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Summary. Normalized quadratic forms of moving averages converge to double
Wiener-It6 integrals if the summands are sufficiently dependent. This result
extends to sums of bivariate Appell polynomials of arbitrary degree.

1 Introduction and main results

Quadratic forms of stationary sequences, appropriately normalized, may have
Gaussian or non-Gaussian limits. Under what circumstances will the limits be
of one type or the other? This question, partially investigated in Rosenblatt
[17], Fox and Taqqu [9], Avram [1], and Terrin and Taqqu [19], is further
clarified here. Suppose the sequence is Gaussian with a regularly varying covari-
ance function. If the matrix in the quadratic form is Toeplitz with entries that
are also regularly varying, then the quadratic form is characterized by two
parameters, denoted here as « and B. Specifically, suppose the sequence has
spectral density f(x)=|x|"*L,(x), <1, and the entries of the matrix are the
Fourier coefficients of a function g(x)=|x|"# L,(x), <1, where L, and L, are
slowly varying. Then if a+ f<1/2, the limit of the normalized quadratic form
is Gaussian (Fox and Taqqu [9]), and if «+ 8> 1/2, the limit is a Wiener-Itd
integral on R? (Terrin and Taqqu [19]).

When o>0, the spectral density f has a singularity at the origin, and is
associated with the phenomenon known as long-range dependence (long memo-
ry). Statistical models with this type of spectral density include fractional Gaus-
sian noise (Mandelbrot and Van Ness [16] and Mandelbrot and Tagqu [15])
and fractional ARMA (Granger and Joyeux [12] and Hosking [13]), and the
estimation of their parameters frequently involves quadratic forms (see for exam-
ple Dahlhaus [6], Yajima [21] and Fox and Taqqu [87).

* This research was supported at Boston University by the National Science Foundation grant
DMS-88-05627 and by the AFSOR grant 89-0115
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Non-linear functions of long memory processes may also exhibit long-range
dependence (Tagqu [18]). Therefore, it is of interest to explore the limit behavior
of quadratic forms for such sequences, or more generally forms of the type

N N
(1.1) Y Y a;-x G(X;, Xy)
j=1lk=1
where G is a general bivariate function and X, is a stationary, possibly non-
Gaussian, long memory process. A first step toward understanding (1.1) is the
study of forms of the type

M=

N
(1.2) Y Y a4k Bun(X, X))
j=1

k

1

where P, , is a bivariate Appell polynomial defined in (1.7) and X; is a moving
average of independent and identically distributed random variables. In the
event that {X;} is a Gaussian sequence, the bivariate Appell polynominals are
called bivariate Hermite polynomials. Although in general the Appell polyno-
mials do not form an orthogonal basis, there are classes of analytic functions
that can be expanded in Appell polynomials (Giraitis and Surgailis [107).

If one keeps the assumptions on the covariances and coefficients described
above, then as Avram [1] recently showed, the limit of (1.2) adequately normal-
ized is Gaussian if X;is Gaussian and if 0 20,0 <1/2, (m+n) a+2f<m+n—1,
and either ma+28<m or na-+2B<n In this paper we show that when
(m+n)a+2p>m+n-1 and both na>n—1 and ma>m—1, the limit is non-
Gaussian and is representable as a Wiener-It6 integral of order m 4+ #. This result
holds even if X; is non-Gaussian. Our parameter space is depicted in Fig. 1
below in the case m>n.

When (, B) is in region 1, the limit is Gaussian, and whehﬁ{g, p) is in region 2,

B A

[

B

1-1/n 1-1/m 1«1/(;;@\1
5

Fig. 1. The parameter space

the limit is an m+n fold Wiener-It6 integral. Regions 3 and 4, where the limit
takes a different non-Gaussian form, will be handled in a subsequent paper.
Since the terms a;_; B, ,(X;, X;) are less dependent when o or f§ are negative,
it is likely that much of region 5 will produce Gaussian limits.
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Convergence to the Wiener-It6 integral is established in two theorems, be-
cause the case m=n=1 does not require the additional conditions na>n—1
and ma>m—1. Since the moving averages {X;} are not necessarily Gaussian,
it is not possible to represent the N* partial sum as a Wiener-Itd integral,
as was done in Terrin and Taqqu [19]. Instead, techniques used for sums of
univariate Appell polynomials in Giraitis and Surgailis [11] are extended here
to obtain our results. First, some notation is needed. Let

(1.3) X;= 3 b(i—-s)&, Jj=0,1, ...

where

(1.4) blky= [ **|x|7*2 I{*(|x|" ") dx,

L, is slowly varying at oo and bounded on bounded intervals, and ..., ¢_,,

&g, € ... 1s a sequence of independent and identically distributed random vari-
ables, with E¢,=0, and E &% =0, Since

EX; X, =2mo® | &V7P%|x|7" Ly (x| ) dx,

-

the sequence X, X; ... has long-range dependence when o > 0.
Define the Wick power

S SR A

of random variables Yi, ..., ¥, inductively, as in Avram and Taqqu [2] (see
also Giraitis and Surgailis [10]). When k=0, set the Wick power equal to 1.
When k>0, define 1Y, ... Y;: recursively by

(1.5) E:Y,..Y:=0
and
(1.6) 0:Y .. )o0Y,=:Y,...Y,_, Y.,.. Y.

The multivariate Appell polynomials F, ., (Y, ..., §;) are indexed by non-nega-
tive integers n,, H,, .... They are defined by
(1.7) B, oYy, . . Y)=Y,.. Y, Y..Y.. Y. Y

where Y, is repeated n; times, i=1, ..., k. The polynomials have mean zero and
behave like powers in the sense that

anl ..... nk(Yls sees Yk)/aYltzniBtl,...,ni—l
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Let G, be the spectral measure on R with density |x|™% and let Zg;, be the
complex-valued Gaussian random measure satisfying

(1.8) EZg,(A)=0, E|Zg(A)?=Go(A), Zg,(—A)=Zg,(4)
for any Borel set 4 of R with finite G, measure.

Define the constants g,, k=...—1,0, 1, ...,in (1.2) by

(1.9) a=§ Fx|7P Ly(x]" ) dx,

where L, is slowly varying at co and bounded on bounded intervals.

Theorem 1.1 Suppose E|&y|?™* " < oo,

(1.10) m+ma+2f>m+n—1,
(1.11) ma>m—1, na>n—1,
(1.12) a<l, p<l,
and

dy=N"L{*(N) L,(N),
where
(1.13) H=(m+n)(a—1)2++1.

Then for m,n=1, 2...

1 N—-1N-1

v Z 2 aj—an,n(Xj:Xk)
N

=0 k=0

(1.14)

converges in distribution to the m+n fold Wiener-It6 integral

(115) (27[0-2)(m+")/2 jl” KO(xla"'7xm+n)dZGo(xl)"'dZGg(xm-i-n);

Rm+n

where

o] m m+n
116 Kolriy o tmd= | A(Zx ) a( T 5 =) de

—w 1 m+ 1
and
e —1
1y
Remarks. Conditions (1.10) and (1.12) imply 1/2< H <2 and > —1/2. Condition

(1.11) implies «>0, which is not necessary when m=n=1, as will be seen in
the following theorem. The integral {" is defined in Major [14]. The double

(1.17) 4(y)=

Rm+n
prime indicates that the integration excludes the hyperdiagonals x; = + x;, i+].
The next theorem focuses on the case m=n=1.
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Theorem 1.2 If H=a+ f>1/2, a<1, <1, and dy=N" }{*(N) L,(N), then

1 N—-1N-1 1 N—1N-—-1 N—-1N-1
N DD ajkﬂ,l(Xj,Xk)Ed—[Z Y a4 X X—E Y ) aj—kaXk]
N j=0 k=0 NLj=0 k=0 Jj=0 k=0
converges in distribution to

2ng? j” Ko(x1,x5)dZ o (x1) dZg, (x,),
R2

where
[eo] ei(x1+u)_1 ei(xzfu)____l

Ko(xy,x5)= Wl_ﬂd”-

x +u)  i(x,—u)

The theorems are proved in Sect. 4 by applying a proposition given in Sect. 3.
To satisfy the hypotheses of the proposition, one must check the convergence
of certain integrals. This is done in Sect. 2 using power counting techniques.

2 Applications of power counting

The proofs of Theorems 1.1 and 1.2 depend on the convergence of certain inte-
grals. In this section, we apply power counting methods to establish convergence.
We start with some notation and terminology, and then state a power counting
theorem established in Terrin and Taqqu [20] as Corollary 1.1.

Fori=1, ..., m,let M;(x) be a linear functional on R". Let 0, be real constants
and set

T={M;:i=1,...,m}
and
T'={M;+6y,...,M,+0,}.

T is a set of linear functionals and T’ is a set of affine-linear functionals. For
0<a;<b;< o0, ¢;>0 and real constants o; and B; define

(2.1) Px)=f1 (M (x)+0,)... fu (M s(x) +0,,)

where | f;| is bounded above on (a;, b;) and

alyl*  if yl<a
. <
22 'f‘(y)'={cily|ﬂf if 1y1>b:

Define
) sr(W)y=span(W)nT for We T,
i) sp,(W)y=span(W)n T’ for W T,
(iii) do(W)=r(W)+ 3 o for W T,
sT(W)

(iv) d,(W)=r(D)—r(W)+ > B for WeT,

Th\sr (W)
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where span (W) denotes the linear span of W, r(W) is the number of linearly
independent elements of W, and summation over a subset of T is the summation
over all indices of functionals in the subset.

A set W T is said to be padded if for every linear functional M in W,
M is also in sp(W\{M}). That is, M can be obtained as a lincar combination
of other elements in W, There is a corresponding definition for affine-linear
functionals. Let L;=M;+0;, i=1,...,m. A set Wc T’ is padded if for every
Lin W, L is also in sz (W\{L}).

Power counting theorem (Terrin and Tagqu [20], Corollary 1.1). Suppose r(T)=n
and o> —1, ;=2 —1,i=1, ...,m. If

(a) do(W)=>0 for every padded, nonempty subset Wof T' with W=s.(W), and
(b) d,(W)<0Q for every padded, proper subset W of T, with W=s;(W), including
the empty set, then

F 1AM (3)+64)... [ (M (x)+6,) 4" x < 0.

Remark 2.1 To show that an integral on [ — A4, A]", A>0, is finite, it is sufficient
to show that condition (a) is satisfied.

Let G be the measure on [—n, ] with density |x|™% and let Gy be the
measure defined by

(2.3) Gy(A)=N'"*G(N~ ' A).
Then dG(x)=|x|"*dx, |x|<mn, and dGy(x)=]|x|"*dx, |x|<Nmz. For ecach N=
1,2,...,let

(2.4) By (X15 ooes Xppan) = f SN<§xp+u)SN(manp~u)|u|_ﬁdu,

-7 m+1

where
N-1
(2.5) Sy(y)= 3, €7,
j=0
and let
(2.6) Ky(Xgy ooos X =N P hy(xy N, oL, X/ N)
N=m m m-+n
= | AN< x,,+u) AN( > x,,—u>|ul“3du,
—N= 1 m+1
where
2.7) Ay =" —1)/N (" 1.

The goal of this section is to establish
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Proposition 2.1 Suppose conditions (1.10), (1.11) and (1.12) hold. If the parameter
H is as defined in (1.13), and G, is the measure on R with density |x| ™%, then

. 1
@8) lim x| I@Pd,G=lim [ Ky®)Pd" Gy

[~ m]mtn N= P [—Nr,Namtn

= [ IKoX)I*d""" Go<oo,

Rm+n

where K, is defined in (1.16).
The proof of the proposition uses several lemmas.
Lemma 2.1 If

m+n m+n
(29) T'= {Zx +u, Y x, uZx +v, Y x, v,u,v,xl,...,xm+n},

m+1 m+1

then condition (a) of the power counting theorem is met if

(@) do(W)>0 for stets W satisfying W= U Wi, 1<{2, ..., 8}, and W=s (W), and
condition (b) is met if

(b)) d(W)<O for sets W satisfying W= W, 1<={1, ..., 8}, W=s(W), and
W=T, where !

m
Wy=43 x,+u,u,x,, ...,xm}
1

m
Wy=< x,+0,0, %y, xm}
1

m+n m+n
W7={ Xp—t, xpv,u,v}

m+1 m+1

{Zx +u, mzﬂx —u, Zx +v, minx —v}

m+1 m+1

Proof. Suppose Wis a padded subset of T satisfying W=sy(W). It suffices to
show that if Le W, then Le W= W for some i=1, ..., 8. Observe that there are
three types of functionals in T:

(i) L=x;,i=1,...,m+n,

(i) Le{u, v},
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(iii) Le W.
By the symmetries of 7, it suffices to examine the functionals (i) x,, (ii) u, and

(iii) ), x, +u.
1
(i) Suppose x;eW. Then x; must also be part of the expression of another

functional in W, since W is padded. The only possibilities are ) x,+u and
1

Y x,+v. Hence either Y x,+u, Xy, ..., X,,, and u all belong to W, or ) x,+v,
1 1 1
X1, ..., Xp, and v all belong to W. Thus either x;e W, W, or x,e W, = W.
(ii) Suppose ue W, Then u must be a part of the expression of another functional

m+n

of W. The only possibilities are Y x,+u and Y x,—u. Assume without loss
m m+1 m

1
of generality that (Z xp—i—u>eWand u is a linear combination of ) x,+u and
1 1

other elements of W\ {u}. There are two cases:
Case 1. {xy, ..., X,,y © W. Then ue W, c W.

Case 2. {x;. ..., X,,} & W. Then ) x,, is part of the expression of another function-

1 m

al in W. The only possibility is ) x,+v. Since W=s,(W), veW, and hence
1
ue Wy W.

(ii1) Suppose (Z X, +u)e W. There are two cases:
1 m
Case 1. {xy, ..., Xn} = W. Then, since W=s,(W), (Z xp+u>e W,cW.

1
Case 2. {x{, ..., X} & W. Then ) x, is part of the expression of another furiction-
1

al in W. The only possibility is ixp+v. If veW, then ueW, since W=s,(W).

Hence (ixp+u)eWGCW. If v¢VI}, then u¢ W, and hence x;¢W, i=1, ..., m+n,

implying1 Wc Wy, Thus, since W is padded, W must be equal to Ws. [

Remark 2.2 1. The sets of the form W= U W, I<{1, ..., 8} satisfying W=s,(W)
I

are as follows:
(2.10) 0, Wa, W, W, Wau Wy, Wy U Wy, We W, WU W, 0 We, T,
and

(2.11) Wiy, Wy, Ws, Wy, Wo U W, W3 U W5, Wau Ws L Ws.
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To verify that there are not more, note that among the unions of two nonempty
sets,

W, o We=W, 0o We=W, U W,,

Wy oW, =Ws o Wy =W 0 Ws,

We o We=W,0We=W; uW,.

Furthermore, the sets W corresponding to the following index sets I do not
satisfy W=s,(W):

{2,5},{2,7},{2,8},{3,4},{3,6}, {3,8},{4,7}, {4, 8}, {5, 6}, {5, 8}.

Among the unions W of three or more nonempty sets, all fall into one of the
following categories:

@) W=W0oW,uWs,

(i) W=wyu W0 W,

(iii)) W=T,

(iv) W is equal to a union of two of the W’s,

(v) Wesp (W)

2. Symmetries among the exponents may further reduce the number of subsets
W which must be investigated. Only the sets in (2.10) will be relevant in the
proofs that follow.

Lemma 2.2 Assume conditions (1.10), (1.11), and (1.12). If

L [xj<1
= i,
and
(2.12) F(u,v, x4, ...,)c,ﬁ,,):f(ixp—f—u)f(min xp—u)f<ixp+v)f(mz+n xp—v),
then
(2.13) [ Fluv,xy, .oy Xpen)ul 8 v|F)x,]

Rm+n+2

ce Xppanl *dudvdx,...dx,,,,<o0.

Proof. We apply the power counting theorem. The set T=T" of linear functionals
associated with the integral (2.13) is given in (2.9). To verify condition (a), it
suffices to show dy(W)>0 for any subset W of T. The elements of W associated
with exponents «;#0 are contained in {u,v,x;, ..., X,p+,}. Thus here, do(W)
=r(W)+) . The assumption «;> — 1 for all i yields d,(W)>0.

w

To verify condition (b) we apply Lemma 2.1. Observe that conditions (1.10)
and (1.11) are symmetric in m and n, and note that x;, i=1, ..., m+n have
the same exponent, —a; u and v have the same exponent, — f8; and the remaining
clements of T have the same exponent, —1. In view of these symmetries, and
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Remark 2.2, it suffices to show d(W)<0 for the cight proper subsets of T
listed in (2.10). We show it for one set here, as an example. By condition (1.11),

d W, oW, uWg)=(m+n+2)—(m+3)—na=n—1-na<0
by (1.11). O

Lemma 2.3 Assume conditions (1.10), (1.11), and (1.12), suppose 0 < <n/4, and
set

pr—i—u

m+n

Y x,~v

m+1

(2.14) EN((S):{(u, U, X1,5 eoer Xpen)€EL— N7, Na]™ "2, <NQ@2nrn-9),

m+n

Y x,—u

m+1

<N@2n—9),

Zx +v

<N(@2n—94),

<NQR5%

Then

(2.15) | AN(i xp+u) AN(min x,,—u)A—NC xp—l—U) Z;(min xp—v)

En 1 m+1 m+ 1

Jul 7B o] T x| T Xl Fdudodxg ... dx,, .,

converges to
§IKe(x))?d"™" G,

Rm+n
as N — oo, where Ay and K, are as defined in (2.7) and (1.16) respectively.

Proof When |y|<NQ2n—3§), |[Ay(y)|<min(l, Csly|™!). Here the integrand in
(2.15) is bounded in absolute value by CFF(u,v,Xq, ..., Xpmin)
72 10| 78 x4 7. .. | Xmanl % where F is as defined in (2.12). The lemma now
follows from Lemma 2.2, the dominated convergence theorem, and the fact that
Ay—Adand Ey—»R™"™"72 ]

Lemma 2.4 Assume conditions (1.10) through (1.12), let H=(m+n) (a—1)/2+
+1, and let Ex(d) be as in (2.14). Then

m m+n m m+n
(2.16) § AN<pr+u>AN( ¥ xp—u)TN<2xp+v)TN( Y xp—u)
[~Nu,Najmitn+2\En 1 m+ 1 1 m+1

ul 7P o) P x| T Xl TP dudvdXy L d X,

1 m-+n
= [ sN<zx +u>SN< 3 x,,_u)
[—r,ajmtn+ 2\(En/N) i m+ 1

m+n

SN<Z‘< +U>SN(Z X —~v)|u| Flo| # x| 7% [ Xmanl *dudvdxy...dXpsn

m+1

converges to 0 as N — co.
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Proof. The identity results from the change of variables Nx; » x;,i=1, ..., m+n,
Nu—-u, and Nv—v. We now focus on the convergence. We have

(2.17) ISvOIS4NTy+01~t,  0<p<l,
where |0|=2kn when (2k—1) n=|y|<(2k+ 1) 7 (see for example Fox and Taqqu

[9] pages 226-227 and 237).
First consider the case $>0. Let

(2.18) =
Na=

(am+p—m-+1)—¢,
(en+f—n+1)—¢,

1
2
1
2

where £>0 is chosen so that 0<#;<1, i=1,2. Observe that conditions (1.11)
and (1.12) ensure that such an ¢ exists. Hence, by (2.17), the right side of (2.16)
is bounded by a constant times a finite sum of integrals of the form

m n—1
(2.19) N2Outn =20 Ny Ly,
[—m,a]m+n+2 |1
m+n n,—1m 7 —1
A x,—u+6, Y x,+v+0,
m+1 1
m+n 72— 1
X xpm ok Oa Ul T o T Xy T Xl T
m+1

-dudvdx;...dx, n,

where 0,=2k;n for some integer k;, i=1, 2, 3, 4. Note that 8,70 for some
i=1, 2, 3, 4, because the set (Ey/N) is excluded from the domain of integration.
Since the exponent 2(y; +#,)—2H= —4¢ of N is negative, it suffices to show
that the integral in (2.19) is finite.

It is sufficient to show that condition (a) of the power counting theorem
is satisfied where

m+n

Y Xp—u+0,,Y x,+v+0;,

m+1 1

m
T’={pr+u+91,

1

m+n

Y x,—v+04,u,0,%,. ..., xm+,,}.

m=1

Let W’ be a padded subset of T' satisfying W' =s..(W’), let T be as in (2.9),
and let W be the subset of T which is W’ without the 6;s. Then r(W')=r(W).
Since all exponents are negative, and the set of exponents associated with s, (W)
is contained in the set of exponents associated with s;(W), one has

doW)=r(W)+ 3 azr(W)+ Y w=do(W)=do(sp(W)).

st (W) sT(W)
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Observe that W and hence s(W) is padded. We will show that d,(W)>0 for
all nonempty, padded subsets Wof T satisfying W =s4(W), except W=T. This
will imply condition (a) for all relevant sets, except 7". Since the presence of
the 8;s in T’ is crucial, as

2.20) do(T)=m+n+2)+2(n,—D+2H,—D—(m+na—20
=m+n+2)+mat+pf—m+1-2e—-2+ma+f—n+1-2¢
—2—(m+n)a—2p=—4e<0,

the set 7" will be handled later.

Note that u and v have the same exponent —f; x4, ..., Xomtn have the same
exponent —o; and conditions (1.10) and (1.11) are symmetric in m and ». In
view of these symmetries, (2.18), Lemma 2.1 and Remark 2.2, condition (a) will
be satisfied, except for T, if do(W)>0 for the seven nonempty, proper subsets
W listed in (2.10). As a consequence of conditions (1.10), (1.11), (1.12), it is a
straightforward exercise to show do(W)>0 for those seven sets. We do it for
Wy, as an example. By (1.10), we may choose ¢ even smaller to that

221)  do(We)=3+2(n —1)+2(n>—1)
=3+ma+pf—-—m+1-2e—-2+na+pf—n+1-2¢-2
=Q2B+m+no)—(m+n—1)—4e>0.

Focusing on T’ now, assume without loss of generality that 8, #0. Then

r(T’)%r({xl, voes Xt Uy U,pr+u+91})=m+n+3.
1
Hence
do(TYzZm+n+34+2(m;— D420~ D) —m+noa—2=1+dy(T)=1—4¢>0

by (2.20).
This completes the proof in the case f>0.
If =0, let

ni=n=%((m+n)a+2f—(m+n+2)—

By conditions (1.10) and (1.12), >0 can be chosen so that 1/4<n;<1. The
right side of (2.16) is then bounded by a constant multiple of (2.19). Since
N2tn)=2H _ N=42 it suffices to show the integral in (2.19) is finite. Assume

pr+u

|u| <, there is some ie{l, ..., m} such that |x |>(r—8)/m. Therefore [x| “is
bounded. Since |u| f and ]v| 8 are also bounded, the factors |x;| % |u| %, and
|v| ~# can be removed from the integrand, and hence the only potentlally padded
set is W. To see this, observe that x,, pe{l, ...,i—1, i+1, ..., m+n}, cannot
be expressed as a linear combination of elements of T \{u v, x,, xp} Since do (W)
is the same as in the case >0, the proof is complete. [

without loss of generality that 6,+0. Thus >2n—9, and hence, since

We are now in a position to prove Proposition 2.1.
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Proof of Proposition 2.1 The identity in (2.8) results from a change of variables.
Moreover,

(2.22) | |Ky(x)|*d™"" Gy

[-Nm,Nglm+tn
m m+n _m o m+n
= | AN<pr+u)AN< Y xp—u)A,,<pr+v) AN( > xp—v)
[-Nm,Najm+n+2 1 m+ 1 1 m+ 1
ul Tl x| T X T Fdudodx, ... d X, .,

converges to | [Ky(x)]>d"*" G, as N— oo by Lemmas 2.3 and 24. [J

Rm+n

We state the following lemma, a consequence of Lemmas 2.2 and 2.4, which
will be useful in Sect. 4. Since the proof is parallel to that of Lemma 10 of
Terrin and Taqqu [19], it is omitted here.

Lemma 2.5
f IKN(X)IZ dmen Gy

Rmtn\[— 4 APm+n

converges to zero as A — oo, uniformly for N=0,1,2,....

3 Limits of sums of Wick powers

This section extends a result of Giraitis and Surgailis [11]. We prove a proposi-
tion describing the limit behavior as N — oo of sums of Wick powers of the
form

18

CN(Sla ---,Sm)zésl“'ésm:

(3.1) _i

S1

a0 S = — 0

where

enlstn oS )
= T e AT s ) [T 1,175 LY (%)) dxy . d s
p=1

[—=m, 7™

and where a<1, L; is slowly varying, and &y is a complex valued function
in I2([—m=, ]™) satisfying hy(xy, ..., X,)=hAy(—X1, ..., —X,,). Observe that the

cy's are real and that replacing the exponential exp{—i Y os, xp} by
m =1

exp{i Yos, xp} does not change (3.1). !
p=1

Let G be the measure on [ —7, 7] defined by

(3.2) G(dx)=|x]"*Ly(jx|"") dx,
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where o<1 and L, is slowly varying at oo and bounded on bounded intervals.
If Gy is the renormalized measure given by

(33)  Gyldx)=N"""G(dx/N)/Ly(N)=|x|"*[Ly(N|x|~")/L,(N)] dx

and G, is the measure on R with

(3.4) Go(dx)=|x|"*dx
then
(3.5) Gy(4) = Go(4)

for all bounded Lebesgue measurable sets. Indeed, convergence of the measures
follows from the integrability of |x|™* on A and the fact that when 6 >0,

|x[? Ly(N|x|™) _|N|x|""7°L;(N[x|™") 5
= - |x|

(36) L,(N) NTL,(N)

as N — oo uniformly for xe A (see for example Bingham, Goldie and Teugels
[4], Theorem 1.5.2).

Proposition 3.1 Let G, Gy, and G, be as in (3.2), (3.3), and (3.4) respectively,
and let Zg, be the Gaussian random measure defined as in (1.8). Assume...E_,,
o, &1, ... are independent and identically distributed with E¢q=0, E¢3=0? and
E|&y1*™ < o0 for some integer m=2. Suppose hy, N=1,2, ..., is a complex-valued
function on [—m,w]™ satisfying hy(—xq, ..., —Xp)=hy(xy, ..., X), and L, is
slowly varying at oo and bounded on bounded intervals. Suppose the following
three conditions hold:

3.7 (@) Ky(xg, oo Xp) =N THFEDZ L HN) By (x, /N, ..oy X/ N)

—>K0(X1, ...,xm)

uniformly on [ — A, AT" for any A>0, for some constant H, and some function
K, that is continuous except on a set of G§ measure zero,

(3.8) (i) lim ’dlf [ |hy|2d"G= [ |Kol2d™Gy< o0,
m 2

N [—n,n]m
where dy =N I"/?(N) L,(N), and

i) lim [ |Kxl*d" Gy=0

A= D gy =4, 4P
uniformly for N=0, 1, ....

Then the sequence

1 —i 3 S, X i
(3.9) UNEEI; Z{ j e pgl " hy(x) 1] 1%l 7 B (x0T d"‘x}:fsi...gysm:

S)m ~[—=m,w]™ p=1
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converges in distribution as N — o0 to

(3.10) Qra?)™2 " Ko(x1, .o\ Xp) Zgo(dXy) ... Zg,(dx,),
RM
where Y = .Y,
(S)m S1 Sim

Remark 3.1 1. The only explicit condition on « is o< 1. Further conditions on
o and H may be needed to obtain (i), (i1), or (iii).
2. The proposition still holds with each |x,|”*? replaced by |x,|”*/* and L,
replaced by L, ,. That is, one may have m possibly different measures G,,
p=1, ..., m, in place of m copies of G.
Let ) be the summation of those terms in Y with s;=s5;, i#j. The proposi-
S Shm

tion is proved by letting 0 < 4 <N = and decomposing Uy as

Y Y § + | =Y | )=Yi+Ry+Ry,

[~ A/N, 4/NT™ [ =, \[~ A/N, A/N]m [—77)m ==,z
and showing that only Y4 contributes to the limit. Since the independence of
the £’s implies
g Cei=l =6, L&

if the s;’s are all distinct (Factorization Lemma in Avram and Taqqu [2]), we
let

(3.11) Ydeiz'{ [ e 2" hy(x)

N sV [~ =, 7Im
m
T 12 Lﬂﬂﬂxprl)d'"x} &yl
1

1 , ——ims,,x,,
{ [

dN () \[—A/N,A/N™

(3.12) Yi=

11|~ E{Z(ixprl)dmx} byl
1

RN = YN - Yﬁ7

v=Uy—Yy.
We approximate hy with step functions, using the following definition of a step
function which excludes summation over diagonals. Let 4> 0, let M be a positive
integer, and let A_,,, ..., Ay be a partition of [—A4, A] into 2M intervals of

equal length. Denote by " the summation over ifk)=—M, ..., M, k=1, ..., m,
where i(k)+ +i(]) if k1. We say that g, is a step furction if

(313) gA(xlﬁ (AR xm)=Z/' gAi(l) ..... Ai(my lAi(l)X... X Ai(m)(xlﬂ [REE] xm)'

Such step functions are dense in I? (i) for any atomless measure g, as established
by Major [14], pp. 28-29.



72 N. Terrin and M.S. Tagqu

First we approximate the kernels Ky and K, as in the proof of Lemma 3
of Dobrushin and Major [7].

Lemma 3.1 Assume the conditions of Proposition 3.1. Then there exist step func-
tions {g4} 4> o such that for any ¢>0

(3.14) [ |Ky—g4?d"Gy<e
[—A, A"

when A> A(g) and N=0 or N=N(g).

Let now g, be as in Lemma 3.1 and set

1 7imsx
(3.15) If=—7Y" ¢ 2T NH-m@- U2 T (N) g, (Nx,, ..., Nx,)

N= {
dy (S)m \[—A/N,A/N]™

Aﬁlxp[_"‘/z L (x,] "y dx, ...dxm} &, ... &, -

Lemma 3.2 Assume the conditions of Proposition 3.1. Then

lim limNsup Var(Ya—I#)=0
A

Proof.
1 2
(3.16) Var(Ya—I§)=E|+ Y By(sy, s Sm) &5, - &,
N (S)m
where
GIT) By= | e T hy(xy, .., xp) = NETRET D2 L (N)
[— AN, AN}
g a(Nxq, ooy Nxo 3 ]Il 72 L2 (X, ) dxy .. dx,.
1
Observe that By may not be symmetric in (s4, ..., ,,), since hy is not necessarily
symmetric in X, ..., X,,. However

EIZ, BN(SD '-'asm) éslﬂ'ésmlz

(S)m

=E|Z/ Sym(BN(Sl: ey Sm)) ésl ésm|2
(Sym

=m! sz Z, |Sym(BN(Sla (AR} Sm))'2

(8)m

§m' g2m Z, IBN(SD FE Sm)iz
{8}
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1 . .
where sym f(x, ...,xm)=WZf(xa(1), .oes Xgem) 18 the symmetrization of f.
‘o
Hence (3.16) is bounded by

m! g2™ m! o2

(318) TEI lBN(Sl’ (RS m)l2 d Z |BN(SI’ R Sm)l2
N ®m N (m
Q" m! g™
dl% [— A/N,A/NT™

: |hN(x17 tev xm)—NH_m(a_l)/z LZ(N) gA(le’ cees ]\]xm)l2

. nlxpl - Ll (|xp| h 1) dxl dxnn
1
by Parseval’s equality. With a change of variables, the right side of (3.18) becomes

Qmoym! § IKN(X)—gA(X)|2ﬁprl*“[Ll(lepl_l)/Ll(N)]d"‘x-

[—4, 4]
Thus

lim sup Var (Y3 —I§)<limsupno?y"m! | |Ky—gil*>d" Gy.
N N [— A4, A}

Hence, by Lemma 3.1,
lim lim sup Var(Yi—I$)=0. [
A N

The following lemma demonstrates that the remainder Ry= Yy,— Y4 does not
contribute to the limit.

Lemma 3.3 Assume the conditions of Proposition 3.1. Then

lim lim sup Var(Ry)=0.
A N

Proof. As in the proof of Lemma 3.2, we have
Var(Ry)=E|+ y Z By(sy, ...s 5) & Es
N )m
d Z|BN(51:'~-5Sm)£sl"'é.sm]2
N )
where

By= f e 2 by () T 1,2 I{2(1x,) = 1) d”x.
1

[—=, ml™\[— A/N, 4/N]™
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Thus

2ro?y"m!

Var (RN ) § P
dy

§ Iy )2 [TIxpl % Ly (1%, 1) d™x
1

[—m,m¥™\[— A/N, A/N]™

=(@2no’y"m! ) |Kn(x)I? ﬁlxpl_“[Ll (Nlx,| " 1)/Ly (N)] d™x.
1

[~ N Nal™[— 4, 4]
Hence

lim lim sup Var(Ry) £lim lim sup(2 7 o2y m! | [Kyl? d™ Gy=0
A N A N R\ — A, A]m

by (iii) of Proposition 3.1. []
As a consequence of Lemmas 3.2 and 3.3, one has the following

Lemma 3.4 Assume the conditions of Proposition 3.1. Then

lim lim sup Var(Yy—I§)=0.
A N

Next, we prove two lemmas which will be useful in finding the limit of If.
Let A be a bounded set in R,

3.19) as(s)= | e ¥ x| L{*(Ix| ") dx,
AN

and

(3.20) Zy(A)y=NO"2LIV2(N) Y au(5)&,.

Since Zy(4) has representation

(3.21) Zy(A)=NC"92 LTV2(N)2n | [x|7*2 L{*(|x| ™) dZ,(),
4/N
0.2
where Z,(x) is an orthogonal-increment process with E |Z§(dx)|2=§g dx (see
for example Theorem 4.10.1 of Brockwell and Davis [5]), Zy(4) has the following

properties:

(i) Zn(A)=Zy(—4)
(ii) Re Zy(A) and Im Zy(4) have mean zero and are uncorrelated.
(iii) Re Zy(4) and Im Zy(4) each have variance equal to 12na? Gy(4), if 4~
(iv) Re Zy(A,),Im Zy(4y), ..., Re Zy(A4,,),Jm Zy(4,)areuncorrelated,if +4,, ...,
+ 4,, are disjoint.

(Re denotes the real part and Im denotes the imaginary part.)

Lemma 3.5 Let A, ..., 4,, be bounded sets in R with +A44, ..., +4,, disjoint.
Then

(ZN(Al)a LR ZN(Am))_d_)(zno-z)l/z(ZGo(A 1)> EERE ZGO(Am))
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where Zy and Z g, are as defined in (3.20) and (1.8) respectively. (The result holds
for any ii.d. sequence &, satisfying E&,=0 and E (2 =62

Proof. By Property (iv), it suffices to prove that ZN(A)—J>ZG0(A) for any
bounded set A in R with An—4=0. We first prove that

Re Zy(4)—2—>(2nc})? Re Zg,(4), that is, Re Zy(4)—2> N(0, 12762 Go(4)). To

make the dependence of a,(s) on N explicit, write a,(s)=a,(s, N). Suppose
throughout that N is large enough for A to be contained in (— N =, N ).
Observe that, as N — o0,

(3.22) N'7*L7'(N)6? Y. (Re ayls, N))* =E|Re Zy(A)* =n6” Gy(d) — na? Gy(4)
by Property (iii) of Zy(4) and (3.5). Thus, for ¢y — 0, there exists a sequence
Vo(N)=V,(N, &) such that

N'T*L'(NY ), (Reay(s,N)’ <ey,

|s]>Vo(N)
and hence
(3.23) Nhjn N1=*L;Y(N) Z (Re a,(s, N))*=0.
® Is| > Vo ()

Since we can write

Re Zy(4)=N""22[712(N) T Reay(s, N)&,
Is| £ Vo(W)
+N(1—a)/2 L—11/2(N) Z Re aA(S, N)és:
|s|>Vo(N)
and since
2
E[NC-92[112(N) ¥ Reay(s, N)E,
Isi >Vo()
=N'""*L{'(N)e* 3, (Rea,(sN)’ -0,

[s| >Va(N)

it suffices to show

(324)  NO-92LU2(N) ¥ Reayls, N) £~ N(O, no? Go()).

[sI=Vo)

Applying Schwartz’s inequality, one has
max N ~972 [712(N)|Re a,(s, N)| <max N ~92 [T U2(N)|a,(s, N)|
=maXN(1~az)/2 L—llll(N)| j’ e—isxlx|—a/2 L11/2(|x|—1)dx!

AN

SNG=2 N ] [x] 7= Ly(x]7) dx] 2§ dx]t

4N 4/N

=[Gy ) (4/N)]2=0(1)
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since Gy (4) — Go(A). Furthermore,

Nlim N'T LY (NYa? Y (Reay(s, N)*=n0? Go(4),

[s|=Vo(V)

by (3.22) and (3.23). Hence, Lindeberg’s condition is satisfied (see Billingsley
[3], Problem 27.6), and thus (3.24) holds. Similarly, using Properties (ii) and

(iii), one gets A(Re Zy(4))+B(Im Zy(4)—~A(Re Zgo(M)+B(Im Zg (4)) for

any real
numbers 4 and B. []

Let V={V,, ..., V}} be a partition of {1, ..., m}, and let

(3.25) ay,(s)= [ N2 LyY2(N) ag,, ()
pev;
where 4;(y, ..., iy are as in (3.13).

Lemma 3.6 If |V|=I<m, ...{_y,&0,¢; ... are independent and identically distrib-
uted with E|£o|*™ < o0, and A (x) is a polynomial of degree n;, then

Var ) gy, (s1)--- au(s) AR (Es,) - Af () =0(1)

as N — .

Proof. By letting o/ =1 —a and d(x)=|x|* "2 [}?(|x| 1), one may observe that
the lemma is shown in the proof of Proposition 4.6 of Giraitis and Surgailis
[11]. The only assumption on &’ used in that proofis o' >0 (ie. a<1). []

Let

(3.26) Ii=Q2ng?"? Z” 84:¢1)- Aigm) ZGO(Ai(l)) i Zgo(Aigm)

where ) " is as in (3.13), and let I be as defined in (3.15).

Lemma 3.7 Assume the conditions of Proposition 3.1. Then
I ﬁ—d> It

Proof. By (3.15), (3.13) and (3.19),

TE=N™0 92 L2 (N) ST S g o iy (50) o Bt (5) iy o

The sum over (s),, may be written as

Y=Y (X2

S Sm Sm (m
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Focusing on ), one has
S

Nm(1 —o2 L_lmlz (N) Z Z” gAm) ,,,,, Ai(m) adi(n(sl) "'aﬁi(m) (S"') 651 fsm

(s)m

_Z"gAm ..... A,(m)ZN(Al(l)) ZN(Ai(m))

—’Z”gm(l) ..... Al(m)(zngz)m/ZZGo(Al(l)) ZGO(Ai(m))ZIg

by Lemma 3.5. The remainder Y — ) may be written

Sk (Im

2284V, A
14
where ) is over all partitions V={V;, ..., Vi} of {1, ..., m} such that |V|=I<m,
14
YV, A)=3" gy, (51) ... (s) EX ..
(sh
and gy, is as in (3.25). Observe that |V;| =2 for at least one i=1, ..., . To complete

the proof it suffices to show E[y|?=0(1) as N — oo, but this follows from Lem-
ma 3.6. [J

Proof of Proposition 3.1 We want to show that Uy, defined in (3.9), converges
to

Y= (27'[0'2)'”/2 j‘” KO dm ZGo'

Rm
Recall that Uy= Yy+ Ry where Yy is as in (3.11). We show first that Yy—->Y

and then that Var (Ry)—0. To show that Yy—2>Y, let I4 and I be as in
(3.15) and (3.26) respectively. Then

Elli-Y?= (27102)"‘“&1 Kol*d" Go—0

as A — oo, and hence I4—%> Y. Moreover, I#—%I¢, by Lemma 3.7. Therefore,
since

lim lim sup P[|I§— Yy|=¢] <lim lim supi2 Var(I§— Yy) =0,
A N A N &

by Lemma 3.4, one has Yy—%- Y, by Theorem 25.5 of Billingsley [3].

Now we show Var(Rjy)—0. Ry consists of those terms of U, where the
s; are not all distinct. Let V={V, ..., ¥} be a parition of {1, ..., m}, and suppose
s;=s; if i and j belong to the same element of the partition. Then, by the Factori-
zation Lemma in Avram and Taqqu [2],

ifsl fsmi = Q;m(fsl) Q|Vl|(5sl)s
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where Q is the univariate Appell polynomial associated with & Hence,
U= Z Yv(V)
14
where

—i{s; ), %, 5%
W)=Yy | e E TR ()
dy (sn \[—n,aPn

H %172 L{?(1x,] 1) dx "'dxm} O (Es) -~ Qi (Ss)-
1

To complete the proof, it suffices to show Var(Yy(V)—0 if [V|<m. Recall
that Yy of (3.11) was written

YN= Y§+RN,

and Yi of (3.12) was approximated by I4 of (3.15) in Lemma 3.2. Analogously
we may write

Y(V)=Ya(V)+ Ry (V)

and approximate Y4(V) by I4(V), where

1 —lsl x, 5y X,
¥e(V) = Z{ [ eI T )

dN () [~ A/N,A/NT™

T 22,1 dxy ...dxm} Qprut(Es) o Qi ()

and

—ﬁZ{ § e—i(slgllx,,-l—..&s,;x,,) NH-m@—1)2 LZ(N)

dy (s); \[~ A/N,A/NIm

aN X1, oo Noo) [T, I (1, s .. }Q,Vd( e O (E):
1

Indeed, setting
BN(V): j e*i(S]VZIXP+..A+S1;‘XP)[hN(x1’ o xm)
[~ 4/N,4/N]™
— NHTmCEm D2 [ (N) ga(NXy, oo NXp)]

m
Tl (1,1 ) dxy ... dx,,
1

one has

2
(3.27) Var(Y;\‘,(V)—If\‘,(V))zE ZBN(V Qi (Es) - Qi ()
N (sx

l!

2« l 2
dN CO Y IBxV)* = =z C(V) X |Byl,

()1 (S)m
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where

C(V)=H§3;X[EQ;V,~1(50) ijg(fo)]l,

and By is as in (3.17). The last inequality in (3.27) holds because every term
in the sum on the left is included on the right. Hence

hmhmsupVar(YA(V) I (V))<hmhmsupd Z|BN|2
N
=limlimsup !1Qm" C(V) | |Ky—ga4l d"‘GN—O
A N [—A,A]m

as in the proof of Lemma 3.2. One also has lim lim sup Var(Ry(V))=0, by an
A N

argument that parallels the proof of Lemma 3.3. To complete the proof of the
proposition, it suffices to show

(3.28) hm Var(I#(V)) =

Since

:Z” 84 Z' Gy, (51)--- g, (s) Owiifs) - O (Es)s

(s)1

where gy, is as in (3.25), Lemma 3.6 implies (3.28). [J

4 Proof of the main theorems

The same techniques used to expand univariate Appell polynomials in Theo-
rem 1 of Avram and Taqqu [2] apply in the bivariate case, and thus, using
the notation of Sect. 1, we have

an(Xj’Xk): 2 b}'—Sz "'bj—sm bk_5m+1 "'bk*smm :5S1 "‘£5m+n:

Sm+n
where Y = > ... > and ¢, ..& . :is the Wick power defined in
Shm+n S1=—© Sm4+n= — 0
(1.5) and (1.6). Hence
1 N—-1N—-1 1 N—-1IN-1 = .
(4.1) = Y X a5 n(%, Xy)=—- Yo 2§ TR Ly(julm ) du
N j=0 k=0 N j=0 k=0 —-n
m+n
. Z j' Hez(] sp)xp H ez(k 5p}Xp
Sm+n[—w,mJmtn 1 m+1
m+n

CTT el T2 B2 (Ix, ) YA x, L L
1 m+n

=di s e

N Sman [—marin

m+n

H xp| ™2 B2 (1, |~ A" x g, L G,

Sm+n”
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where

(4.2) hy(X(s .o, Xpin)= j SN(ZX +u>SN(man —u)|u| 8Ly (Jul"Y) du,

-n m+1

Sy is as in (2.5),

4.3) dy=N" LT*"2(N) L,(N),
and
(4.4) H=(m+n)(a—1)/2+p+1.

Proof of Theorem 1.1 By (4.1) it suffices to verify conditions (i), (ii), and (iii)
of Proposition 3.1 for hy given by (4.2) and H as in (4.4). Relations (1.10) and
(1.12) imply —3<f<1. One has

KN(xlz ey xm+n)=]\]*H-)—(m%»n)(a_1)/2 Lil(N) hN(xl/N; M) xm+n/N)

—N-6+DUN) j SN(Zx/N+u)SN(minxp/N—u)lul“’Lz(lul‘l)du

= [ 4 (Zx +u) N(Z xp~u>|u[_ﬂ[L2(N[u|_1)/L2(N)] du.

—Nn m+ 1

Suppose first that L, and L, are asymptotically constant. If K is as in (1.16),
then Ky — K uniformly for xe[ — A4, A]’”*" by Lemma 9 in Terrin and Taqqu

m+n
[19], because Ky is a function only of Zx and ) x,. Proposition 2.1 and
1 m+1

Lemma 2.5 directly imply conditions (i) and (iii).

Suppose now that L; or L, is not asymptotically constant. Since all condi-
tions on « and B involve only strict inequalities, we still get Ky — K uniformly
as well as conditions (ii) and (iii) by slightly modifying « and § and using proper-
ties of slowly varying functions (see for example Relation (3.6).) [

Proof of Theorem 1.2. As in the proof of Theorem 1.1 it suffices to verify condi-
tions (i), (i1), and (iti) for

hy= | Sy(x;+u) Syl —u)ul ™" Ly(lul™") du

-r

and H =a+ f. The following results in Terrin and Tagqu [19], Lemma 9, Propo-
sition 1, and Lemma 10, directly imply conditions (i), (ii}, and (i), if L, and
L, are asymptotically constant. Since the conditions on « and f involve only
strict inequalities, (i), (if) and (iii) also hold when L, and L, are slowly vary-
ing. [
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