on K, we can find 
a ne ighbourhood  U~ c Uo such that  

Gff~ (x) < ~ (4.14) 
2Z (K) w 

holds for all x ~ K, where w = sup w (x). 
x E K  

f E Consequently,  G ~ (x) w (x) d x < - (4.15) 
2 K 
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whenever U _~ U1, and all together yields 

[IG~JL~H < e  for U _ U I .  

(iii) is a consequence of 

[G(y-l  z) - G ( x - l  z)] <~ sup ]G(y-l z) -- G ( u y - l  z)[ = a~  (y- lz) ,  
uEU 

because y e x U implies x -1 = u y - ~. [] 

4.7. If G = Vg(g) then the condition of 4.6. (i) again implies that 
g e ~w. Now it is very easy to show the boundedness of the discretiza- 
tion operators T~,, S v and U~,. 

4.8. Proposition. (i) I f  G~L~,  then {S~}, 7-" running through all 
uniform partitions of  unity subordinate to Q, is a uniformly bounded 
family of  operators from Jgc (Y) into Y. 

(ii) I f  G e dg R (L[ ), then {U~,} is a uniformly bounded operator family 
from///[~(Y) into Y. 

(iii) I f  G~dlR(L~) ,  then {T~,} is a uniformly bounded family of  
operators from Y into Y. 

Proof." (i) We use (2.6), the embedding ./g~ (Y) --+ Yand Lemma 4.4. 
to obtain 

IlS~,FIYll = II(~ F(xe)~)*  alYll <<. ll~ F(x~) ~IYll ][alZ~wlt <<- 

~< H~F(x;) q61~' (Y)t[ llalz~ l] ~< CIIFlJ//~ (Y)tl I[GILL 11 
(4.16) 

and the constant is independent of ~. 
(ii) We use (4.10) and estimate first 

]ciLxiG - ~*  G] = IS ~(y)(Lx G - LyG)dyt <~ ~ 74(y) LyG~ dy = 74* G~ 
(4.17) 

(because supp E. _c xi Q). Therefore, 

IIUv, F -  S~,F]Y][ = ~tF(x i ) (GLxiG--  ~. ,  G)[Y <~ 

(~[F(x~)[ N ) , G ~ [ Y  (4.18) 

As in (4.16) we obtain 
2* 
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I[U~,F- S~zF]Y]I <~ C))FI../Pl~(Y)]I )}G~IL~}} (4.19) 

Finally, from (4.16) and (4.19) 

{(U~,F[Y{{ <~ C({IG[L~[[ + IIG~zIL~{t) ttFtJ//I~(Y)t} (4.20) 

holds with a bound independent of 7 s. 
(iii) has already been shown in [FG2], Prop. 5,3. [] 

4.9. Remarks." (i) Almost the same arguments show, that for any 
Q-dense and relatively separated set X = (x;)~ in (~ the corresponding 
"synthesis operators" 

Sx(~) = ( ~  ~ g6) , G (4:21) 

and 
Ux(Zi) = ~ 2q ciLx, G 

TAz ) = y Z L,O 

(4.22) 

(4.23) 

are bounded from Y~(X) (cf. 2.3) into Y with a norm independent of 
X, This is needed in the "synthesis problem". (cf. [FG2], and Thin. 5.2). 

(ii) Note that in the original situation where G = Vg (g) is an L~- 
convolution idempotent (because of (2.16)), the image of these opera- 
tors is contained in the closed subspace Y , G  of Y. If g e n t ,  i.e. 

R 1 V~(g) = Geddc(L~ ) ~ J/g~ (Lw), then Y, G is contained in dl~(Y) by 
Thin. 2.6. We conclude from Prop. 4,7., that the discretization opera- 
tors Se, T~,, Uv are uniformly bounded from Y* G into Y,  G. 

Now we can study how the convolution operator 7", TF = F ,  G, is 
approximated by the discretizations S~,, T~,, Uv. The use of the local 
oscillation Gv # makes this almost trivial for T~, (compared to [FG2], 
5.4) 

4.10. Theorem ([FG2], Prop. 5.4). Assume that Y satisfies the stan- 
dard assumptions of  2.2. (i)--(iv). I f  G e J t~  (L~). Then 

lira l i l T -  zdYtll = 0, (4.24) 
g*-~ 0 

i,e. for any ~ > 0 there exists a neighbourhood U of  e such that the 
operator norm on Y satisfies ]lIT - T~,] Ylll < c for all uniform partitions 
of  unity subordinate to U. 

Proof: We use (4.10) and obtain pointwise 
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[ T F -  T~,F]= ~t~ F(y) ~t~(y)(LyG- L~ G)dy <<. 

~< ~ S[F(y)I ~,(y)LyG~dy = IF],G~ (4.25) 

(Taking only partial sums over finite subsets and then taking the limit, 
shows that the interchange of  summation and integration is perfectly 
justified). The norm in Y is therefore 

][TF- T~,FIY]I <~ ]IFIY][ [[GffIL~[] (4.26) 

because of (2.6), and the operator norm in Y is 

lilT ZdY[ll ~< # 1 - II G~ ILw ]1 (4,27) 

Now apply Lemma 4.6(ii) [] 
Whereas T~, approximates T on the whole space Y and only 

G ~ ~t'c (L 1) is required, for the treatment of  S~, and U~, more structure 
is needed: the full power of  the reproducing formula (3.15) and the 
interpretation of  Lx G, x efr as the reproducing kernel of  Y ,  G. 

4.11. Theorem. Assume that Y satisfies 2.2 (i)--(iv) and that G is a 
self-adjoint convolution idempotent in ~ ( L ~ ) ,  i.e. G = G v= G,  G. 
Then 

lim l i lT -  S~,l Y* Gill = 0 (4.28) 
t y~  0 

where the operator norm is taken of the restriction to the subspace Y ,  G. 

Proof: With (4.5), (2.6), (3.15) and Lemma 4.4. one obtains 

II GILw [[. (4.29) I ITF-  S~,FIYII <~ [ I F -  ~ F(x,) ~lY[I ' ' 

Thus we are led to estimate the differences F(y) - F(x~) for y e xi U. 
For  that purpose we use the reproducing kernel, i.e. the expression 
F(x) = (L~G, F) (3.16) and the fundamental estimate (4.10) for LyG 
in Lemma 4.6. (iii). 

For y e xi U, i.e. x; = y u - ~, and u e U this yields 

IF(y) - F(x,)I ~< sup IF(v) - F(yu-')l = supl(Ly G - Ly,,_, G, F') = 
ueU u~U 

<<, S Gg (y -'  z)[F(z)l dz = I?-] �9 G~V(y) (4.30) 
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< ~ sup IF(y) - F(y  u-~)l N (Y) <~ 
iEI  u~ U 

~ IFI * a ~  W(y) ~, Cv) = IFI * a~  v(y) 
i e l  

(4.31) 

where we have used (4.30) and finally 

I I T F -  SveFlYll <<, I IF -  ~ r(xi)  ~IYII HGIL~II <~ 
i t [  

~< II IFl*a~VlY[I IlalZ~ll ~< IIFIYII Ilav~lZ~ll Ilalt~l[. (4.32) 

This is true under the assumption that F = F ,  G, consequently on 
Y,  G the operator norm is 

l i lT-  S~,IY*Glll <~ II ~ 1 au IZw II [I alz~ II (4.33) 

Again, Lemma 4.6(ii) proves the claim. [] 

4.12. Remark: If one is inclined to introduce another function, the 
right U-oscillation 

F~ (x) = sup IF(x u-~) - F(x)l (4.34) 
u ~ U  

then this proof can be rephrased in terms of the following pointwise 
inequalities: 

(i) Fg (x) = (F ,  G)~; (x) ~< IFI * (G~)V(x) (4.35a) 

and 

(ii) I F -  ~ F(xi) Vfl <<, Fb (4.35b) 

It remains to prove the same for the discretization operator Uy,. As in 
Prop. 4.8(ii) this case can be reduced to S~,. 

4.13. Theorem. Under the assumptions of Thm. 4.11 

lim l i lT-  U~,IY* Gill = 0 (4.36) 
~ 0  

holds true. 

Proof: The inequality 

lilT-- S~,IY*GIII <<, ~ 1 11Gv ILw II II GIL~w II 
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has just been proved (4.33). If  we take into account 

IlrlJgc(Y)[[ ~< [IFIYII [IGl~c(L~w)][ 

estimate (4.19) turns into 

[[UveF- S~,FIYl[ <~ cllGldgc(Z~)l[ [I # ' Gv [Lw [I I[F[ Y[[ 

that by (2.13) 

(4.37) 

(4.38) 

(}/-'is now subordinate to U, the constant c can be given more explicitly). 
Combining these estimates proves Thm. 4.13: 

[llZ- UvAY, al[[ <~ ll ~ ' # , GvlLw[ [ [[GIL~ 1] + ell Gv ILw I[ l] GI,~(L~w)I[ 
(4.39) 

4.14. Remark: The estimate of  l i l T -  Tq, IYII[ by IJ * 1 au  [Zw II in (4.27) is 
slightly sharper than the one given in [FG2]. There the modulus of 
continuity Ov(G ) was used, and it was shown in Section 6 that  

# R 1 liar: Itw [I ~< IIGfflJg ~ (Zlw)[[ ~< Or(G). In nume- Gv e ~ /  (L,,) and that # ' 
rical work this observation might  lead to more  efficient (i.e. less 
redundant)  decompositions of  functions. 

5. Atomic Decompositions and Frames 

In this section we have a rich harvest. Almost without effort the 
atomic decomposit ions and Banach frames for general coorbit spaces 
are obtained from the results on the discretization operators. The 
general theorem will be illustrated on some of the examples of  Section 
3, and a discussion and comparison with other results will conclude this 
section. 

5.1. Recall once more that ~r is an irreducible, unitary representa- 
tion of  fr which is w-integrable (2.7 and 2.8) and that  Y is a function 
space on f# satisfying conditions 2.2 (i)--(iv) with canonical weight w 
(2.5). We considered the coorbit of Y under to, cs y, and found that 
it can be identified with a subspace of  Y that  has a reproducing kernel. 
For  any fixed element g e d ~  with the normalization HAg]] = 1 this 
subspace consists exactly of  all functions F = Vg (f) ,  f e  ego Y, and the 
reproducing formula F ,  G = F holds true for exactly these functions 
by Thm. 3.4 (G = Vg (g)). 

In Section 4 we tried to approximate this convolution T by the 
discretization operators T~,, Sv, U~. But because Tis  a projection onto 
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Y ,  G (cf. 2.8), it is the identity operator on the relevant subspaces 
Y ,  G =~ (g~ Y. Therefore the essence of  Thms. 4.10, 4.11 and 4.13 is 
that  T~,, S~,, U~,are invertible on Y* G as soon as the partit ion of  unity 
~ i s  fine enough! This is sufficient to extract the atomic decomposit ion 
and a frame for cg,~ y. 

5.2. Theorem T. Assume that Y satisfies 2.2 (i)--(iv), that w is the 
canonical weight, that the irreducible, unitary representation zc is w-integ- 
table and choose ge  Nw normalized by IIAgll = 1. Choose a neighbour- 
hood U so small that 

# 1 lIGulL~,ll < 1 (5.1) 

Then for any U-dense and relatively separated set X = (xi)i~l, cg~ y has 
the following atomic decomposition: I f  f ~ (go Y, then 

f =  Z Ai(f) rc(xi)g (5.2) 
i~ I  

where the sequence of coefficients A ( f )  = (~i(f))e~i depends linearly on 
f and satisfies 

IIa(f)lYd(X)ll <~ CllflCg~ YII (5.3) 

with a constant C depending only on g. 
Conversely, if A = (~,~)~ Ya(JO, then f =  ~ )~rc(x~)g is in (g~ Y and 

i~I  

Ilfl (go YII ~< C'ILAI Yd(2)ll (5.4) 

The convergence of the sums (5.2) and (5.3) is in the norm of Cg~ Y, if the 
bounded functions of compact support are dense in Y, and is w* in M'~~ 
otherwise. 

Proof: Note first that  condit ion (5.1) can be satisfied as a conse- 
quence of Lemma 4.6(ii). By the preceding discussion and Thm. 4.10, 
in particular (4.27), (5.1) implies that  Te is invertible on Y , G .  
Therefore for F = V~ (J) ~ Y ,  G 

F =  T~,T~ F = ~(~t~, T~I F) L~ G (5.5) 
i~I  

and by the Correspondence Principle (Thin. 3.4 and (3.17)) 

f =  Z (N,, Tr 1 Vg(f)) zr(x~)g (5.6) 
~t 

yields the desired decomposition. 
The other assertions follow as in [FG2], T h m  6.1. [] 
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Theorem T is the main result of  [FG2]; what  is new here, is the 
explicit condition (5.1) on the size of U. As we remarked earlier, (5.1) 
enables us to choose U larger than in [FG2]. For  more details on the 
"T-method"  and the remaining details of  the p roof  we refer to [FG2]. 

We now turn to the existence of coherent frames for Co Y. F rom the 
atomic decomposit ion and the results of [FG3], the structure of cg~ y 
is known well enough to guess that  the sequence space that  appears 
with these frames is nothing else but Y~ (from 2.3). 

5.3. Theorem S. Impose the same assumptions on Y, w, sv and g ~ ~w 
as in Theorem 5.2. Choose the neighbourhood U of e such that 

[tG~IL~, II < IlIIGIL~w II (5.7) 

Then for every U-dense and relatively separated family X = (xi)i~s in f# 
the set {rr(xi)g: i~I} is a Banach frame for cg~ y. This means that 

(i) f ~  ego y<~> ((sr(xi)g ' f))i~,~ Yd(Xi (5.8) 
(ii) There exist two constants C 1, C2 > 0 depending only on g 6 ~w 

such that 

C, [[fl~r Yll ~< l{(zc(x~)g,f>,~llYd(Z)ll <, C 2 l l f [ ~  YII (5.9) 

(iii) f can be unambiguously reconstructed from the coefficients 
(sr(xi)g, f ) ,  i~L I f  L~ ~ the space of bounded functions with compact 
support, is dense in Y, this reconstruction may be achieved as follows: 
there exists a system e i ~ ,  i~I, such that 

f = Z (~(xi)g, f )  e~ (5.10) 
i6 l  

with convergence in ego y. 

Proof: By the same reasoning as above, condition (5.7) implies that  
S~, is invertible on Y,  G. (see Thm. 4.11 and the estimate (4.33)). For  
F = Ve(f)e Y ,  G, f e  ego Y, we obtain therefore the representation: 

F =  S~I S~'F= S~ ' i (~  F(xi) (5.11) 

This is a reconstruction of F starting from the coefficients F(x~). By the 
Correspondence Principle Thm. 3.4, we obtain 

\ i ~ [  
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Next we observe that  S~, is simultaneously invertible on all spaces 
Y ,  G provided that the canonical weights w of  Y are the same. 
Therefore the reconstruction (5.12) is valid simultaneously for all cg~ y, 

~ w  �9 This follows from (4.33), which depends only on 
g and w, not on Y. 

Thus any f e  oegl~ is reconstructed this way. If  for some f E  ] f l ~  
Vg (f)(x~)e Yd (X), then (5.11) yields a function F in Y ,  G (use Remark 
4.9 and S~l :  Y , G ~  Y , G )  and f =  Vg -1 (F)eCd~ Y. The converse, 
f ecg~ Y ~ ( rg(xi) g , f ) i e i  ~ Yd(X), is contained in Thm. 3.6. 

The equivalence of norms (5.9) follows readily f rom (5.11) 

[Ifl c&~ YII = IIFIY]I ~< ]IIS(,~IY*GIII II~F(x,)q'e*alYII <<- 
i e l  

-<< IIIS~qll IlY.F(x,) ~1YI111 alt~, I] < 
i e l  

~< III5~111111GILLII II(F(x,)),~lYd(X)l)-<< 

< C'lllS~llll IlalZLII I l f l ~  YII (5.13) 

where we have used (2.6), the definition of Yd, and Thm. 3.6. 
It remains to prove the explicit representation (5.10) in the case that  

Lo ~ is dense in Y. In this case the following lemma can be proved: 

5.4. Lemma. Set E~= S ~ I ( ~ , G ) .  Then E~ is in Llw,G ~_ Jgc(Llw) 
and the operator A = (Ai)i~i ~ ~_, ]~iEi is bounded from Yd(X) into Y* G. 

i~1 

Proof. As argued above, Sy, is also invertible on L 1 �9 G under 
condition (5.7), and therefore S ~ I ( ~ . * G ) :  = E i is in L~w,G and in 
sgc(L~) (by Thm. 3.6 once more). Now let E _  I be finite and 
A = (2~)e Yd(X): then 

~Es Y =  S~I(i~EA,~vi*G)IY <~ 

< IIIS~llY*GIII Llalt~wll II(L)e~EI Yd(-~ll (5.!3a) 

is obtained as in (5.13). 
Because the bounded functions with compact  support  are supposed 

to be dense in Y, the finite sequences are dense in Yd(X) ([FG2], 
Lemma 3.5). Therefore the mapping A ~ ~ s extends to a bounded  
mapping from Yd(IV) into Y* G. [] 
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We have g e N w ,  f e~CoY,  F =  Vg(.f), and Thm. 3.6. implies 
(F(xi))ielG Y d ( ~ .  By the Lemma the expression ~ F ( x ~ ) S ~ ( ~ ,  G) is 
a well-defined function in Y,  G. Now the approximation by partial 
sums over finite index sets shows that we can interchange S~; ~ and the 
summation in (5.11) to obtain 

F = S ~  1 (~F(x~) ~6" G) = ~F(x~)E~. (5.14) 

Call eeE Oggw ~ the unique vector, such that Vg (ei) = E~eL~w. G, then the 
Correspondence Principle applied to (5.14) yields 

f =  ~ (rc(xi)g, f )  e i , 
i~[ 

as desired. The convergence in ego y follows from (5.13). Thus Thm. 
S is proved completely. [] 

Before we further exploit this construction of frames, let us for- 
mulate the analogous theorem for the discretization operators Ue. 

5.5. Theorem U. Assume that Y, w, lr and geMw are the same as in 
Theorem 5.2 and 5.3. Choose the neighbourhood U small enough, such 
that 

IIG~ILLII([IGILLH + cl lal~c( tL) l l )  < 1 (5.15) 

Then for  any U-dense and relatively separated family X = (xi)i~i in fr 
the set {re (xi) g, i ~ I} is both a set o f  atoms and a Banach frame for  cgz~ Y. 
Moreover, there exists a "'dual f rame"  {% i~I}  in ~ 1  w such that 

(i) The following norms are equivalent: 

[If] ~z~ YI[ - I](el, f)i~,[ Yd(X)I] ~ ]I(Jr(x~)g, f ) ~ , ]  Ya(X)]I. (5.16) 

(ii) For f ~  cg~ y 

f =  ~ (e~, f )  rc(x~)g, (5.17) 
i~I  

with norm convergence in ego y, i f  Lo ~ is dense in Y, and w*-convergence 
in ~Vg lw~ otherwise. 

(iii) I f  Lo ~ is dense in Y, then the decomposition 

f = Y, (Tc(xi)g, f )  ei (5.18) 
i~I  

is also valid for  f ~  ~z~ Y. 
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Proof: As in the proofs of  Thm. T and Thm. S, the stated condition 
(5.14) implies that  the discretization operator U~, is invertible on Y .  G. 
Therefore for f ~  cg~ y, F = Vg ( f )  E Y .  G 

F = U~,U~, ~ F = ~ (U(~ ~ F) (xl) cgL,, G (5.19) 
i~I  

and 
/ \  

F =  U ~  1 U~,F= U~,I~rF(xi)GLx G ). (5.20) 

The rest of the p roof  now repeats the arguments given earlier, i.e. (5.19) 
leads to the atomic decomposit ion (5.17) proceeding as in Thm. T, and 
(5.20) ends with the construction of a frame for ff~ Y and (5.18). 

Set E / =  ci U~ 1 (Lx, G), then E i ~ Llw �9 G and E~ = Vg (ei) for a unique 

ei~ ~t~lw. Then 

f = ~ Qr(xi)g, f ) e i  
i6 I  

provided that  Lo ~ is dense in Y. 

Claim: U~ 1F(xi) = (ei, f )  (5.21) 

By construction, U~ 1 F is in the space Y .  G with reproducing kernel 
LxG, therefore by (3.16) f~ulF(xi) = (ZxiG, U~IF)). NOW a simple 

computat ion shows that  U~, is "self-adjoint" with respect to ( . ,  .), i.e. 
(LxG, UoeF)= (U~LxG, F) for all F e L ~ w * G ( ~  Y . G )  and all 
x~ fr Therefore the same applies to U~ 1 = ~ ; =  0 ( I d -  U~,)n: 

(L  x G, U~ 1 F)  = ( U~, 1 Lx G, F). 

Now (5.21) follows: 

ci(U~ 1 F) (xi) = ci(Lx, G, U~IF) = ci(U~ 1 Lx ia ,  F) = 

= (Vg(ei), Vg(f)) = (ei, f )  
(5.22) 

With this final piece of  information and the Correspondence Principle, 
(5.19) becomes 

f =  ~ (e,, f )  n(xi )g ,  
i~I  

and the equivalence of  the norms is shown by the following estimate 
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[If] ~gz~ YI[ ~< C]](e,, f ) ~ , ]  Yd(X)[] = C]](ci U~F(x~)),~II Ya(X)I[ ~< 

<. C ' I [ U ~ F I Y * G I I  <<. C"IIFIYIt = c"l[flCg~ YII, 
(5 .23)  

where the first inequality follows from U,; ~ Fg  Y.  G and Thm. 3.6. as 
usual. [] 

In view of the examples of  Section 3 Thms. T, S, U contain all the 
atomic decompositions with respect to coherent states so far known 
and provide the first construction of frames for these spaces. Let us 
write down explicitly what this means in some of the examples. All 
necessary calculations are straightforward and left to the reader. 

5.6. Examples. (a) Wavelet Theory: An atomic decomposition for 
the spaces of B e s o v -  Tr iebe l -  Lizorkin "" " type B~,q or F~,q on N" is of  the 
form 

f ( x )  = ~ ~j, k f l - " j / 2 g ( f l - J X  - -  ak)  (5.24) 
j ~ Z  
k ~ 2~ n 

Here we use the lattice xi "~ ( a k ~ ,  flJ) in the a x  + b-group as the 
simplest example of a U-dense and relatively separated set in (r a > 0 
and/3  > 1 depend only on g (and possibly on the smoothness para- 
meter s) in the way specified in Thins. T, S, U. 

A very general condition for g to be in 0)~, w(x,  t) = t -~, is 

d s  
j'j" ](To(2, t)g, g)[ (1 + t + 1s t-~ + is) +-----7- < oo (5.25) 

t n 

in other words, g is in a certain weighted Besov space. Finally, the 
conditions on the coefficients A = (;~j,k) are (cf. also [LM] and [G2] for 
the explicit calculation of  the sequence spaces) 

f +  = < o0 r II/l•,qll ~ IIAIg'qll I~,kl y/p 
and (5.26) 

fe/>~,q~=> [Ifl/>fl, ql[ ~ IIAFtfl, ql[ = (5.27) 

= , k [ q / 3 - j q ( s + n / 2 )  C[fljak, f l j a ( k + l ) ] ( X  LP(dx) < oo 

(with nontriviat modifications if q = or). On the other hand, the same 
functions &,k, given as &,k = zr(ctkfl/, ~ ) g  = fl-J"/2g(fl - i x  - ak)  are 
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frames for all these spaces. Thus, f e  B~,q is completely determined by 
the coefficients (&,k, f ) ,  j e  7/, k e ~", which have a nice interpretation 
in signal analysis. The algorithm described in the proofs of  the theo- 
rems allows to construct f provided that  only the values (&,C, f )  are 
known. Moreover ":' 

Il flBfl, q ll -~ II (&,k, f )j, kll~'ql] . 

Similarly, f~/~;,q if and only if 

I[fl/~q It ~ I[(gj, k, f)lt~'qll.  

Since L p (R"), all Sobolev spaces, the real Hardy space ~ 1, BMO and 
many others are /~q,  cf. [T2] this description applies to most  function 
spaces in classical analysis. Since much of classical analysis is focussed 
around this example, it is not  surprising that  other treatments of 
wavelet theory exist. In [FJ3] similar non-or thogonal  expansions are 
obtained by discretizing Calderon's reproducing formula. More 
powerful tools are the orthogonal  bases for these spaces, [LM], [M], 
[D2], [MA] etc. Both types of description are useful in applications: 
The orthogonal  bases, when a concise characterization of a function 
without  redundancy is important ,  but  the form of  the basic wavelet g 
is not  essential, the non-or thogonal  expansions and frames, when the 
basic function g is given by the problem and flexibility is required. 

Let us ment ion that  a discussion of B e s o v - T r i e b e l - L i z o r k i n  
spaces on the Heisenberg groups Hn - -  a little explored topic - -  is 
analogous and requires no additional efforts. 

(b) The modula t ion spaces of (3.9) have a decomposit ion of  the 
form 

f ( x )  = Y" 2m, k e i m a x g ( x  -- i lk)  (5.28) 
m,k~Y_ n 

where a, /3 > 0 depend only on g: There are easy necessary and 
sufficient conditions for g to be a basic atom. The Bessel potential 
space M~,2 = {f~ 6e':~ If(N)l 2 (1 + I NI2y d N < oo} is characterized by the 
condition (;, )1,2 

s ~ )l/Ill = Sin, d2(1 + Im[2) ~ < oO (5.29) IIflM~,211 = II('L,,k 

(In (5.28) we have put  the trivial action of the third coordinate of  Hn 
by scalars into the coefficients. This simple change does not affect any 
of our considerations). 
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Dually to (5.28) the set gm, k(X)= e imaXg(x -  ilk), m, k e Z " ,  is a 
frame for the M;,,q e.g. 

II<gm, k,f>m, klZffll ~ IIflM~,211 (5.30) 

with the possibility of the complete reconstruction of f from the values 
(gin, k, f )  by one of the algorithms of Thm. S and U. 

Thus in this approach the construction of frames for other spaces 
than L2(E ") poses no additional problem. Moreover, (5.30) has an 
important consequence for signal analysis: if the basic atom g has 
compact support, then the representation coefficients (n.(s y, 1)g, f )  
are known as the short time Fourier transform o f f  By (5.30) it suffices 
to know the STFT on a discrete lattice only in order to store the full 
information on f,  see also [D2], [BA1]. The general theory shows that 
it need not even be a lattice, but it may be a rather irregular sampling 
of the STFT. Furthermore, the smoothness of f is reflected in the decay 
of the coefficients (gn, k, f ) .  

(c) Mapping example (b) to the B a r g m a n n - F o c k  representation, 
the existence of frames for the general B a r g m a n n - F o c k  spaces F~ e 
follows easily and does not require any additional efforts (compare 

[DG]). If G (z) is in ~ ,  i.e. G is holomorphic on C n and 

f lG(z)l e-"tZ%2dz < oo (5.31) 
C n 

then for fl > O, ?' > 0 small enough 

Gm.k (z) = exp ( v a  ( t im -- i 7k)  z - (f12 m2 + 72 k2)/2).  

�9 G (z - ( t im + i yk ) / , fa )  (5.32) 

is a frame for ~-~ (see (3.12)) and 

F e o ~ . * ~  <Gm,,~ , F )  ~ l e (5.33) 

If G is taken to be the reproducing kernel of ~a  e, one recovers easily 
the sampling theorem Theorem 8.4 of [JPR]. It is left to the reader to 
write down frames and atomic decompositions for the other examples 
of Section 3. 
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Discussion of  the Theorems 

5.7. The frame operator D: Assume the same situation as in Thm. U 
and choose the neighbourhood U small enough to make the discretiza- 
tion operator U~, invertible on Y,  G. (condition 5.15). Set 

D: ~go Y ~  ~z~ Y 
(5.34) 

D f  = Vg -1 U~ Vg (,f) = ~ (z (x i )  g, f ~  ci z(xi) g. 
i~I  

Since U~,is invertible on Y,  G and U~ 1 = ~n~0 (Id - U~,) n on Y,  G, we 

find that D is invertible on ~z~ Y and 

o~ 

D -1 = ~ (Id - D)". (5.35) 
n = 0  

The reconstruction o f f  from the frame coefficients (z(xi)g ,  f )  now 
involves only operations in cg~ y and (5.35) is a "simple" iteration 
algorithm to do that. The first approximation of f is of course Df, higher 
approximations require the repeated application of I d -  D. Numeric- 
ally, this means just repeated multiplication with the matrix 

gij = (z(x i )g ,  z (x j )g}  (5.36) 

�9 and all information on the numeric procedure is completely contained in 
this matrix! 

Thus for a numerical implementation one may completely disregard 
the group theoretic background of the problem. 

In the special case of the original Hilbert space ~ One recovers 
the technique of I. DAUBECm~S [D1]. In ~ the situation is very 
simple: the mere existence of frame bounds, i.e. the equivalence 
[[f[~l[ -~ [l(z(xi)g, f)t~i]12[[, already guarantees the invertibility 
of D. This argument seems to break down completely outside Hilbert 
space. Moreover, the frame bounds seem to play only a minor  role in the 
general case; as we have seen, the invertibility and the quality of 
approximation o f f  by D f  are determined by [I G~ ILl II. 

5.8. (a) By construction, the family {z(xi)g, i~I} is a frame simul- 
taneously for all spaces cg~ y, where 1 ~ 1~ ~ w  cg,~ y ~  ~ w  (provided that 
g ~ ~w) 
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(b) The dual frame {ei}, i.e. the vectors for the synthesis o f f  from 
the coefficients (zc(xt)g, f )  (5.18), belongs automatically to W1. 
Therefore the pathologies that are described in [D1] do not occur here. 

(c) The sequence (zr(xi)g, f )  characterizes to which space f be- 
longs. Even if the interest is only directed to the Hilbert space case, this 
remark enables us to detect smoothness o f f  and may increase the 
quality and speed of reconstruction. Such questions obviously do not 
make sense in an approach with only one space under consideration. 

(d) In the examples related to the Heisenberg group and the 
a x + b-group it is easy to give explicit sufficient conditions for g ~ ~w- 
This makes the choice of the basic atom g highly flexible and allows to 
take g according to one's purposes, e.g. in examples (a) and (b) of 3.3. 
g may be chosen to have compact support, or vanish on certain 
intervals or be band-limited etc. This flexibility is important in many 
applications. 

(e) All existing theories of frames work only with lattices (x;) in the 
group, e.g. those presented in 2.3. This is certainly highly desirable and 
is the most economic way for computations, but it does not always 
occur in practice where sampling errors have to be taken into account. 
We consider it an important meassage of the general theory that a 
complete reconstruction of functions is guaranteed even for highly 
irregular samplings. 

5.9. Formulas (5.13) and (5.19) have an interesting interpretation 
on the level of representation coefficients. A general representation 
coefficient Qr(x)g, f )  is completely determined by its values on a 
sufficiently dense, discrete subset (xi) in fr This reminds strikingly of 
the Shannon-Whi t tacker  sampling theorem for band-limited func- 
tions and shows that representation coefficients of the discrete series 
exhibit a behaviour similar to holomorphic functions. 

5.10. Duality of frames and atomic decompositions: If Y has an 
absolutely continuous norm, then the dual (ego y), = cgz~ y~ is again a 
coorbit space embedded into ~wl~- ([FG2], Thin. 4.9). Under this 
hypothesis on the norm of Y, the atomic decomposition 

f =  ~_, (ei, f )  rc(xi)g 

is norm convergent for a l t f~ (g~ Y and this implies at least w*-conver- 
gence of 
3 Monatshefte ffir Mathematik, Bd. 112/1 
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h = ~ Qr(xi)g, h> e~ (5.37) 
i r  

for h e  (cg~ Y)' = :go y~. Moreover, with (5.37) and Thm. 3.6 it is easy 
to see that  Ilhl~g~ Y~II and II<~r(x,)g, h>~ilY~ II are equivalent. Thus 
under  this weak hypothesis the set of  atoms {~r(x~)g} for ego y is a 
frame for the dual space ( ~  Y)', and vice versa by the same argument. 

5.11. Corollary. ([Y], p. 189). In a Hilbert space sets of atoms and 
frames coincide. 

This duality of  atomic decomposit ions and frames is also built in the 
discretization operators: S~, and T~, are adjoint to each other at least 
in a formal sense. 

6. Complementary Results 

In this final section, a few converse results are given, which should 
help to clarify the meaning of some of  the assumptions in the main 
theorems. 

Recall that  in the construction of  a frame or an atomic decom- 
position for cg~ y one starts with a basic a tom g ~ ~w. Then a neigh- 
bourhood  U of e can be found such that  {Jr(xi)g, ieI} is a frame and 
a set of atoms, respectively, for any U-dense and relatively separated 
set (xi)i~x. In the theorems the size of U is determined by the explicit 
formulas (5.1), (5.7) and (5.15). 

6.1. The necessary conditions can be unders tood roughly as foll- 
ows: the "a toms"  Ir (x~) g must  of course be elements of :go y; but  since 
the construction should work simultaneously for all coorbit spaces 
cg~ y ~  Ygw , this means that  the {lr(x,.)g} must  be contained in the 
minimal space which is embedded into all these Co Y. This minimal 
space is precisely ~ ([FG1], Cor. 4.7), therefore at least ~r(x~)g~ 
E ~ .  In order to sum up infinite series, additional properties are 
required, i.e. g~ ~w, which on the level of the examples can be ex- 
pressed by decay conditions, smoothness and cancellation properties. 

In order to get a frame, the coefficient mapping f ~  Qr(x~)g, f)i~t 
must  be one-to-one at least, which indicates that  a sufficient density of 
the (xi) is required. Next we want  to sum up 2iel~iYf(xi)g for general 
coefficients (,!,;)e Ya(X)(--- ll/~ (S) by [FG2], Lemma 3.5). This requires 
that  the (x;) be separated, otherwise such a series might not  be conver- 
gent. This qualitative discussion is made more precise by 



Describing Functions: Atomic Decompositions Versus Frames 35 

6.2. Prolmsition. Suppose that the "operator of synthesis" Tx: 
(~,i)i~x ~ ~i~12i ~r(xi) g is bounded from ll/~w into ~t~lw ~ fo r  all relatively 
separated sets X =  (x~)i~r in f#. Then g ~ w .  

Proof: We choose a fixed vector h ~ ~w and take all representation 
coefficients with respect to h, Then for A = (2i)i~x~ l~w we obtain 

Vh(TxZ)(y) = V~,(~l~iZr(xi)g)(y) = ~ f~i Vh(g)(xi-' y (6.1) 

By assumption, for any relatively separated X = (x~)e~z 

IIVh(TxA)IL~II ~- [[TxAI~w~~II ~< Cx[IAII~/~[[ (6.2) 

holds true for all A~I~w. (6.1) and (6.2) imply that 

V h (g) (x[ ~ y) = Vg (h) C v -1 x~) 6 l~ (6.3) 

Since this is true for all relatively separated sets X = (x~)~, this implies 
that V z (h)e J/4'~ (L~) (by Lemma 3.8 in [FG2]), Using the orthogonali ty 
relations (2,15) (with the special choice g~ = g2 = h, f~ = rc (y) g, f2 = g) 
enables us to isolate Vg (g): 

IlAh[[ZVg(g) = Vh(g)* Vg(h)~Ll *jg~(L~) ~_ dg~(Z~) (6,4) 

by means of  (2.13). Therefore 

V (g) = Vg(g)% (L w) n 

or g ~ ~,,  by Def. 3.5. [] 

6.3. Thus the condition g ~ w  is necessary. In groups with a com- 
pact invariant neighbourhood,  e.g. the Heisenberg group, the basic 
spaces ~ and oVf~ coincide ([FG3], Lemma 7.2) and there is no 
problem to describe the basic atoms. In general, however ~r and ~ 
are distinct. This may be seen as follows: 

If  g ~ w ,  choose h ~ C w  such that (Ag,  A h ) r  O. By (2.15) we 
obtain that 

Vg(g). Vh(h ) = (Ag,  A h )  Vh(g)ed//R(L~). L~ ~_ J//R(L~w). (6,5) 

On the other hand,  if for some h ~ Q  the function Vh(g) is in ~/R (L~,), 
then Vg(g) is in ~gR(L1) as in (6.4)_ Thus we have proved that 

ge~wr162 Vh(g)~Jg~(L~) for some h~zr (6.6) 
3* 
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This means (almost) that 

~w = c~o d//R (L~). (6.7) 

In the next step it can be shown that the sequence space associated to 
~ R ( L ~ )  is different from l~ unless f# has a compact invariant neigh- 
bourhood. Since the sequence spaces are distinct, the coorbit spaces 
must be distinct by [FG3], Thm. 8.14. 

Example: Let f# be the one-dimensional a x  + b-group, rc the re- 
presentation on L 2 (~) by translations and dilations (3.5) and consider 
the unweighted case w --- 1. Then (6.7) is actually true and 

c~z ~ L 1 /~ 1/2 
1,1 

d = B1/2 ~ B1.11/21.1 = cgz~L] +~ -' 

and the following embeddings are valid 

BW = ~ cgod/lR(L,) ~ B1/2 (6.8) 
2,1 - -  = 1 ,1  

(where w(x,  t) = (1 + [xl + It[) is the left translation norm on ~r (L~) 
and B1~,1 the weighted Besov space defined in (5.25) with s = 0) 

6.4. Proposition. Suppose that for  some g ~ 1 - Jgw , X = (x~)i~ z in f# and 
1 < p <<. oo, the "synthesis operator" Tx(Zi) = ~.i~i).iJr(xi)g is bounded 

from l~ into cgz~ L~. Then X is relatively separated. The conclusion also 
holds true i f  Tx is bounded f rom li/~ into 2- 

Proof: We fix a vector h ~ d ~  such that Re (h, g ) >  0 and set 
H = V h (g). By assumption 

I[ ~, 2, L~ HIL~ ]1 <~ C ( ~  I2~IP w (x~)P) ~/p (6.9) 
i~I  

holds true for all A = (~)  ~ l~ with a constant C independent of A. 
Choose a compact set Q with nonvoid interior such that 

{ ' } Q-1Q~_ x e N : R e H ( x ) > - R e ( h , g )  
4 

and set w = sup {w (x): x~ Q-1 Q}. If (x~)~ is not  relatively separated, 
there exists a sequence {z~} in N such that 

I~: = # { ieI:  x~ez, Q} >I n (6.10) 
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holds for all nGN (compare [FG2], Lemma 3.3). Set 

2}n) = ~ w(x~)-I if x~Gz, Q 
(6.11) 

( 0 otherwise 

then each sequence An = (3-}"))i~l is in l~ and IIA~I/~it = I2/~. 
Next we evaluate TxAn on z ,Q  and observe that  for x~ez, Q and 

uG Q both 

)~i = w(xi)- l  >~ w- lw(znu)  -: and R e H ( x F l z . u )  ~ > l R e ( h ,  g )  
4 

hold true. Therefore 

R e T x A , ( z , u )  = ~ w(xi) - 1 R e H ( x F : z . u )  >~ 
xiGznQ 

>~ w -1 w(z .u) - :  1 Re (h, g )In 
4 

and consequently (with the obvious modification for p = oo) 

llTxAnlLf~l[ >~(fIReT~:An(znu)IPw(z.u)Pdu) :'~ 
Q 

>~ 1 Re (h, g )  I~)~ (Q)l/p 
4w 

~> (6.12) 

I f p  > 1 and n large enough, (6.12) will certainly exceed IiAnllg[I = 
= I2/p. Therefore (6.10) contradicts the boundedness of Tx and the 
claim is proved. [] 

6.5. The final result concerns small perturbations and the stability 
of frames. 

Proposition. Assume that {rc(xi)g, i e I  } is a frame for  c ~ y ,  as 
constructed in Theorem S or U. 

(a) Then there exists a neighbourhood V o fe  such that {~(yi)g, i~I}  
is a frame for  cg~ y whenever xi-lyiG V for  all i ~L  

(b) There exists a 6 > 0 such that {z:(xz)g', i e I }  is a frame for  ~ Y 
whenever g' G Nw and 

jJ V~(g - g ' ) lo~f (z~) l l  < 6. (6.13) 
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Proof. We consider only the discretization by S~,, the other method 
is treated in an analogous manner. The given sampling values {Yi}i~1 
suggest to compare S~,, which is invertible by assumption, to 

S'~F = E F(Yi) Ilti* G (6.14) 
i~ I  

on Y ,  G with F = Vg ( f )  as usual. Then the same arguments used in 
(4.31) and (4.32) lead to 

IIIS~- S'~IY*GIII < IIGIUwll ~ IlGv ILw [I (6.15) 

If V is small enough, S~, must be also invertible on Y ,  G (using 
Lemma 4.6 ii). In that case, S~, -1 provides a method of reconstruction 
from the coefficients (~r(yi)g, f)  and e; = Vg -1 S~, -1 (~t;, G) is the "dual 
frame". 

(b) In this case we consider the discretization 

S'~,Vg(f) = ~ Vg,(f)(x,) ~6" G (6.16) 

Because of g '  e ~  and the one-to-one correspondence Vg(f)~--~f~--~ 
Vg, (f),  S'~, is well-defined and bounded from Y,  G into Y,  G. Now 

recall that 
Vg,(f) = Vg(f) , Vg(g') v (6.17) 

holds true on affw ~ ~ ~ cd~ Y (this is a consequence of the orthogonality 
relations (2.16) for f e  ~ and can be extended to ~ w  1~ whenever g, 
g ' e d ~ ) .  Now: 

II(S~- s'(~) vg(f)lYll = 

= ~ Vg_g,(f)(xi) ~ti, alYll ~< (by (2.6)) 
i e I  

<<, ~ ve_g,( f ) (x3 ~;IYI[ IIGILLII ~< (Lemma 4.4) 
i~I  

<<, c l i V e ( f ) -  Ve,(f)lJ//~(Y)tl II GIL~ tl <<- (by 6.17) 

~< c H Vg(f)* Vg(g -g')Vl~CC~(Y)ll [IGIL~[I ~< (by 2.13) 

~< ell Vg (f)l YII II Vg(g - g ' ) l J r  (L~)[[ IlGIZ~w][ 

Thus 

I l lS~-  S'(~IY.GIII <~ C'[I Vg(g - g')l~'ff(LL)[[ (6.18) 
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implies that S~, is invertible on Y,  G as soon as tl Vg(g - g')lJ//R (L1)II 
is small enough, and the proof  is complete. [] 

6.6. Concluding remarks. (a) The discretization methods used for 
the construction of  Banach frames and atomic decompositons work in 
the presence of  a reproducing formula F* G = F with a sufficiently 
"smooth"  reproducing kernel G. Therefore this program should work 
in more general situations than that of  an irreducible, unitary re- 
presentation. The irreducibility of Jr is only needed to guarantee the 
validity of  a reproducing formula. Examples suggest that this should 
be true whenever ~r is a cyclic representation which is supported on a 
compact-open set in the dual ~ of  ft. In this case the techniques of  
Section 4 and 5 would provide immediately frames for B e s o v -  
Triebel-Lizorkin-spaces on homogeneous groups. But to achieve this 
is now no longer a problem of  function spaces, but one of  representa- 
tion theory. 

(b) Square-integrable representations: If  (re, H) is no longer integ- 
rable, but only square-integrable and irreducible, then the definition of  
a coorbit does not make sense, but the Hilbert space ~ has still a 
reproducing kernel and the question arises whether it is possible to 
construct a coherent frame {~r(x;)g, i t / }  for ~ .  The analysis of  
Section 4 breaks down because a convolution F ,  G = F o n  L 2 �9 L 2 ~ L 2 
depends highly on the phase, not only on the absolute value IFI and 
none of the arguments in Section 4 seems applicable. Nevertheless, it 
is possible to modify some of  the techniques and construct coherent 
frames for ~ also in this case. 

(c) Tight frames: A Hilbert frame {rc(xi)g:ieI} ~_ Jt ~ is called tight 
if coincides with its "dual frame" {e~} ~ ~ ,  i.e. 

f =  ~ciQr(xt)g,f)Tr(xi)g for a l l f ~  (6.19) 

It is known that tight Hilbert flames exist for all realizations of the 
representations of the Heisenberg and the a x + b-group ([DGM]) with 
ci = 1 and for Lorentz groups [BO]. For theoretical considerations it 
would be very interesting to know whether tight frames {re (xi)g, i t  1} 
with g E Nw do exist in general. If  g ~ ~ ,  then the decomposition (6.19) 
holds automatically for all f e  cgz~ Y ~ ~ 1  ~ and 

Ilfl Co Ytl ~ cl II (~r(xi)g, f)i~,] Yd (X){I ~< c2 [tfl ~ YII (6.20) 
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is true (use (4.23) and Lemma 4.4). This means: if {Tr(xi)g} is a tight 
frame for only the Hilbert space ~ and if g~w, then {lc(x~)g, iE/} 
is automatically a Banach frame for all coorbit spaces ~ Y embedded 
into ~ff~~ and the reconstruction method is particularly simple. This 
implies that the smooth tight frames of [DGM] are actually frames for 
all modulation spaces and all Besov-Triebel-Lizorkin spaces! 

It is not known whether smooth tight frames exist in the general 
situation. 
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