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Summary. Normalized quadratic forms of moving averages converge to double 
Wiener-It6 integrals if the summands are sufficiently dependent. This result 
extends to sums of bivariate Appell polynomials of arbitrary degree. 

1 Introduction and main results 

Quadratic forms of stationary sequences, appropriately normalized, may have 
Gaussian or non-Gaussian limits. Under what circumstances will the limits be 
of one type or the other? This question, partially investigated in Rosenblatt 
[17], Fox and Taqqu [9], Avram [1], and Terrin and Taqqu [-19], is further 
clarified here. Suppose the sequence is Gaussian with a regularly varying covari- 
ance function. If the matrix in the quadratic form is Toeplitz with entries that 
are also regularly varying, then the quadratic form is characterized by two 
parameters, denoted here as c~ and ft. Specifically, suppose the sequence has 
spectral density f ( x )= lx l  -= Ll(x), e <  1, and the entries of the matrix are the 
Fourier coefficients of a function g(x)=lx] -p L2(x),/~< 1, where L1 and L2 are 
slowly varying. Then if e + fi < 1/2, the limit of the normalized quadratic form 
is Gaussian (Fox and Taqqu [9]), and if ~ + f i >  1/2, the limit is a Wiener-It6 
integral on R 2 (Terrin and Taqqu [19]). 

When e >0, the spectral density f has a singularity at the origin, and is 
associated with the phenomenon known as long-range dependence (long memo- 
ry). Statistical models with this type of spectral density include fractional Gaus- 
sian noise (Mandelbrot and Van Ness [16] and Mandelbrot and Taqqu [15]) 
and fractional A R M A  (Granger and Joyeux [12] and Hosking [-13]), and the 
estimation of their parameters frequently involves quadratic forms (see for exam- 
ple Dahlhaus [6], Yajima [-21] and Fox and Taqqu [8]). 

* This research was supported at Boston University by the National Science Foundation grant 
DMS-88-05627 and by the AFSOR grant 89-0115 
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Non-linear functions of long memory processes may also exhibit long-range 
dependence (Taqqu [18]). Therefore, it is of interest to explore the limit behavior 
of quadratic forms for such sequences, or more generally forms of the type 

N N 
(1.1) 2 ~ aj-k G(Xj, Xk) 

j = l k = l  

where G is a general bivariate function and Xk is a stationary, possibly non- 
Gaussian, long memory process. A first step toward understanding (1.1) is the 
study of forms of the type 

N N 
(1.2) Z Z ai-k Pm,,(N, Xk) 

j=1 k=l 

where Pro,, is a bivariate Appell polynomial defined in (1.7) and Xj is a moving 
average of independent and identically distributed random variables. In the 
event that {Xj} is a Gaussian sequence, the bivariate Appell polynominals are 
called bivariate Hermite polynomials. Although in general the Appell polyno- 
mials do not form an orthogonal basis, there are classes of analytic functions 
that can be expanded in Appell polynomials (Giraitis and Surgailis [10]). 

If one keeps the assumptions on the covariances and coefficients described 
above, then as Avram [1] recently showed, the limit of (1.2) adequately normal- 
ized is Gaussian if Xj is Gaussian and if e __> 0, 0 __< fl < 1/2, (m + n) e + 2 fl < m + n -  1, 
and either me+2fl<m or ne+2fi<n. In this paper we show that when 
(m+n)e+2f l>m+n-1  and both n e > n - 1  and m e > m - l ,  the limit is non- 
Gaussian and is representable as a Wiener-It6 integral of order m + n. This result 
holds even if X~ is non-Gaussian. Our parameter space is depicted in Fig. 1 
below in the case m > n. 

When (e, fl) is in region 1, the limit is Gaussian, and wh e h ~ ,  fl) is in region 2, 

5 

4 

2 

1-1/n 5 l-Urn ' 1 - 1 / ( m + n ~ l  

Fig. 1. The parameter space 

Cr 

the limit is an m + n fold Wiener-It5 integral. Regions 3 and 4, where the limit 
takes a different non-Gaussian form, will be handled in a subsequent paper. 
Since the terms aj-k P,~,n(Xj, X~) are less dependent when e or fi are negative, 
it is likely that much of region 5 will produce Gaussian limits. 
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Convergence to the Wiener-It6 integral is established in two theorems, be- 
cause the case r e = n =  1 does not require the additional conditions h e > n - 1  
and me > m - 1 .  Since the moving averages {Xj} are not necessarily Gaussian, 
it is not possible to represent the N ~h partial sum as a Wiener-It6 integral, 
as was done in Terrin and Taqqu [19]. Instead, techniques used for sums of 
univariate Appell polynomials in Giraitis and Surgailis [11] are extended here 
to obtain our results. First, some notation is needed. Let 

(1.3) Xj= ~ b( j - s )~ ,  j = 0 , 1 ,  ... 
s =  - - o 3  

where 

(1.4) b(k)= ~ egkXlxl-~'/2 g~2(lxl-a)  dx, 

L~ is slowly varying at oo and bounded on bounded intervals, and .... 4-1,  
4o, 4t ... is a sequence of independent and identically distributed random vari- 
ables, with E 4o = 0, and E 4o 2 = a z. Since 

EXjXk-=27rc r2 S e"J-k)x[xl-~ Ll(lxl-1)dx, 

the sequence Xo, Xt . . .  has long-range dependence when c~ > 0. 
Define the V~ck power 

:V~ ... Yk: 

of random variables I11, ..., Yk inductively, as in Avram and Taqqu [2] (see 
also Giraitis and Surgailis [10]). When k=0 ,  set the Wick power equal to 1. 
When k > 0, define :I11... Yk: recursively by 

(1.5) E :Y1 ... Yk: = 0  

and 

(1.6) 0:g1 ... ~ : /~  Y~= :I11 ... ~ - ~  Y~+I---~: .  

The multivariate Appell polynomials P, ....... ~(YI, ..., Yk) are indexed by non-nega- 
tive integers n~, n2, . . . .  They are defined by 

(1.7) ....... ~(Y1, ..., ~ ) = "  Y1 . . .Y~  Y 2 . . . Y 2 . . . K . . . K :  

where Y~ is repeated nl times, i=  1 . . . . .  k. The polynomials have mean zero and 
behave like powers in the sense that 

aP, .. . . . . . .  (Y1 . . . . .  ~ ) / e r , = n , P ,  ........ -1  ....... ( v l ,  . . . ,  ~) .  



(1.10) 
(1.11) 
(1.12) 

and 
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Let Go be the spectral measure on R with density Ixl -~, and let Zao be the 
complex-valued Gaussian random measure satisfying 

(1.8) EZGo(A)=O, EIZGo(A)IZ=Go(A), ZGo(-A)=Zao(A) 

for any Borel set A of R with finite Go measure. 
Define the constants a~, k = . . . - 1 ,  0, 1 . . . .  , in (1.2) by 

(1.9) a~= ~ dkXlxI-~L2(Ixl 1)dx, 

where L2 is slowly varying at co and bounded on bounded intervals. 

Theorem 1.1 Suppose E I ~ 0 [2 (m +,) < ~ ,  

(re+n) c~ + 2fl>m+n-- 1, 

mc~>m--1, nc~>n--1, 

c~<l, f i < l ,  

where 

(1.13) 

Thenform, n = l ,  2... 

dN =N n L~/2 (N) L2(N), 

H=(m+n)(e-1)/2+fl+l.  

(1.14) 
1 N--1%1 

~-o as-k P"'"(Xj'Xk) 
duN j= k=0 

converges in distribution to the m + n fold V~ener-ltd integral 

(1.15) (2ha2) (m+"//2 ~" Ko(xl, ..., xm+,) dZGo(Xl)...dZGo(X,,+n), 
l l m  + n 

where 

(1.16) )(2 ) Ko(xl,...,xm+,)= A x~+u A x v - u  lul-~du, 
- - c o  1 

and 

e,r-1 
(1.17) A(y)- 

iy 

Remarks. Conditions (1.10) and (1.12) imply 1/2 < H < 2 and fl > - 1/2. Condition 
(1.ii) implies e > 0 ,  which is not necessary when m = n = l ,  as will be seen in 
the following theorem. The integral y" is defined in Major [14]. The double 

l l m + n  

prime indicates that the integration excludes the hyperdiagonals x~ = + x~, i =~j. 
The next theorem focuses on the case m = n = 1. 
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Theorem 1.2 I f  H = ~ + fl > 1/2, c~ < 1, fl < 1, and dN = N ~ L~/2 (N) L 2 (N), then 

1 N - l ~ a  1 [ ~ a  N-1 N-1N-1 ] 
~=o aj kPl,l(Xj, Xk) = 2 aj kXjXk--E 2 Z aj-kXjXk 

j= k=0 -- duLj=o k=O j : o  k=0 

converges in distribution to 

2rCO -2 ~" Ko(Xl, x2) dZGo(X1) dZGo(x2), 
N2 

where 
ei(xl+,)_i  ei(X2 u)_ l 

K~ i(xl+u ) i(X2--U ) ]u[ -~du" 

The theorems are proved in Sect. 4 by applying a proposition given in Sect. 3. 
To satisfy the hypotheses of the proposition, one must check the convergence 
of certain integrals. This is done in Sect. 2 using power counting techniques. 

2 Applications of power counting 

The proofs of Theorems 1.1 and 1.2 depend on the convergence of certain inte- 
grals. In this section, we apply power counting methods to establish convergence. 
We start with some notation and terminology, and then state a power counting 
theorem established in Terrin and Taqqu [20] as Corollary 1.1. 

For  i=  1, ..., m, let M~(x) be a linear functional on R". Let 0~ be real constants 
and set 

T = { M i : i = l ,  ..., m} 
and 

T'={MI  +01, ..., Mm+Om}. 

T is a set of linear functionals and T' is a set of affine-linear functionals. For  
0 < ai < b~ < 0% c~ > 0 and real constants ~ and fli define 

(2.1) P(x) =f~ (M 1 (x)d- 01)...fm(Mm(x) + Ore) 

where If~l is bounded above on (ai, bi) and 

< (<cityl ~ if lyl<ai 
(2.2) [f/(y)l =(ci[yl~ ~ if lyl > bi. 

Define 

(i) ST(W)=span(W)c~ T for WcT,  

(ii) ST,(W)=span(W)c~ T' for W c  T', 

(iii) do(W)=r(W)+ ~ ~i for W=T ' ,  
ST,(W) 

(iv) do~(W)=r(T)-r(W)+ ~ fli for W~T, 
T \ST (W) 
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where span(W) denotes the linear span of W,, r(W) is the number of linearly 
independent elements of W, and summation over a subset of T is the summation 
over all indices of functionals in the subset. 

A set Wc  T is said to be padded if for every linear functional M in W,, 
M is also in ST(W~{M}). That is, M can be obtained as a linear combination 
of other elements in W. There is a corresponding definition for affine-linear 
functionals. Let L~=M~+O~, i=1  . . . .  , m. A set W c T '  is padded if for every 
L in W,, L is also in ST,(VV~{L}). 
Power counting theorem (Terrin and Taqqu [20], Corollary 1.1). Suppose r (T)= n 
and c~i > - 1, fli > - 1, i = I, . . . ,  m. I f  
(a) do(W)>0 for every padded, nonempty subset W o f  T' with W= ST, (W), and 
(b) doo(W)<0 for every padded, proper subset W of T, with W=ST(W), including 
the empty set, then 

[fi (M1 (x) + 01)...f,, (Mm (x) + 0m)[ d" x < ~ .  

Remark 2.1 To show that an integral on [ - A ,  A]", A > 0, is finite, it is sufficient 
to show that condition (a) is satisfied. 

Let G be the measure on I - re ,  re] with density [xl -~, and let GN be the 
measure defined by 

(2.3) GN(A) = Nl -~  G(N-1 A). 

Then dG(x)=lx[-~dx ,  [xl<~, and dGN(x)=lxl -~dx,  [x l<N~.  For each N =  
1, 2 . . . . .  let 

(2.4) hN(xl . . . .  , Xm+n) = S N Xp'Jr-u SN xp-u lul -p  du, 
- - ~  1 ' , m + l  

where 

N - 1  

(2.5) 2 C J,, 
j = 0  

and let 

(2.6) KN(xl ,  ..., xm+,)-- N (1 +p) hN(xl/N . . . .  , x,,+,/N) 

= ~ AN xp+u AN xp--u lul-adu,  
- N ~ z  " , m +  1 

where 

(2.7) 

The goal of this section is to establish 
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Proposition 2.1 Suppose conditions (1.10), (1.11) and (1.12) hold. I f  the parameter 
H is as defined in (1.13), and G O is the measure on R with density [x[-~, then 

1 
(2.8) N~o~lim N2 ~ Ihu(x)12 din+, G~- lim ~ IKN(x)Iadm+"GN 

[ - ~ , z ~ ] m + n  N ~  co [ _ N , u ,  Nzr ~ 

= ~ IKo(x)[Zdm+"Go<C~, 

where Ko is defined in (1.16). 

The proof of the proposition uses several lemmas. 

Lemma 2.1 If 

f~1 m+n m m+n 1 (2.9) T ' = T =  xp+u, E Xp- -U 'EXpAcl ) '  ~ XP--I) 'U'I ) 'XI '  " " ' X m + n '  
m + l  1 m + l  

then condition (a) of the power counting theorem is met if 
(a') do(W)>0  for stets Wsatisfying W= ~) Wi, I c { 2  . . . . .  8}, and W=ST(W), and 

condition (b) is met if i 
(b') do~(W)<0 for sets W satisfying W - ~  Wi, I c { 1  . . . . .  8}, W--ST(W), and 
Wva T, where x 

wl=0 
w2 ={~ xp+u, u, x~,..., x,,} 

~m+n Xp-- U~ Xm+nl 
W 3=  t m~+l u , x  re+l, -.. ,  

W 4 = { ~ x p - l - v , v ,  x1 . . . .  , xm}  

W5 ~ gp -- u~ t)~ x m + l ~ . . . ~ Xm + n 
m + l  

W6 = X p Av U, E X p --~ o , u, v 
1 

W 7 = u~ Xp 0 7 U~ V 
m + I  

ws= x,+u. E y 
m+l I m+l 

Proof Suppose Wis  a padded subset of T satisfying W=ST(W). It suffices to 
show that if L e  W, then LsW~c  Wfor  some i=  1 . . . . .  8. Observe that there are 
three types of functionals in T: 
(i) L=xi,  i= l  . . . .  ,re+n, 
(ii) LE{u, v}, 
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(iii) L e  I/Vs. 
By the symmetries of T, it suffices to examine the functionals (i) x l, (ii) u, and 

/n 

(iii) ~ xp + u. 
1 

(i) Suppose x leW.  Then Xl must also be part of the expression of another 
m 

functional in W,, since W is padded. The only possibilities are ~ xp+u and 
1 

xp + v. Hence either xp + u, x ,  . . . . .  xm, and u all belong to W, or ~ xp + v, 
1 1 1 

Xl . . . . .  xm, and v all belong to W. Thus either xl e W2 c W,, or Xl e W4 c W. 

(ii) Suppose u~ W. Then u must be a part of the expression of another functional 
~ ,  tt/q- n 

of W. The only possibilities are xp+u and ~ x p - u .  Assume without loss 

of generality that xp + u e W and u is a linear combination of xp + u and 
\ 1  / 1 

other elements of W\{u} .  There are two cases: 
Case 1. {Xl, ..., xm} c W. Then ue W2 c W. 

m 

Case 2. {x 1 . . . . .  x,,} 4= W. Then ~ xp is part of the expression of another function- 
1 m 

al in W. The only possibility is ~ x p + v .  Since W=ST(W), yeW, and hence 
1 

uu=W6~ W, 

(iii) Suppose xp + u e W. There are two cases: 
\ 1  

C a s e l ' { x t ' " " x = } c W ' T h e n ' s i n c e W = s r ( W ) ' ( ~ x ' + u )  

Case 2. {xl, ..., xm} r W. Then ~ Xp is part of the expression of another function- 

al in W. The only possibility is ~ x p + v .  If yeW, then ueW,, since W - s t ( W ) .  

Hence xp + u e W6 c W. If v r W, then u q~ W, and hence xi ~ W,, i = 1 . . . . .  m + n, 

implying W c  Ws. Thus, since W is padded, W must be equal to Ws. [] 

Remark 2.2 1. The sets of the form W= ~) W~, I c  {1, ..., 8} satisfying W=sr (W)  

are as follows: 

(2.10) O, W2, W6, Ws, W2 vo W3, Wz vo W4, W6 vo WT, W2 vo W4 vo Ws, T, 

and 

(2.11) W3 , Wa , Ws , WT , W4 u Ws , W3 vo Ws , W3 vo Ws w Ws . 
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To verify that there are not more, note that among the unions of two nonempty 
sets, 

W2uW6=W4k..)W6=W2L.)W4, 
W3k..JWT=W5k.)WT=W3k-)W5, 
w6 w w~ = w~ ~ ws = w~ u w~. 

Furthermore, the sets W corresponding to the following index sets I do not 
satisfy W=sr(W): 

{2, 5}, {2, 7}, {2, 8}, {3, 4}, {3, 6}, {3, 8}, {4, 7}, {4, 8}, {5, 6}, {5, 8}. 

Among the unions W of three or more nonempty sets, all fall into one of the 
following categories: 

(i) 
(ii) 
(iii) 
(iv) 
(v) 

W -  W2 ~ W4 tJ W8, 
W=W3vWsuWs, 
W=T, 
W is equal to a union of two of the W/s, 
W# sr (W). 

2. Symmetries among the exponents may further reduce the number of subsets 
W which must be investigated. Only the sets in (2.10) will be relevant in the 
proofs that follow. 

Lemma 2.2 Assume conditions (1.10), (1.11), and (1.12). I f  

1 Ixl<l 
f ( x ) =  ]x]_ 1 Ix l> l ,  

and 

(2.12) F(u,v, xl,  . . . ,x~+,)= xp+ x v -  xp+ x p -  , 
1 / \ m + l  / k l  / \ m + l  / 

then 

(2.13) F(u,v, Xl . . . .  , Xrn+.)lul-~ l v l -~  lXll -~ 
R m + n + 2  

... ]x,,+,]-~ du dv dx l  ... dxm+, < oo. 

Proof We apply the power counting theorem. The set T =  T' of linear functionals 
associated with the integral (2.13) is given in (2.9). To verify condition (a), it 
suffices to show do(W)>0  for any subset Wof  T. The elements of Wassociated 
with exponents e i # 0  are contained in {u,v, xl . . . .  , xm+,}. Thus here, do(W) 
= r ( W ) + ~  ei. The assumption e i>  - 1 for all i yields d0(W)>0.  

W 

To verify condition (b) we apply Lemma 2.1. Observe that conditions (1.10) 
and (1.11) are symmetric in m and n, and note that xl, i = I  . . . . .  m+n have 
the same exponent, - e ;  u and v have the same exponent, - f l ;  and the remaining 
elements of T have the same exponent, - 1 .  In view of these symmetries, and 



66 N. Terrin and M.S. Taqqu 

Remark 2.2, it suffices to show doo(W)<0 for the eight proper subsets of T 
listed in (2.10). We show it for one set here, as an example. By condition (1.11), 

doo(W2 w W~ u Ws)=(m + n + 2)-(m + 3 ) - n e = n -  1--nc~<0 

by(1.11). [] 

Lemma 2.3 Assume conditions (1.10), (1.11), and (1.12), suppose 0 < 6 < n / 4 ,  and 
s e t  

(2.14) EN(6)={(u,v,x,, . . . ,Xm+,)~[-Nn, Nn]"+"+2: ~ xv+u < N ( 2 n - a ) ,  

Then 

{2.15) .f AN dN{2 2 x,--v 
EN \ m  + i I \ i I \ m  + 1 

�9 l ul -~ Ivl-e i x~ l -~ . . .  Ixm+.l-~ du dv dxl  ... d x,. +. 

converges to 
lKo(x)l 2 d "~+" Go 

l l m + n  

as N ~ o% where AN and K o are as defined in (2.7) and (1.16) respectively. 

Proof W h e n  l yl < N(2 n -  6), I AN(y)I < min (1, C~ [Y I- 2). Here the integrand in 
(2.15) is bounded in absolute value by C~ F(u, v, x~ ... .  , Xm +,) 
[U[-PlV[-~[Xl]-~...[Xm+,[ ~, where F is as defined in (2.12). The lemma now 
follows from Lemma 2.2, the dominated convergence theorem, and the fact that 
AN-->A and EN--+ R m+"+2 [] 

Lemma 2.4 Assume conditions (1.10) through (1.12), let H=(m+n) (c~-l) /2+fl  
+ 1, and let EN(6) be as in (2.14). Then 

[m \ [m+, x /m ) /m+,, ) 
(2.16) ~ ANt2Xv+ulAu [ 2 x v - u J A u { 2 x p  +v ~ {  2 x p - v  

[ -N~ ,N~]m+n+2XEN \ 1 / \ m 4 - 1  / \ i \ m + l  

�9 lul-P Ivl elx,l-=.. . lxm+,l-~dudvdxi. . .dxm+, 

1 / , .  \ [m+. ) =-N2. S s4Ex,+ulSN( E x,-u 
[-~,~]m+n+2X(EN/N ) \ 1 / k i n +  1 

- - t  m \ - - i  ' ' + "  ) 
"SN[~Xp+v]SN[ ~ Xp--V lul-elvl alx, l-~...lxm+,l-~dudvdx,...dxm+n 

\ 1 / \ m + l  

converges to 0 as N ~ oo. 
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Proof The identity results from the change of variables N xi ~ xz, i= 1 . . . .  , m + n, 
Nu--+u, and N v ~ v .  We now focus on the convergence. We have 

(2.17) ]Su(y)]<=4U~ly+O] ~-1 , 0<*/<  1, 

where 10[ =2k~z when ( 2 k -  1) ~z< ]y[ < ( 2 k +  1)re (see for example Fox and Taqqu 
[-9] pages 226-227 and 237). 

First consider the case fi > 0. Let 

(2.18) r h = �89 f l - -m+ 1)--e, 

rl2= �89 + fi-- n + l)--  e, 

where e > 0  is chosen so that 0 < t h < l ,  i=1,2. Observe that conditions (1.11) 
and (1�9 ensure that such an e exists�9 Hence, by (2�9 the right side of (2�9 
is bounded by a constant times a finite sum of integrals of the form 

(2.19) N2(nl +~ S ~Xpq-U-}-O11"1-1 
[--g,g]m+n+2 1 

�9 m+n _1_0202- I ~lXP.OVV..}_0301-- 1 
~ 1  Xp -- IA 

�9 du dv dx1.., dxm+n, 

where Oi=2k~rc for some integer k~, i--1, 2, 3, 4. Note that 0 ~ 0  for some 
i=  1, 2, 3, 4, because the set (EN/N) is excluded from the domain of integration�9 
Since the exponent 2 ( t / 1 + ~ 2 ) - - 2 H = - 4 e  of N is negative, it suffices to show 
that the integral in (2.19) is finite. 

It is sufficient to show that condition (a) of the power counting theorem 
is satisfied where 

t~1 m + n m T ' =  Xp "[-bl-[-Ol, Z Xp-R-~-O2,ZXp@V-[-03,  
m+l 1 

m+. } 
Z Xp__V_]_O4~I,t,V, X1 . . . .  , Xm+n �9 

m=l 

Let W' be a padded subset of T' satisfying Wt~-ST,(W'),  let T be as in (2.9), 
and let Wbe the subset of T which is W' without the 0~'s. Then r(W')>r(W).  
Since all exponents are negative, and the set of exponents associated with sr.(W') 
is contained in the set of exponents associated with st(W), one has 

do(W' )=r(W' )+ ~ a~>_r(W)+ ~, ~i=do(W)=do(sw(W)). 
sT,(W') ST(W) 
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Observe that W a nd  hence st(W) is padded. We will show that do(W)>0 for 
all nonempty, padded subsets W of T satisfying W =  st(W), except W =  T. This 
will imply condition (a) for all relevant sets, except T'. Since the presence of 
the 0z's in T' is crucial, as 

(2.20) do(T)=(m+n+2)+ 2(th - 1) + 2(t12 - 1 ) - (m + n) c~-2fl 

=(m+n+ 2)+(mc~ + f l - m  + l -  2e) -  2 +(nc~ + f l - n  + l -  2e) 

- 2 - ( m  + n) ~ -  2 fl= - 4 ~  <O, 

the set T' will be handled later. 
Note  that u and v have the same exponent - f l ;  x l ,  ..., Xm+~ have the same 

exponent -c~; and conditions (1.10) and (1.11) are symmetric in m and n. In 
view of these symmetries, (2.18), Lemma 2.1 and Remark 2.2, condition (a) will 
be satisfied, except for T', if do(W)>0 for the seven nonempty, proper subsets 
Wlisted in (2.10). As a consequence of conditions (1.10), (1.11), (1.12), it is a 
straightforward exercise to show do(W)>0 for those seven sets. We do it for 
Ws, as an example. By (1.10), we may choose e even smaller to that 

(2.21) do (Ws) = 3 + 2(qa - 1) + 2(t12 - 1) 

= 3+(mct + f l - m +  l -  2e) -  2 +(n~ + f i - n +  l - 2 e ) - 2  

=(2fl+(m+n) ~ ) - ( m + n -  1 ) - 4 e  >0.  

Focusing on T' now, assume without loss of generality that 0a # 0. Then 

m }) 
, xm+, ,u ,v ,~xp+u+Oi  = m + n + 3 .  

1 

Hence 

do(T')>m+n+ 3 +2(71 - 1) + 2(q2 - 1 ) - (m + n) c~-2fl = 1 + d o ( T ) =  1 - 4 e > 0  

by (2.20). 
This completes the proof in the case fl > 0. 

I f f i<0 ,  let 

~/i =t12 = �88 + n) a + 2 f i - ( m + n ) + 2 ) - e .  

By conditions (1.10) and (1.12), e > 0  can be chosen so that 1 / 4 < t h < l .  The 
right side of (2.16) is then bounded by a constant multiple of (2.19). Since 
Nz('I1+nz)-ZH=N -4~, it suffices to show the integral in (2.19) is finite. Assume 

m 

without loss of generality that 01 # 0. Thus ~ x v + u > 2re-6, and hence, since 
& 

[ul<~, there is some i~{1, ..., m} such that ]xil>(r~-6)/m. Therefore [xi[ -~ is 
bounded. Since lul -~ and Ivl -p  are also bounded, the factors Ixl[ ~, lul -~, and 
I vl -~ can be removed from the integrand, and hence the only potentially padded 
set is W~. To see this, observe that xp, pe{1,  ..., i - I ,  i + 1 ,  ..., re+n}, cannot 
be expressed as a linear combination of elements of T'\{u, v, xi, xv}. Since do (W~) 
is the same as in the case f l> 0, the proof is complete. [] 

We are now in a position to prove Proposition 2.1. 
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Proof  of  Proposition 2.1 The identity in (2.8) results from a change of variables. 
Moreover, 

(2.22) IKN(X)IZd"+"GN 
[ -  Nre,N'Jz]~+n 

= [, AN xp+u AN xp--u Xp+V) AN Xp-- 
[ - -N~,N~]  m+n+2 \ m + l  / \ m + i  

�9 lul - ~  Iv[ - ~  I x ~ [ - ~ . . .  I x , . + , [ - "  du dv d x t  . . .  d x , , + ,  

converges to ~ [Ko(x)l 2 d" +" Go as N--+ c~ by Lemmas 2.3 and 2.4. [ ]  
Rm+n 

We state the following lemma, a consequence of Lemmas 2.2 and 2.4, which 
will be useful in Sect. 4. Since the proof is parallel to that of Lemma 10 of 
Terrin and Taqqu [-19], it is omitted here. 

L e m m a  2.5 

j" IKN(x)[ 2 d "+'~ GN 
Rm+n\[ - -A ,A]m+n 

converges to zero as A --+ 0% uniformly for N = O, 1, 2, . . . .  

3 Limits  of  sums of  W i c k  powers 

This section extends a result of Giraitis and Surgailis [111. We prove a proposi- 
tion describing the limit behavior as N--+ oo of sums of Wick powers of the 
form 

(3.1) ~ "'" ~ CN(S  1 . . . .  ~ S m ) : ~ s l . . . ~ s m :  
S l = - O o  Sm = -- oo 

where 

CN(S~, ..., S,,) 
m 111 

-- i  ~ SpXp 
= ~ e ,=1 hN(X t, ..., x") I~ [Xpl -~/2 g]/2(lxpl-1)dxl  . . .dx , , ,  

[ -  :r p= 1 

and where a <  i, L1 is slowly varying, and hN is a compIex valued function 
in L2([---rc, n] ") satisfying hN(Xl . . . . .  x , , )=hN( - - x l ,  ..., --x,,). Observe that the 

CN'S are real and that replacing the exponential e x p ~ - i  ~ SpXp~ by 
L p = l  

exp{i ~ SpXp} does not change(3.1). 
) 

p = l  

Let G be the measure on [-rc ,  z] defined by 

(3.2) a(dx) = Ixl-~ Z~ (lxI- ~) dx, 
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where e < 1 and L~ is slowly varying at oo and bounded  on bounded  intervals. 
If G N is the renormal ized measure  given by 

(3.3) GN(dx)=-N 1-~ G ( d x / N ) / L t ( N ) - I x l - ~ [ L ~ ( N I x I - t ) / L ~ ( N ) ]  d x  

and Go is the measure  on R with 

(3.4) G o ( d x ) = l x l - ~ d x  

then 

(3.5) GN(A ) --* G o (A) 

for all bounded  Lebesgue measurable  sets. Indeed, convergence of the measures 
follows from the integrabil i ty of ]x[-~ on A and the fact that  when ~ > 0, 

(3.6) [ x I O L I ( N I x [ - 1 )  INlxl l l - 6 L i ( N [ x [ - ~ )  ~[x16 
L1 (N) N -~ L1 (N) 

as N - ~  oo uniformly for x ~ A  (see for example Bingham, Goldie  and Teugels 
[4], Theo rem 1.5.2). 

Proposit ion 3.1 Let  G, GN, and G o be as in (3.2), (3.3), and (3.4) respectively, 
and let Z a  o be the Gaussian random measure defined as in (1.8). Assume. . .  ~_ ~, 
~o, ~ ,  ... are independent and identically distributed with E r  E ~ = a  2 and 
E[r oo for  some integer m >  2. Suppose hN, N =  1, 2, . . . ,  is a complex-valued 
funct ion on [--~z, Tcl m satisfying hN( - - x l  . . . .  , - - x ~ ) = h N ( x l  . . . . .  Xr~), and L 2 is 
slowly varying at oo and bounded on bounded intervals. Suppose the following 
three conditions hold: 

(3.7) (i) KN (x 1, .. . ,  xm) -- N -  ~ + ~ (~- i)/2 L21 (N) hN (x j / N ,  . . . ,  xm/N) 

--, Ko(x~ . . . .  , x,,) 

uniformly on [ - - A ,  A]m for  any A > 0 ,  for  some constant H, and some function 
Ko that is continuous except  on a set o f  G~ ~ measure zero, 

I 
(3.8) (ii) Nlim ~ ~" IhNI 2 d ~ G = ~ IKol 2 d m Go < 0% 

N [ -  7z , rqm R m 

where d N = N u  E~l/2 (N) L 2 (N), and 

(iii) lim ~ [KNI 2 d m GN = 0 
A --* oo R m \ [ _ A , A ] m  

uniformly for  N = O, 1, .. . .  
Then the sequence 

m 

(3.9) UN = - e ,=1 h~(x) [xpt-"/aI2/lZ(Ix,[-i) dmx :~sl.--~,,:  
'*N (s) ~.[_~,~1,,, p= 1 
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converges in distribution as N ~ ~ to 

(3.10) (27cG2) m/2 5" Ko(xl  . . . .  , xm) Zao(dxl) . . .  Zao(dx,,), 
Rm 

where ~, = ~ ... ~ .  
( s ) m  s 1 s m  

Remark 3.1 1. The only explicit condition on ~ is ~ < 1. Further conditions on 
and H may be needed to obtain (i), (ii), or (iii). 

2. The proposition still holds with each lxp[ -~/2 replaced by lxpl -~/2 and L~ 
replaced by L(1,p ). That  is, one may have rn possibly different measures Gv, 
p = 1, ..., m, in place of m copies of G. 

Let ~ '  be the summation of those terms in ~ with si + s j, i:#j. The proposi- 
(s)m (s)m 

tion is proved by letting 0 < A < N zc and decomposing UN as 

~'  f + E '  I + (E  ~ - -E '  ~ )=yA+RN+R'u ,  
[ - A / N ,  A / N ] "  [ - zc, r~] rn\  [ - A / N ,  A / N ]  m [ - n ,  re] m [ - n ,  ~:]m 

and showing that only yA contributes to the limit. Since the independence of 
the r implies 

: ~ S l  " ' "  r  ~-  : ~$1 : . .  �9 : ~Sm : = r . . .  ~Sm 

if the si's are all distinct (Factorization Lemma in Avram and Taqqu [2]), we 
let 

(3.11) N = ~ L ~  J e ~ hNfx) 

1 

(3.12) ~ = &7~, )~ { J e , hN(x) 
N ( s ) ~ k [ - A / N , A / N ] m  

1 

RN= YN-- Y~v, 
g'~=u~-Y~. 

We approximate h N with step functions, using the following definition of a step 
function which excludes summation over diagonals. Let A > 0, let M be a positive 
integer, and let A_ M . . . . .  Av be a parti t ion of [ - -A,  A] into 2 M  intervals of 
equal length. Denote by ~ "  the summation over i(k)= - -M,  ..., M, k =  1, ..., m, 
where i(k)4= ++_ i(1) if k :4= I. We say that gA is a step function if 

(3.13) gA(Xl, ..., Xm)=~" g~ . .  ..... ~..., la, m . . . . .  a.,.,(Xl, ..., X.,). 

Such step functions are dense in L z (p) for any atomless measure p, as established 
by Major [14], pp. 28-29. 
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First we approximate  the kernels KN and Ko,  as in the proof  of Lemma  3 
of Dobrushin and Major  [TJ. 

Lemma 3.1 Assume the conditions of Proposition 3.1. Then there exist step func- 
tions {gA}A>O such that for any e>O 

(3.14) [. IKN--gAI 2 d m GN<e 
[ -  A,A] m 

when A > A (e) and N = 0 or N > N (~). 

Let now gA be as in Lemma 3.1 and set 

(3.15) I~=~---Y',' fl [. m e i Z , ~ N U - m ( ~ - ' ) / 2 L E ( N ) g A ( N x , , . . . , N x m )  
N (s)m L[-A/N,A/N]  

" 1-[ lxpI-~/2 g~[2 (tx~l-~) d x ,  . . .  dx,, ~s,... ~s~. 
1 

Lemma 3.2 Assume the conditions of Proposition 3.1. Then 

Proof. 

(3.16) 

where 

(3.17) B N = 

lim lira sup Var (Y~ - I~) = 0 
A N 

V a r ( Y ~ - I ~ v ) = E ~ Y ' .  ' BN(s,, sin) ~s, --~m 2 
dN (s)m "'" ' " 

m 

- i~SpXp  . . ,  __Ni_1_m( ~_ 
e t [ -hN(X1 , " Xm ) 1)]2 L 2 ( N )  

[ -  A/N, A/N} ~ 

m 
�9 gx (NXl ,  . . . ,  Nx,,)] I ]  [xp[ ~/2 L1/12([Xp I 1) dx~. . ,  dx, , .  

1 

Observe that BN may not be symmetric in (sl, ..., sin), since hN is not necessarily 
symmetric in xa, ..., xm. However  

E [ ~ '  BN(sl, . . . ,  s,,)~s~ "' '~sml 2 
(s)m 

. . . . .  ~s~l = E ] ~ '  sym(BN(s 1, .,s,,))~s, ~ z 
(s)~ 

= m !  a TM ~ '  [sym(BN(S 1 . . . .  , sm))[ 2 
(s)~ 

~ m !  ~y2m E '  [BN(S1 . . . . .  Sin)[2 
(s)~ 



Convergence in distribution of sums 73 

X . .  where sym f ( x l ,  ..., x m ) = ~ T ~ , f ( ~ ( 1 ) ,  ., x~(,,)) is the symmetrization of f .  

Hence (3.16) is bounded by 

(3.18) 
m! 0.2m S " ' 2  < m! 0 . 2 m  

d ~  Z '  [BN(Sl, " ' ,  m)l = ~ - N  • IBN(Sl' ""' sm)12 
(s)m (s)~ 

(2 n)" m ! 0 .2 " 

[ - -  A / N ,  A / N ]  TM 

. I hN(X l  . . . . .  x m ) _ _ N n - m ( ~  - 1)/2 L z ( N  ) g A ( N X l ,  . . . ,  Nxm)12 

m 

�9 I~ Ix / -~  El ( Ix / -  ~) d x ,  dxm, 
1 

by Parseval's equality. With a change of variables, the right side of (3.18) becomes 

m 

(2na2)m m! ~ [KN(X)--gA(x)121-[lxpl-~[Ll(NIxp[-1)/Ll(N)]dmx. 
[ -  A,A] "n 1 

Thus 

lim sup Var (yA-I~)  =< lim sup(2na2)" m! ~ [KN--gA[ 2 d" GN. 
N N [ -  A , A ]  m 

Hence, by Lemma 3.1, 

lim lim sup Var (Y~ - I A) = 0. []  
A N 

The following lemma demonstrates that the remainder RN= YN--ga does not 
contribute to the limit. 

Lemma 3.3 Assume the conditions of Proposition 3.1. Then 

lim lim sup Var (RN) = 0. 
A N 

Proof As in the proof of Lemma 3.2, we have 

where 

V a r ( R N ) =  E d ~' B N ( S I  ' " " '  sin) ~sl "'" ~sm 2 
N (s)m 

m] 
--< d ~  y~ I~N(s l ,  . . . ,  sin) ~s, . . .  ~sml 2 

(s)~ 

m m 
- - i ~ S p X p  ~ z \ 

/TN= ff e , nNtx) H Ixpl-~/2 g~/2(ix/-l) dmx. 
[ -- ~ z , ~ ] m \ [ - -  A / N ,  A / N ]  m 1 
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Thus 

Var (RN) < (2 ~ o-2)m m [ m 
d~, ~ IhN(x)12 I]lxpl-~ gl(lxp[-1)dmx 

[ -  ~, ~ ]m\ [ -  A / N , A / N ]  m 1 

m 

=(2rco-2)mm! 5 IgN(x)l 2 I-Ilxvl-~Egl(Xlxpl-1)/gl(N)] dmx. 
[ -  Nrc,N~zI~\[- A,A] ~ 1 

Hence 

lira lim sup Var (RN) < lim lim sup(27z O-2)mm [ ~ ]KNI 2 d m GN = 0 
A N A N Rm\[_  A,Alrn 

by (iii) of Proposition 3.1. [] 

As a consequence of Lemmas 3.2 and 3.3, one has the following 

Lemma 3.4 Assume the conditions of Proposition 3.1. Then 

lim lim sup Var(Y N - I  A) = 0. 
A N 

Next, we prove two lemmas which will be useful in finding the limit of I A. 
Let A be a bounded set in R, 

(3.19) aa(s)= S e 'SXlxl-~/2L~2(Ixl-1)dx, 
A/N 

and 

(3.20) Zu (A) = N (1 ~)/2 L~ 1/2 (N) ~ aA (S)~s. 
s 

Since ZN(A) has representation 

(3.21) ZN(A)=N(1-~)/2 L-la/2(N)2n S Ixl-~/2 Lt/12(]xl-1)dZr , 
A/N 

O -2 

where Zr is an orthogonal-increment process with ElZr (see 

for example Theorem 4.10.1 of Brockwell and Davis [5]), ZN(A) has the following 
properties: 

(i) ZN(A)=ZN(--A) 
(ii) Re ZN(A) and Im Zrc(A) have mean zero and are uncorrelated. 
(iii) Re ZN(A) and Im ZN(A) each have variance equal to �89 GN(A), if A c~ 
- A  =0. 
(iv) Re ZN(A 0,Im ZN(A 1) . . . .  , Re ZN(Am),Im ZN(Am)areuncorrelated, if + A 1 . . . .  , 
+ Am are disjoint. 

(Re denotes the real part and Im denotes the imaginary part.) 

Lemma 3.5 Let A1, ..., Am be bounded sets in R with + A~, ..., +_Am disjoint. 
Then 

(ZN(AO ' ..., ZN(Am) ) d ,(2xa2)l/2(Z~o(A1), ..., Zao(Am)) 
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where Zu and ZGo are as defined in (3.20) and (1.8) respectively. (The result holds 
for any i.i.d, sequence ~ satisfying E ~ = 0 and E ~ = 0-2.) 

Proof. By Property (iv), it suffices to prove that ZN(A) d ,Zso(A ) for any 

bounded set A in R with A c ~ - A = 0 .  We first prove that 

ReZN(A) d ,(2~za2)1/2 ReZoo(A) ' that is, ReZN(A) d ,N(0, �89 2 Go(A)). To 

make the dependence of az(s) on N explicit, write a~(s)=aa(s,N). Suppose 
throughout that N is large enough for A to be contained in ( -Nrc ,  Nrc). 
Observe that, as N ~ ~ ,  

( 3 . 2 2 )  N 1 - ~  El I(N) i f 2  ~ ( R e  aA(s , N ) )  2 = E I R e  ZN(A)] 2 : g 0  "2 GN(A)~ 7 t 0  -2 Go(A) 
8 

by Property (iii) of ZN(A) and (3.5). Thus, for eN--*0, there exists a sequence 
Vo(N) = Vo(N, eN) such that 

N 1 -~ L~ a (N) ~ (Re aa (s, N)) 2 < eN, 
Isl > Vo(N) 

and hence 

(3.23) 

Since we can write 

and since 

lim Nl-'L-11(N) ~ (Rea~(s,N))2=O. 
N -~ co [sl > Vo(N) 

Re ZN(A ) = N  (1 -~)/2 L11/2 ( N )  E Re a~(s, N )~  
IsI _-< Vo(N) 

+ n(1 -a)/2 L] 1/2 ( N )  E Re a~(s, N)~,  
Isl > Vo(N) 

E N (1 -~)/2 N)~s 2 L-11/2(N) E Re a~(s, 
Isl > Vo(/v) 

=Nl-~L-11(N)a 2 ~ (ReaA(s,g)) 2 ~0 ,  
Isl >vo(N) 

it suffices to show 

(3.24) N(1-~)IZ L11/2(N) ~ Rea~(s,N)~s a ,N(O,~aZGo(A)). 
Isl _-< Vo(N) 

Applying Schwartz's inequality, one has 

max N (1 - ~)/2 L-~ 1/2 (N) IRe a~ (s, N)] < max N (1 - ~)/2 L11/2 (N) la~ (s, N)I 
s s 

= max N (1 -=)/2 L] */2(N) I 5 e-i*~lxl-~/2 gl/2(ixl- 1) dxl 
s A/N 

<N(I-~)/2LS1/2(N)[ ~ Ixl-~L~(Ixl-1)dx-ll/2[ ~ dx] '/2 
~J/N ~J/N 

= [ G , , ( ~ ) ( I  ~ I /N) ]  "2  = o (1 )  
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since GN(A) ~ Go (A). Furthermore, 

lira gl-~L-11(g)a 2 ~ (Reaa(s,g))2=~a 2 Go(A), 
N ~ co ]s[ <Vo(N) 

by (3.22) and (3.23). Hence, Lindeberg's condition is satisfied (see Billingsley 
[-3], Problem 27.6), and thus (3.24) holds. Similarly, using Properties (ii) and 

(iii), one gets A(Re ZN(A)) + B(Im ZN(A)) e ~ A(Re Zoo(A))+ B(Im ZGo(A)) for 

real any 
numbers A and B. [] 

Let V= { 1/1,..., Vt} be a partition of {1 . . . .  , m}, and let 

(3.25) qvj(S)= I~ N(I -~)/2 L11/2(N) aa,p,(s) 
peV~ 

where Am~, ..., A,,,) are as in (3.13). 

Lemma 3.6 I f  IV[ = l < m, ... r 1, ~_o, 41... are independent and identically distrib- 
uted with E[r < o% and A(, i] (x) is a polynomial of degree ni, then 

1) Var ~ '  qvl (sl)... qv;(St) A}v,i (~,~) .. �9 A}~,I (~)  = o (1) 
S 

as N - +  oo. 

Proof By letting c(= 1 -  e and c~(x)= Ix I (~'- 1)/2/,11/2 (I x]- z), one may observe that 
the lemma is shown in the proof of Proposition 4.6 of Giraitis and Surgailis 
[-11]. The only assumption on c( used in that proof is ~' > 0 (i.e. ~ < 1). [] 

Let 

(3.26) I~ =(2~2) m/2 Z" g~,,,...~,.~, Z~o(&.~)... ZGo(A.~)) 

where ~ "  is as in (3.13), and let I A be as defined in (3.15). 

Lemma 3.7 Assume the conditions of Proposition 3.1. Then 

Proof By (3.15), (3.13) and (3.19), 

i A = Nm(1-~)/2 L-lm/2(N) ~, ~,, ga,(,,...,a,~, aa,,(SO.., aa,(,~)(s~) ~ ... ~ .  
(s),n 

The sum over (s),, may be written as 

Z ' =  Y - Z').  
(s),,~ (s),. (s)m (s)., 
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Focusing on ~ ,  one has 
(s) 

N,,,O -=)/2 L~m/2 (N) ~ ~,,  ga,,,....,A,~, aa,,,(sO.., aA,(..,(S,,) ~,. . .  ~s~ 
(s)m 

= ~ "  g ~ , , , . . . , ~ ,  Z p ( & ~ ) ) . . .  z ~ ( & ( m ) )  

a , y,,,  ga ,  . ) , . . . , a . , . )  (2 7r 02 )  m/2 gGo (A i(1)).., ago (A i(m)) = IA 

by Lemma 3.5. The remainder ~ - ~ '  may be written 
(s)~ (s)m 

V 

where ~ is over all partitions V= {V~, ..., Vz} of {1, ..., m} such that IV I = l<m, 
V 

?(V,, A)=Z'  qvl (Sx)... qvz(Sz) ~!v,I... ~!~l, 
(sh 

and q~ is as in (3.25). Observe that ]Vil > 2 for at least one i = 1 . . . . .  I. To complete 
the proof  it suffices to show E[712=o(1) as N ~  ~ ,  but this follows from Lem- 
ma 3.6. []  

Proof of Proposition 3.1 We want to show that Up, defined in (3.9), converges 
to 

g--(2rcff2)m/2 I" Ko d~ Zao. 
Ilm 

Recall that Up= Yp+R'N where YN is as in (3.11). We show first that YN e , y 

and then that Var (R})---, 0. To show that YN d , y, let I A and I A be as in 

(3.15) and (3.26) respectively. Then 

E[/oA-yl2=(2rca2) 'n j" ]gA~KoIZdmGo-+O 
Rm 

as A ~ o% and hence I A d ) y. Moreover, I~ a )Io A, by Lemma 3.7. Therefore, 
since 

_< 1 
lima limpsup P [I IA -- YN] > e] -- liana l imsup ~-  Var (IN A -- YN) = 0, 

by Lemma 3.4, one has Yp e ~ Y, by Theorem 25.5 of Billingsley [-3]. 

Now we show Var(R~v)~0. R}v consists of those terms of Up where the 
si are not all distinct. Let V= {V1 . . . .  , V~} be a parition of {1 . . . . .  m}, and suppose 
s~ =sj if i a n d j  belong to the same element of the partition. Then, by the Factori- 
zation Lemma in Avram and Taqqu [2], 

:~ s, . . .  ~s~: = QIvll ( ~si) . . . Ol~,l ( ~s,), 
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where Q is the univariate Appell polynomial associated with ~. Hence, 

UN= ~ Y~(V) 
V 

where 

YN(V) = ~ '  e . . . .  hN(Xl, ..., Xm) 
(s)z v [ -  ~,~]~ 

"~I IXpl-~/2 L~2 (Ixp]- 1) dXl ... dxm~ Qjv, i (~,)--- Q[vfl (r 
I ) 

To complete the proof, it suffices to show Var(YN(V))~0 if IV I<m. Recall 
that YN of (3.11) was written 

YN= Y~ + R,,, 

and Y~ of (3.12) was approximated by I A of (3.15) in Lemma 3.2. Analogously 
we may write 

YN(V) = yA(v) + RN(V) 

and approximate yA(v) by IA(v), where 

y A ( V )  = 2 '  f e . . . .  I'IN~X 1 . . . . .  Xm) 
(s)z ~-[-  A/N,A/N] m 

m } 
�9 [-[Ixpl -=/2 g~/2( lx~l -*)dx , . . .dxm Qlal({ ,J- . .Qiv~l({ , , ) ,  

1 

and 

1•.'• ~ -i(sIXxP+"+s'EX') Nn-"(~-l)/2 L2(N) IA(V) = e . . . .  
N (sh k [ -  A/N,A/N]m 

�9 gA(NXl . . . .  , Nxm) ~ ]Xp[-~/2 L~2(lxpl- 1) dxl.., dx,, t Qlv~l (~) . . .  Qiv~[ (~,). 
1 

Indeed, setting 

-i(s, Zx,+ ... +s~L xp)[hN(xl, ..., x,,) 
[ -- A/N,A/N]m 

_ Nn-m(~- 1)/2 L2(N) gA(NX~ . . . . .  Nx~)] 

�9 1~ Ix~l-~/2 mll/2(iXpl- 1) dXl  ... dxm, 
1 

one has 

(3.27) - .. Qr~l ( ~,) 2 Var(yA(V)-- I~(V))=E ~ '  BN(V) Qlvll(~i) �9 
(sh 

<~C(V)~'IBN(V)I2< c(v) ~ INN] 2, 
(sh (s)m 
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where 
C (V) = max [EQt v,l (~o) QtvjI (40)3 l 

G J  

and B N is as in (3.17). The last inequality in (3.27) holds because every term 
in the sum on the left is included on the right. Hence 

lima limNsup Var(Y~(V)--IA(V))_--<liAna lira sup d2 C(V)(~)~ IB~l 2 

=limlimsupl!(2~z)~C(V) ~ ]KN--gAI2dmGN =0 
A N 

[ - A , A ] ~  

as in the proof of Lemma 3.2. One also has lim lira sup Var(RN(V))=0, by an 
A N 

argument that parallels the proof of Lemma 3.3. To complete the proof of the 
proposition, it suffices to show 

(3.28) lira Var(IA(V))= 0. 
N -'* o9 

Since 
A t! t IN(V)= E ga E qv, (Sl)"" qvz(S,) QIv, l(~,,)'--Qiv, l(~,), 

(sh 

where qv~ is as in (3.25), Lemma 3.6 implies (3.28). [] 

4 Proof of the main theorems 

The same techniques used to expand univariate Appell polynomials in Theo- 
rem 1 of Avram and Taqqu [2] apply in the bivariate case, and thus, using 
the notation of Sect�9 1, we have 

Pm,n(XJ 'Xk)= 2 bs-~,'"bJ-~.,bk-~+,"-bk ...... : ~ ' " ~  . . . .  " 
( s ) ~  + 

(S)m+n 8 1 : - - ~  Sva+n:--o9 
(1.5) and (1.6). Hence 

and :~1 ... ~ . . . .  : is the Wick power defined in 

1 N-1N-1 1 N - I ~ I  i 
E e ~(j- k)" lul -~ L2 (lu[- 1) du (4.1) • E E aj-kPm,.(Xj, X k ) = ~  ;=o k=O 

j = O  k = O  - ~  

m m-t -n  

E ~ H ei(J-'P)xP U ei(k-sp)XP 
(s)m+n [ - ~ z j z ] m + n  1 m +  1 

m q - n  

" 1~ Ixpl-~/2 L1/2(ix; I- 1) dm+.x  : G " "  ~ . . . .  : 
1 m+n 

= d ~  2 I e ~ hN(x) 
(s)~ +. [-~,~]~+~ 

�9 I] Ix/-~/2 G/2(lx, i- 1) dm+,x :~s,... ~ . . . .  : 
1 
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where 

(4.2) hN(x 1 . . . . .  Xm+n)= S N xp+u S N Xp-U [u] 

SN is as in (2.5), 

-a g2(lul-1) du, 

(4.3) dN= N n L("~ + ~)/2 (N) L 2 (N), 

and 

(4.4) H=(m + n)(o:-- l )/2 + fi + 1. 

Proof of Theorem 1.1 By (4.1) it suffices to verify conditions (i), (ii), and (iii) 
of Proposition 3.1 for h N given by (4.2) and H as in (4.4). Relations (1.10) and 
(1.12) imply - � 8 9  1. One has 

KN(xl . . . . .  Xr,+,) = N -n+('~+n)("- i)/2 L21 (N) hN(xl/N, ..., xm+JN) 

=N-(P+l)Lz l (N)  SN xp/N+ SN xp/N--u ul-~L2(lu1-1) 
- - n  \ 1  / \ r n + l  

= ~ A N xpq-u A N xp--u ul-I~[-La(N[uI-1)/L2(N)j du. 
- N r c  m +  1 

du 

Suppose first that L1 and L 2 are asymptotically constant. If K 0 is as in (1.16), 
then K N--,K 0 uniformly for x ~ [ - A ,  A]m+" by Lemma 9 in Terrin and Taqqu 

m r ~ + n  

[191, because K s is a function only of ~ Xp and ~ Xp. Proposition 2.1 and 
1 r n + l  

Lemma 2.5 directly imply conditions (ii) and (iii). 
Suppose now that LI or L2 is not asymptotically constant. Since all condi- 

tions on c~ and fl involve only strict inequalities, we still get K N --* K 0 uniformly 
as well as conditions (ii) and (iii) by slightly modifying a and fl and using proper- 
ties of slowly varying functions (see for example Relation (3.6).) [] 

Proof of Theorem 1.2. As in the proof of Theorem 1.1 it suffices to verify condi- 
tions (i), (ii), and (iii) for 

hu = ~ SN(Xl +U) SN(X 2 --U)[U I -B L2(lu]- 1) du 
- r e  

and H = e + ft. The following results in Terrin and Taqqu [19], Lemma 9, Propo- 
sition 1, and Lemma 10, directly imply conditions (i), (ii), and (iii), if L1 and 
L2 are asymptotically constant. Since the conditions on c~ and ]? involve only 
strict inequalities, (i), (ii) and (iii) also hold when L1 and L2 are slowly vary- 
ing. [] 
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