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Ising and Heisenberg magnets with nearest-neighbor ferromagnetic exchange Yl and 
next-nearest antiferromagnetic exchange J2 and randomly distributed frozen-in nonmag- 
netic impurities of arbitrary concentration 1 - x  are studied by several methods: system- 
atic series expansions in x, 1 - x  and inverse temperature (l/T) as well as Monte Carlo 
simulation. Depending on R =-Je/J1, T and x the model is in paramagnetic, ferromagne- 
tic, antiferromagnetic or spin glass phases. The microscopic magnetic structures of all 
these phases are investigated and found to be more complicated than usually (e.g., the 
ferromagnetic state contains spins and clusters either aligned antiparallel or not aligned 
at all, when "frustration" effects make bonds ineffective). We suggest that the concentra- 
tion x c of magnetic ions below which no (anti-)ferromagnetic long range order occurs 
depends on R continuously, and Xc--,1 at the multicritical point (Rm, T=0) where the 
order changes from ferromagnetic to antiferromagnetic. Our results for phase diagram, 
susceptibility etc. are compared to recent data on the EuxSr~_xS system and very good 
agreement is found. 

I. Introduction 

Recently there has been very much interest in the 
properties of systems with quenched disorder [1-4], 
e.g. magnets diluted at random with nonmagnetic 
impurities. If the magnetic interactions are purely 
ferromagnetic and the dilution amounts to just re- 
move spins (i.e., no significant change of lattice pa- 
rameter, electronic structure etc. occurs and hence 
the exchange constants between the remaining spins 
remain unaltered), one finds that magnetic long-range 
order occurs for concentrations x of the magnetic 
ions exceeding the percolation threshold xp, while for 
x <xp only finite (superparamagnetic) clusters occur. 
It is well known that xp depends on the geometry of 
the lattice and range of interaction only, but is inde- 
pendent of interaction strengths, anisotropy (i.e., the 
same for the Ising and the Heisenberg case), spin 
quantum number, etc. Both the properties of the 
percolation transition as x approaches xp [5] and the 

magnetic transition as T approaches Tc(x ) [6] are 
fairly well understood. 
The situation is much more complicated if competing 
magnetic interactions occur, even if a ferromagnetic 
phase is stable in the nondiluted system due to suf- 
ficiently strong ferromagnetic nearest neighbor ex- 
change dl .  One then finds that a spin glass phase 
occurs for a regime of concentrations up to xc, where 
x c sometimes exceeds the nearest-neighbor percola- 
tion threshold Xp n only slightly (e.g. in Fe diluted 
with Au [7]) and sometimes x c exceeds x~ n distinctly 
(e.g. in Eu~Srl_xS [8]). For a certain range of x the 
system upon cooling first orders ferromagnetically 
and at lower temperatures exhibits a second tran- 
sition to a spin glass phase which there is the mag- 
netic ground state [7, 8]. It must be noted, however, 
that at present there is no agreement whether the 
spin glass state is a "phase" in the sense of true 
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thermodynamic equilibrium or whether spin glass 
freezing is only a nonequilibrium effect [2, 9]. In fact, 
superparamagnetic clusters are frequently invoked to 
explain this phenomenon [-10], while the common 
theoretical models employ Ising or Heisenberg mo- 
dels with bond disorder rather than site disorder [2, 
9]. Clearly, picturing a spin glass as an assembly of 
noninteracting clusters of suitable sizes whose mag- 
netic moments experience suitable anisotropy bar- 
riers [10] one has enough parameters at ones dis- 
posal to reasonably fit experimental data; but we feel 
that this procedure does not really provide the de- 
sired theoretical explanation of the phenomena con- 
sidered. On the other hand, the Edwards-Anderson 
model [-2, 9, 11] with gaussian distribution of ex- 
change between nearest neighbors on a lattice hardly 
explains any experimental data quantitatively, al- 
though computer simulations showed that it agrees 
with experiment qualitatively [2, 4]. In order to re- 
concile it with experiment, it was suggested [12] to 
reinterpret it as a model of randomly interacting 
clusters rather than randomly interacting individual 
spins. Making this reinterpretation quantitative one 
would have to determine the distribution of cluster 
size, magnetic moment etc. from a microscopic 
theory. We feel that this task is too complicated for 
materials like A u - F e  or C u - M n  in the vicinity of 
the respective percolation concentrations: there de- 
viations from random mixing are expected in these 
materials [10]; and hence the precise distribution of 
"chemical clusters" is unknown; mean-free path ef- 
fects could already affect the long-range indirect 
Ruderman Kittel exchange at these concentrations, 
while electronic correlation effects could affect both 
the  atomic moments and the direct exchange of the 
magnetic atoms. Therefore we concentrate here on 
insulating systems like EuxSr 1 xS, where such elec- 
tronic effects do not occur, and there are good rea- 
sons to believe that atomic moments and exchange 
constants do not depend on x [13]. In addition, this 
system experimentally can be produced for arbitrary 
x and ample evidence for the random character of 
mixing exists [13, 14]. Hence the distribution of 
clusters is just that of the site percolation problem. 
This is our motivation to study diluted Ising- and 
Heisenberg magnets with nearest neighbor ferromag- 
netic and next nearest neighbor antiferromagnetic 
exchange, which is the simplest site-disorder problem 
exhibiting nontrivial spin glass behavior and at the 
same time provides a quantitatively accurate repre- 
sentation of real materials. In the extremely dilute 
regime (x~x~ "n) this approach has already been used 
to quantitatively identify contributions due to super- 
paramagnetic clusters in the frequency-dependent 
susceptibility [14]. The blocking of the clusters was 

shown to be due to intracluster dipolar anisotropy, 
while the intercluster dipolar coupling gives rise to a 
dipolar-spin glass freezing at very low temperatures. 
In the present paper where much higher concen- 
trations are considered and the temperatures of in- 
terest are orders of magnitude higher, dipolar in- 
teractions are less important and will be disre- 
garded. 
Our paper is organized as follows. In Sect. II the 
ground state properties of our systems are consid- 
ered, concentrating on the case of an Ising square 
lattice. In Sect. III results for nonzero temperature 
based on both high temperature expansions and 
Monte Carlo simulations are described. Section IV 
contains a detailed discussion of experimental data for 
EuxSr l_xS [8, 13, 15, 16] in the light of our theory, 
while Sect. V contains our conclusions. Some aspects 
of this approach have very briefly already been de- 
scribed in Ref. 2, 16, 17. Our computational details 
on concentration expansions are found in Appendix 
A and on high temperature expansions in Appendix 
B. 

II. Ground State Properties 

Let us first consider an Ising square lattice with 
J1 >0, J 2 < 0  at T=0 .  The nondiluted system is fer- 
romagnetic for R==-J2/JI>Rm = - 1 / 2 ,  while it has a 
layered antiferromagnetic ("superantiferromagnetic") 

n n n  structure for R < R  m. For x <xp the state consists of 
an arrangement of finite clusters, a few of which are 
shown in Fig. 1. Some clusters have a ferromagnetic 
ground state (Fig. 1 A), while for other clusters some 
spins are aligned antiparallel (Fig. 1 B). There are also 
configurations of spins (C1, C2) where the ground 
state depends on R: the cluster shown has all spins 
parallel for R > 1 - 3 ,  while one spin aligns antiparallel 
to the other ones for R < - ½ .  At the multicritical 
value R ~ = - ½  the ground state of this cluster is 
degenerate, because both possibilities C1, C2 have 
then the same energy. With respect to the contri- 
bution of this cluster to magnetic properties this 
cluster for R = R  m effectively behaves as if it were 
"split" into two independent smaller clusters (in this 
case one cluster containing 4 spins and a single 
spin). 
Even more interesting is the behavior of the cluster 
shown in Fig. 1D. For R > - ½  the ferromagnetic 
bonds will align the three spins in the left lower part 
of this cluster parallel to each other, irrespective of 
the configuration of the remaining spins, which are 
coupled to this cluster only by antiferromagnetic 
bonds. Since it is impossible to satisfy the three 
antiferromagnetic bonds at the same time, there are 
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Fig. 1. Ground state configurations of various clusters of magnetic 
atoms (black dots). Nonmagnetic atoms are shown as open circles, 
nearest-neighbor bonds are indicated by full and next-nearest 
neighbor bonds by broken lines. For further explanations cf. text 

A) 
" , 7 " ,  " 7 " .  " 

v v v 

J2 < -JJ4  

B) 

o:r, 
J2 < - Jl/3 

C1) C2) 

32 < -Jl//* 

D) 

Fig. 2. Reversed spins in the vicinity of nonmagnetic impurities 
(open circles) occurring in the ferromagnetic region of a diluted 
system of magnetic atoms (black dots). Nearest-neighbor bonds are 
indicated by full and next-nearest neighbor bonds by broken lines. 
For further explanations cf. text 

three degenerate spin configurations D1, D2, D3. 
Hence for arbitrary R in the range - ½ < R < 0  this 
cluster has a 6-fold ground state degeneracy, rather 
than the usual 2-fold Ising degeneracy of the clusters 
shown in Fig. 1 A-C. For R < -  ½ the antiferromag- 
netic bonds overrule the ferromagnetic ones, i.e. the 4 
spins of the next-nearest neighbor square will order 
antiferromagnetically. The 5 th spin (in the left lower 
corner of this cluster) is then effectively decoupled 
from the rest because this spin can point up or down 
with equal probability for all R < -½. Hence for R < 
-½ the cluster of Fig. 1D has a 4-fold degeneracy. 
For R=Rm=-½ again all these ground states for 
R < -½ and R > -½ become equivalent, which yields 
an even larger ground state degeneracy, and a smaller 
degree of spin correlation in that cluster. Also for 
other R due to the degeneracy the average cor- 
relation for some pairs of spins has a reduced value. 
We will return to the appropriate definition of sus- 
ceptibilities measuring these correlations below. 
While for clusters containing only up to five spins 
there is only one special value of R (namely Rm) 
where an enhanced degeneracy occurs, larger clusters 
exhibit enhanced degeneracy also for other rational 
values of R. E.g., the cluster of six spins shown in 
Fig. 1E has a degenerate ground state (El, E2, and 

another configuration not shown) for R>  1 -~ ,  while 
for R < - ½  there is only one nondegenerate ground 
state configuration (E3), and for R = - ½  all these 
states are degenerate. 
Before we try to draw more quantitative conclusions 
let us consider the opposite limit, x-*l, where the 
system is expected to have a ferromagnetic ground 
state. There we have to consider the effect of localized 
impurities or small clusters of impurities on the local 
magnetic order in their environment only, Fig. 2. 
There it may occur that ferromagnetic bonds are 
overruled by antiferromagnetic ones: e.g., for R < -¼ 
the spin close to the impurity configuration of 
Fig. 2A orders antiparallel to the remaining ferro- 
magnetic net, while for R > -¼ it stays parallel, and for 
R = -¼ both orientations of this spin are degenerate. 
Similarly in Fig. 2B we have an antiparallel "dimer" 
(i.e., cluster containing two spins) for R < - ~ ,  which 
becomes effectively decoupled from the ferromagnetic 
net for R = - ½  and ferromagnetically aligned for 
R > - ~ .  Similarly configurations containing a larger 
number of close-by impurities may give rise to larger 
and larger antiparallel clusters. Most interesting, 
however, is the defect configuration of Fig. 2C: there 
it is favorable to have either one of two spins anti- 
parallel to the ferromagnetic network provided R < 
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Fig. 3 A - C .  M o n t e  Car lo  genera ted  4 0 x 4 0  la t t ices  at  concen-  
t r a t ions  x = 0 . 8 2  (A), x = 0 . 6 6  (B) and  x = 0 . 3 5  (C). M a g n e t i c  a toms  
are shown  as b lack  dots, n o n m a g n e t i c  a t o m s  are not  shown. 
Nea re s t -ne ighbor  bonds  are ind ica ted  by full and  next -neares t  

ne ighbor  bonds  by b r o k e n  lines. Fo r  fur ther  exp lana t ion  cf. text  

--¼, but it is undecided which of them and hence the 
states C1, C2 are degenerate. As a result, the fer- 
romagnetic state of such a diluted Is•rig system with 
competing interactions has an enhanced ground-state 
entropy. We may view the effect of the impurity 
configuration in Fig. 2 C to split off an ant•ferromag- 
netic dimer from the ferromagnetic net. As a result of 
the effects considered in Fig. 2, less spins contribute 
to the magnetization of the percolating network than 
would be expected on purely geometric grounds. 
A particularly interesting case occurs in the im- 
mediate vicinity of the multicritical point Rm= ½ and 
very low impurity concentration (x- , I ) .  For R = R m  

not only the bulk energies of the ferromagnetic and 

superantiferromagnetic phases become equal, but 
also their interface energy (in the ground state) van- 
ishes [18]. Nevertheless in the ground state of the 
pure system (x=  1) at R = R  m there cannot occur any 
clusters having all linear dimensions finite, since their 
corners still would cost energy. In the presence of 
nonmagnetic impurities, however, it is possible to 
create e.g. finite domains of sup•rant•ferromagnetic 
(SAF) phase in a ferromagnetic (F) environment: if 
the domain walls suitably cross by close to impurity 
sites (Fig. 2 D) energy is won similarly as in Fig. 2 A- 
C there, and this energy may compensate the un- 
favorable corner energy of the domains. Note that 
this argument holds for arbitrarily small dilution 
since then only the size of the domains must become 
large enough. As a result, we expect the lines separat- 
ing the ferromagnetic (or sup•rant•ferromagnetic) 
phase from the spin glass phase to come together in 
the multicritical point R =R,, ,  x = 1.0 (see Fig. 4 be- 
l o w ) .  

We now consider the effect that the impurities have 
on the magnetic order when one no longer considers 
isolated impurity configurations but rather a finite 
impurity concentration in a large lattice. Figure 3 
shows several Monte Carlo samples of a 40 x40 
lattice where sites were filled at random by magnetic 
atoms (black dots) at concentration x. At x=0.82 
(Fig. 3 A) there is one spin (encircled), which is re- 
versed for all - ½ < R < 0 ,  while the other reversed 
spins shown are reversed for R < - ¼  (corresponding 
to Fig. 2A) or for R <  -½ (if a next-nearest site of the 
reversed spin is missing). At x=0.66 (Fig. 3B) we are 
definitely beyond the nearest-neighbor percolation 
threshold (x~'=0.59 on the square lattice [-19]), and 
hence most of the spins do belong to the percolating 
network. But it is easy to see that for suitably nega- 
tive R the ground state of this network is not fer- 
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romagnetic: e.g., overturning the encircled group of 
atoms we break four ferromagnetic bonds but at the 
same time 14 antiferromagnetic bonds become satis- 
fied. Thus it would be unfavorable if this group of 
atoms would align parallel to its environment. Thus, 
for R < - ~ 4  this cluster of spins will be aligned 
antiparallel to its environment. It is easy to identify 
many other clusters of spins which align antiparallel 
to their environment for R < - I / m ,  where the num- 
bers l, m of unfavorable ferromagnetic and favorable 
antiferromagnetic bonds can be found by simple 
counting. As a result, one can convince oneself that 
the percolating network in Fig. 3 B is completely split 
into many ferromagnetic clusters of intermediate size 
which want to align antiparallel to each other. Of 
course, due to their mutual interactions it is not 
possible in general to find an arrangement which is 
satisfactory to all these clusters: a lot of bonds be- 
tween the clusters will be "frustrated" [20] and hence 
a uniquely aligned state of this spin glass phase does 
not exist. There will be several ways by which the 
percolating net is cut into "clusters" aligned antipar- 
allel to each other which yield the same ground-state 
energy. In addition to this "global degeneracy" of the 
spin glass phase there will be similar local degeneracy 
effects as have been found for small clusters (Fig. 1 D) 
and in the ferromagnetic phase (Fig. 2C). 
Figure 3C shows a configuration at x=0.35, i.e. close 
to the next-nearest neighbor percolation threshold 
(x~n~=0.41 on the square lattice [19]). Ferromagnetic 
clusters are coupled together by antiferromagnetic 
bonds to form larger clusters of the spin glass phase. 
But again it occurs that the resulting larger clusters 
are degenerate (like the one marked in the upper 
part, where three ferromagnetic clusters are coupled 
together by three antiferromagnetic bonds in a con- 
figuration corresponding to an antiferromagnetic tri- 
angle). It also happens that antiferromagnetic bonds 
in these coupled clusters turn over parts of the orig- 
inal ferromagnetic clusters (like the one encircled 
with a dash-dotted line). As a result, geometric nea- 
rest and next-nearest neighbor percolation are not 
expected to have much influence on magnetic proper- 
ties here: the essential point is to minimize the energy 
by suitable magnetic clusters which do not coincide 
with the geometric ones, but are derived from count- 
ing favorable and unfavorable bonds. I.e., a "geomet- 
ric cluster" is a'group of spins connected by exchange 
forces, while a "magnetic clusters" is a group of spins 
with fixed relative orientations at T=0. 
These considerations lead us to draw the qualitative 
ground-state phase diagram in Fig. 4. At R--+0 the 
boundary x'~ between paramagnetic and spin glass 
phases (dash-dotted curve) starts out at x~"", but for 
R < 0 we expect that x'c >x~ "", and we speculate that 
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(sup~_-i-- ~ - - - - - - - - - 1 1 0  - - - - - p u r e  system 
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Fig. 4. Schematic ground state phase diagram of the diluted Ising 
square. Full curve denotes x~' while dashdoned curve denotes x' c 

x'c--+l for R--+R m. For Xp""<x<x'c there is geometric 
percolation but there is no long-range spin corre- 
lation in the ground state, the system is a kind of 
"cooperative paramagnet" [21]. As x--+x' c larger and 
larger magnetic clusters are formed. Since the bond 
counting for very large clusters yields different an- 
swers for the magnetic structure of the cluster de- 
pending whether R > R l m = - l / m  or R<Rzm, and l, 
m~oo as the cluster size diverges, the set of critical 
values {Rz,,} is quasicontinuous. Hence we expect x' c 
to be a more or less smooth function of R, although 
we can not exclude that there are certain singularities 
in higher derivatives of x' c with respect to R at these 
values {Rim } (which should be most pronounced if 
both l and m are small). A similar behavior we expect 
for the boundary x~' between spin glass and fer- 
romagnetic phase, apart from the fact that it starts 
out at x~ n for R~0 .  In the regime of the spin glass 
phase (x'c<x<X'c') the size of ferromagnetically or- 
dered regions is finite although there is long-range 
magnetic correlation. From Fig. 3 we expect that the 
size of these ferromagnetic clusters within the spin- 
glass phase diverges when x--,x'~', and the magneti- 
zation at x ~ x  c sets in continuously rather than via a 
first-order transition. 
In order to put these ideas on a more quantitative 
basis, we may investigate the behavior of ferromag- 
netic and spin glass susceptibilities in the disordered 
phase [2] 

kB T ZF = ( 2  ( S, S j> r)/N, (1 a) 
tJ 

kB T Z~A = ( 2  (S iS  j)  2)IN, (1 b) 
i) 

and E22] 

k B T Zsa = (~  ( Si S j)  o ( Si S j> T)/N. (1 c) 
i j  
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For T =  0 there is no difference between ZeA and Zsa, 
of course. For  R < - ½ it is also interesting to study a 
susceptibility sensitive to superantiferromagnetic 

(SAF) ordering Q I = a ( 1 , 0 ) , Q 2 =  (0,1), a is the 

lattice spacing} 

kB TZSAF = ( E  e~°~ (ri- r j ) ( S  i S j )  T 
ij  

+ ~ e iQ2( ' ' - ' j )  (SiSj) T)/N. (1 d) 
i j  

We hence want to calculate these susceptibilities as a 
function of R and x and by locating a divergence find 
the lines x'c(R) and X'c'(R). In Appendix A this is 
at tempted by a systematic expansion of both k BTXF 
and kBTZE A in powers of x, and coefficients up to 
order x 9 are obtained. However, since up to that 
order only clusters with at most  9 spins contribute, 
only changes at Rz, ~ with small l, m can show up in 
these coefficients, and therefore an extrapolation of 
such series in principle is unable to clearly reveal the 
continuous variation of x'~ and x~' with R. It is also 
doubtful that a meaningful estimation of x'j is possi- 
ble at all, since the onset of a spin glass order 
parameter  at x > x'~ should affect kn T Z and hence the 
concentration where k B TZ diverges is changed. There 
is even doubt  that a meaningful extrapolation of the 
series beyond x~ "" is possible [23]: just as in a dilute 
magnet  Griffiths singularities [24] occur for 
T~(x)< T <  T~(1), one expects related singularities for 

nnn P x,  < x < x~ in our problem. Of  course, neither a ratio 
analysis nor a Pad6 approximant  analysis approp- 
riately handles such singularities. As a matter  of fact, 
both the series for x' c and x~' are very illbehaved, and 
extrapolation yielded rather crude estimates of X'c(R) 
and x;'(R) only (Fig. 5). Within our accuracy x'c(R) 
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Fig. 5. Ground state phase diagram of the diluted Ising square as 
obtained from the series analysis. Dots are the Pad6 estimates for 
the transition paramagnet-spin glass (x'c), crosses are the Pad6 
estimates for the transition spin glass-ferromagnet (x'() 
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Fig. 6. A Ground state magnetization of a classical fcc Heisenberg 
ferromagnet as a function of concentration as obtained from 
Monte Carlo simulation. B Variation of the T= 0 phase boundary 
between spin glass and ferromagnet (x~') as obtained from simu- 
lation 

nnn f and xp coincide except for R=Rm, where x C is 
enhanced but little evidence is provided that actually 
X'c(Rm)=l. We further find that X'c'>X'c, as expected, 
possibly approaching unity for R ~ R  m. 
An alternative to this series expansion from the dis- 
ordered regime {where one systematically counts the 
contributions of all clusters as shown in Fig. 1 to the 
susceptibilities in Eq. (1)} is an expansion of the 
magnetization M in powers of y = 1 - x, by systemati- 
cally considering all possible defect configurations in 
a ferromagnetically ordered phase (Fig. 2). The result- 
ing series is also quoted in Appendix A. In principle, 
one could locate x~' by looking for a pole in the 
derivative ~M/~ty, but in practice our series are too 
short to yield meaningful estimates. Note also that 
this method again implicitly assumes the T = 0  spin 
glass-ferromagnet transition to be of second order. 
More satisfactory accuracy can be obtained utilizing 
Monte  Carlo methods (for details on this method see 
[4]) Fig. 6 A shows the magnetization of classical fcc 
Heisenberg ferromagnets as a function of x for va- 
rious values of - R .  In this case R , , = -  1, and as 
expected the magnetization breaks down with very 
small impurity concentration here. Of  course, the 
Monte  Carlo simulation deals with a finite system 
(typically N ~ 103 spins), and hence there is a nonzero 
"finite size-tail" in the magnetization for x<x~': the 
root mean square magnetization shown here is just 

l/kB TZF/N in this region. The strong increase of this 
quantity as x-*x~' is consistent with a divergence of 
Ze there, as conjectured above. The smooth decrease 
of M as x is lowered for R > R  m is consistent with a 
second-order transition, too, although the finite size 
effects are too large to definitely rule out a first-order 
transition. Figure 6B shows then our final estimate 
for x'c'(R), which indeed seems to be an extremely 
smooth function of R. 
We expect a similar behavior also for the d = 3  Ising 
case, apart  from the fact that T~(Rm)#0 there and 
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presumably also x'c(Rm) < 1. Even more complicated is 
the microscopic spin structure for the d = 3  Heisen- 
berg model. Apart from antiparallel spins one expects 
also canted spin configurations; moreover, due to the 
much larger number of nearest neighbors in the fcc 
lattice the effects shown in Fig. 2 can occur only in 
much higher order of ( l - x ) :  e.g., 7 rather than 3 
close by impurities are needed to allow for a spin 
aligned antiferromagnetically in the ferromagnetic 
phase, etc. In view of these difficulties we do not 
attempt to extend our concentration expansions to 
the ground state of Heisenberg magnets. 

III. The Transition from the Paramagnetic 
to the Ferromagnetic Phase 

While concentration expansions (Appendix A) seem 
to work well at both T- -0  and nonzero temperature 
for noncompeting exchange [25, 26], our ground- 
state results have shown that this method is very 
problematic for competing exchange. Hence we did 
not attempt to extend it to nonzero temperature here, 
but restrict ourselves to the use of high temperature 
series expansions (for technical details see 
Appendix B) and Monte Carlo methods. While the 
high temperature expansion technique [27] has been 
fairly useful for diluted Ising systems [28], for diluted 
Heisenberg systems this method has been very pro- 
blematic [29, 30]: due to erratic behavior of the 
series no reliable estimates of T~(x) could be obtained 
for x<0.5,  using nearest neighbor exchange only. In 
our case of competing interactions, where only terms 
including 4 th order in (1/k B T) are available 
(Appendix B), the series becomes already somewhat 
irregular for x<0.7,  Fig. 7. There a plot of the suc- 
cessive ratios al/a ~_~ versus order of expansion 1 is 
given, where a~ are the expansion coefficients of the 
susceptibility. As is well known, for l--* oo these ratios 
should follow a straight line, whose intercept with the 
ordinate yields T~, while from the slope one can get 
the susceptibility exponent y [27]. Clearly, with such 
a limited number of terms a meaningful estimation of 
the asymptotic critical behavior is not possible, and 
hence we regard our exponent estimates ~eff only as 
"effective susceptibility exponents" describing the ap- 
parent critical behavior not too close to T~. A similar 
expansion for the correlation length was performed 
also, the ratio plot looks very similar to Fig. 7 again 
and yields results consistent with that of the suscepti- 
bility. 
From Fig. 7 we observe that the series are well- 
behaved for x>0.7,  and also the exponent )~eff stays 
close to about 1.4 (which is not too different from the 
expected asymptotic value 7=1.38 [31]), while 
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around x~0 .5  the series start to become irregular 
and the exponents start to increase distinctly, Fig. 8. 
For x--0.5 to 0.3 the series are too erratic to yield 
any conclusive answer, while it is fairly clear from 
Fig. 7 that To(x)=0 for x<0.25. 
It is interesting to compare this behavior inferred 
from a very short series to that of a nearest-neighbor 
Heisenberg ferromagnet, analyzed with the same 
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Fig. 9. Tc/O plotted versus R for several values of spin quantum 
number S. The literature value for EuS TjO=0.81 [33] is in- 
dicated by the broken horizontal line 

number  of terms. There one finds (Fig. 8) that the 
effective exponents stay more or less constant for 
x >0.3, while at x =0.2 they increase strongly {To(0.2 ) 
extrapolated from just 4 terms would still be dis- 
tinctly nonzero}. In this case, however, it is well 
known that T~(x)--*0 for x~x~n=0.198 [-19]. Since 
the percolation threshold is a multicritical point [1], 
the behavior seen in Fig. 8 is just an indication of the 
crossover phenomena occurring there. By the same 
token, we may conclude that that for R = - ½  fer- 
romagnetism must break down for x close to 0.5, 
where the increase of exponents also indicates that a 
crossover region is reached. 
This suggestion is confirmed by Monte  Carlo calcu- 
lations on a classical (S--+oo) fcc Heisenberg spin 
system. First we note from series expansions for 
different S at x = l  where terms up to (1/kBT) 6 are 
available [32], that TJO for S = ~  and S = oo differ by 
no more than about 1 ~o in the regime of R of interest 
here, Fig. 9. Moreover  it is gratifying to note that for 
x = 1 the two additional terms of the available series 
do not change our estimates for T c obtained with 
terms up to (1/k~T) 4 only. Since the Monte  Carlo 
work allows to estimate T~(x) with an accuracy of 1% 
only, it makes sense to compare it to results for S = 7  
obtained experimentally for EuS [,13]. Figure 10 
shows typical Monte  Carlo results for the tempera- 
ture dependence of the magnetization, obtained for 
lattices with N = 103 or 163 sites and periodic bound- 
ary conditions. For  x > 0 . 7  there is little dependence 
on N in the data below Tc(x), while for x__<0.6 there is 
a more pronounced size dependence. For x>0 .6  we 
can obtain fairly accurate estimates for Tc(x) from the 
inflection point of these curves, while this procedure 
becomes quite ambiguous for smaller x. While these 
data are obtained from simulations with periodic 
boundary conditions, for x =  1 we have made runs 
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Fig. 10. Root mean square magnetization for an fcc classical 
Heisenberg ferromagnet with R=-½ plotted versus temperature. 
The arrow marks the estimate for T~ in the case of x = 0.6 
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Fig. 11. Monte Carlo estimates for the critical temperature T c of a 
classical fcc Heisenberg ferromagnet with both nearest (J..) and 
next nearest (J.,,.) interactions 

with the "selfconsistent effective field" boundary con- I 
dition [-34] as well. The results for T c obtained via 
both methods are identical, Fig. 11, and within their 
error (size of fhe points in Fig. 11) these results do 
agree with the series estimates shown in Fig. 9. Hence 
we feel that the errors involved in our various 
numerical procedures are fairly well-understood and 
small enough to allow us drawing meaningful con- 
clusions. The accuracy of other approaches like gene- 
ralizations of the constant-coupling approximation 
[35] or Green's function decoupling methods, which 
were applied to pure [36] and dilute [-37] Heisenberg 
magnets, seems to us somewhat uncertain. But it is 
interesting to note that the predictions for Tc(R ) and 
T~(x) obtained from these approaches are qualitative- 
ly consistent with our work. 
Figure 12 shows our estimates for T~(x) plotted vs. x 
in the case of R = -½. These estimates agree with the 
series estimates where the latter are meaningful (x 
> 0.7). A discussion of the experimental data included 
in Fig. 12 is deferred to the next section. We here 
only note that the specific heat singularity at T c which 
in simulation (and experiment) is quite pronounced 
in the pure case (Fig. 13) becomes strongly washed 
out in the diluted system. For  x<0 .8  not even a 
remnant  of the sharp anomaly at T~(x) is seen, but 
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with each other only if R ~ 0 (Fig. 9), which is unrea- 
sonable in view of the experimental evidence for R 
-½ in the pure EuS E33], and the occurrence of a 
spin glass phase in diluted EuS [-13]. The conclusion 
is: either the numbers quoted are wrong, or the 
model is too simple. 
In fact, there have been some suggestions that this 
simple model is not correct and the range of the 
antiferromagnetic superexchange is somewhat larger, 
extending to 3 rd and 4 th nearest neighbors as well 
[39]. In view of the fact that there are only 6 next- 
nearest neighbors a distance 1.0 a apart, but 24 3 r< 
nearest neighbors at a distance 1.22a, 12 4th-nearest 
neighbors at a distance 1.41 a, etc., this suggestion 
seems quite reasonable. To investigate the con- 
sequences of this effect, we have included the 3 rd- 
nearest neighbor exchange J3 into our high-tempera- 
ture analysis including terms up to (1/k~T) 3, and 
keeping the paramagnetic Curie temperature O 

x=0.6 

0 1  F I _ I 
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Fig. 13. Monte  Carlo estimates for the specific heat  as a function of 
normalized temperature in the pure and the dilute fcc Heisenberg 
model for R= -½ 

rather a broad Schottky-like anomaly at a tempera- 
ture somewhat higher than T~(x) occurs. A similar 
effect was noted in real space renormalization group 
calculations for dilute (non-competing) Ising ferro- 
magnets [38]. In our case this effect is even more 
pronounced because there are antiparallel and loose 
clusters in the percolating network which contribute 
to the specific heat but not to the magnetization (see 
Sect. II). 

IV. Application to EuxSrl_xS 

EuS is considered to be a model substance for 
Heisenberg ferromagnetism and is believed to have 
nearest neighbor ferromagnetic and next nearest 
neighbor antiferromagnetic exchange, where T~ 
=16.5K, TJO=0.81 [33] (i.e. O=20.3K).  From va- 
rious measurements it was concluded that R ~ - I  
[33]. These statements seem to be in conflict with our 
results, because using O=20 .3K  and R = , ½  we 
would predict T ~ 1 3 . 6 _ 0 . 4 K ,  which strongly dis- 
agrees with the experimental result. Within the frame of 
this model, we can reconcile these values for T~ and O 

o_S(S+l) 
3k B (12J1 + 6J2+24J3) (2) 

i fixed as well as the ratio R=(6J2+24J3)/12J 1 -  4 
(which yields R = - ½ if J3 = 0). I.e., we redistribute the 
total negative interaction now over both second and 
third nearest neighbors, which would also be con- 
sistent with most of the evidence for the negative 
exchange interactions [-33]. From Fig. 14 we see, 
however, that this does not change our estimate for 
Tc~13.6K at all. In fact, most of the physical con- 
sequences of having (weaker) negative exchange to 
both 2 na and 3 rd neighbors are more or less the same 
as having (stronger) negative exchange to 2 na neigh- 
bors only, although some of the details shown in 
Fig. 1, 2 change. 
An interaction of still larger range is provided by the 
magnetic dipolar interaction. Swendsen [36] has al- 
ready suggested that this interaction must be includ- 
ed in an analysis of TJO for the Eu monochalco- 
genides, and suggests R =  -0.1 for EuS. We think his 
analysis is misleading in several respects (i) claiming 
that the dipolar interaction can be treated in mean 
field approximation, which yields T j O - 1 ,  he just 
enhances the values for TJO without dipolar in- 
teraction by the fraction the dipolar energy makes to 
the total magnetic energy. However, while (uniaxial) 
dipolar ferromagnets have mean-field exponents 
(apart from logarithmic correction factors [40]), fluc- 
tuations do reduce T~ in comparison with O. For 
certain dipolar Ising ferromagnets Monte Carlo cal- 
culations yielded T jO~0 .5  [41]. For fcc dipolar 
Heisenberg ferromagnets no estimates for TJO are 
available, but we expect TJO again to be distinctly 
smaller than unity. Since dipolar interactions renor- 
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malize both O and T~ and a redistribution of in- 
teractions as discussed above had no effect on Tc/O , 
is is reasonable to neglect the effect of dipolar in- 
teractions on TJO for EuS. (ii) Swendsen's numerical 
estimate for R is based on a value of O = 19 K which 
is too low. As we shall see below, the use of experi- 
mental values of O determined in the traditional way 
by fitting susceptibility data at high temperatures to a 
Curie-Weiss law may be misleading. 
Since there is no way to reasonably modify the model 
to make it fit to the mentioned results To---16.5 K, O 
=20.3 K, it is natural to suspect that these numbers 
are inappropriate. While T c is known to quite high 
precision there is in fact considerable uncertainty 
with respect to O: if recent high-precision data for 
the susceptibility of EuS measured from T=  50 K to 
about T = 2 5 0 K  [16] are fitted to the traditional 
Curie-Weiss form 

C 
z = ~ r -  O + Zai., (3) 

one obtains O=19 .5+0 .2K,  which would yield an 
even higher ratio TjO. At the same time the Curie 
constant C becomes enhanced by several percent 
over its theoretical value [16], and the diamagnetic 
susceptibility Zaia is too large by several orders of 
magnitude. Hence although Eq. (3) represents the 
data reasonably accurate, this fit is a misleading 
procedure. A careful analysis of the data reveals the 
following facts [16]: (i) rather than by Eq. (3) the 
susceptibility in the high temperature region should 
be represented by the following formula 

xC 
z(T' x) = Zdia-~ T - O x  

} 
where C has its theoretical value {C=Nt~2S(S 
+ 1)/3 kB} and the coefficients ci(x ) are related to the 
high temperature expansion coefficients (for details 
see Appendix B) (ii) due to thermal expansion (be- 
tween T = 1 0 0 K  and T = 2 5 0 K  the lattice parameter 
is enhanced by about 0 .5~  [39]) and/or due to 
dilution (from x =  1 to x = 0  the lattice parameter 
changes by about 1 ~o [16]) the exchange constants 
become slightly dependent on both dilution and tem- 
perature. This fact is seen from the observed pressure- 
dependence of T c [42], and quantitatively explains 
the experimental deviations from the 'linear relation 
O(x)=Ox implied by Eq. (4) (for more details see 
[16]). Taking these facts into account, the data are 

now best fitted by the value O ~23 K [16], and from 
Fig. 9 we finally can conclude that R = -0.45 _+ 0.05, 
which justifies the use of R = - 0 . 5  in most of our 
numerical calculations. This value is also supported 
by the good agreement between computer simulation 
and experiment, as far as the concentration depen- 
dence of T c is concerned (Fig. 12). Note that Fig. 12 
does no more involve any adjustable parameter. 
An analysis of similar spirit as done here was done 
by Menyuk et al. [43] for EuO, fitting data in the 
range from 150 K to 300K to high temperature series 
expansions [32]. Qualitatively similar to the findings 
of [16] a larger value for O was obtained than would 
follow from the traditional analysis (via Eq. (3)) from 
the same data. However, these authors disregarded 
thermal expansion effects which should have a pro- 
nounced effect for EuO in the studied temperature 
interval as well: 
We then comment on the renormalization group 
analysis of Aharony [44] on the phase diagram of 
diluted Heisenberg magnets with additional dipolar 
interactions. He finds that the fixed point of such 
systems is unstable for d < 4, just as for random fields 
in Heisenberg systems [45], which implies that these 
systems rather behave as spin glasses. On the other 
hand, Aharony finds that cubic anisotropy stabilizes 
the otherwise unstable fixed point again, and hence 
he suggests that T~(x) should be determined by a 
delicate balance of randomness, dipolar interaction 
and cubic anisotropy. We feel, however, that this 
analysis does not apply to EuxSr 1 xS: there the 
dipolar interaction is quite small, and the cubic an- 
isotropy is extremely small. Without these pertur- 
bations a sharp transition at the T~(x) as found from 
Monte Carlo and series expansions would result. The 
fact that the fixpoint associated with this transition 
becomes unstable when the dipolar force is added 
now means, in our interpretation, that the transition 
becomes weakly rounded. The stabilizing effect of the 
cubic anisotropy could then mean that somewhere on 
these rounded anomalies, whose positions are given 
by J1, J2 and x alone, there is superimposed a sharp 
anomaly (with amplitude related to the strength of 
the cubic anisotropy). This latter effect is quite irre- 
levant experimentally where one does find somewhat 
smeared transitions. 
Finally we mention that our analysis implies for the 
structure of the ferromagnetic phase (Figs. 2, 3) that 
for T ~ 0  the spontaneous magnetization should 
be smaller than the saturation magnetization 
(=g#BNSx), because of the antiparallel and loose 
spins and clusters. This effect has been also seen 
experimentally [15], and the magnitude of this re- 
duction is in fair agreement with the prediction of the 
simulation for R = -½ (Fig. 6 A). 
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V. Conclusions 

We summarize the main findings of this investigation 
as follows: 
(i) In Ising or Heisenberg ferromagnets with compet- 
ing exchange (such as nearest neighbor exchange 
ferromagnetic, next nearest neighbor exchange anti- 
ferromagnetic) dilution leads to a breakdown of fer- 
romagnetic order before the percolation threshold is 
reached, and a spin glass phase appears. The precise 
location of the phase boundaries paramagnet-spin 
glass, paramagnet-ferromagnet and spin glass-ferro- 
magnet depends on the interaction ratio R in a sen- 
sitive way. In particular, when R reaches its multi- 
critical value (where ferromagnetism and antiferro- 
magnetism coexist in the ground state of the pure 
system), we predict that arbitrarily small dilution 
already destroys these phases and rather stabilizes a 
spin glass, consisting of very large ferromagnetic and 
antiferromagnetic clusters coupled irregularly to- 
gether. While concentration expansions can locate 
these phase boundaries only very crudely, even if one 
considers the ground state of the Ising square lattice 
which conceivably is the simplest case, Monte Carlo 
simulations can yield these phase boundaries with 
reasonable accuracy. 
(ii) Due to the competing interactions not all spins in 
the percolating network are aligned parallel in the 
"ferromagnetic" regime, but some of them are aligned 
antiparallel. Sometimes due to the "frustration" of 
bonds no unique alignment is possible, but rather 
magnetic clusters occur within the surrounding fer- 
romagnetic network, which have several degenerate 
ground states. Thus the ferromagnetic phase has an 
anomalously enhanced ground state entropy. In fact, 
it is plausible that at the critical value x'c' where 
ferromagnetism and spin glass coexist the entropy 
S(O) of the ferromagnetic phase exceeds the entropy F M  

s(O) of the spin glass there: some of the clusters which so 
would be loose if their environment has to be fer- 
romagnetic can become aligned to the network again, 
if some other irregular spin structure in their environ- 
ment is permitted. Thus, although on large length 
scales the degeneracy of the spin glass ground state is 
enhanced as compared to the ferromagnet, at smaller 
scales it should be strongly reduced. From this argu- 
ment we immediately predict the observed negative 
slope of the spin glass-ferromagnet phase boundary 
d x ; ' / d T  at T=0  [7, 8]. Since X'c'(T ) is given by 
equating the free energies of the two phases, FFM(X, T) 
=Fso(X, T), we have to linear order (Uwt  , Usa are the 
corresponding internal energies) 

UFM(X, O) - TSFM(X , O) = UsG(x , O) - TSsG(X , 0), 

x = x ; ' ( T ) .  (5) 

r0v Note that we could omit the terms 8 T  It= o = T C ( T  

=0) because Co~=T 3/2 in the ferromagnet (for S< oo) 
and C ~ T  in the spin glass phase [46]. Since we have 

u~M (x, 0) - uso (x, 0) = A [x;' (T = 0) - x],  (6) 

where A is a constant, we find from (5) that 
[x'/=- x ; ' ( T =  0)] 

X'c' - x ; ' (T )  = T [SFM (x;', O) - S so  (x;', 0)]/A, (7) 

where we neglected terms of second order {[x'  c' 
-x ; ' ( r ) ]  r}. Hence we predict {note A >0} 

dx; ' /d  Tit= o = - [SFM(x;', O) - Sso(X;' , 0)I/A, (8) 

i.e. the negative slope is given by the entropy differ- 
ence. 
(iii) It is shown that the transition from the fer- 
romagnetic to the paramagnetic phase {To(x)} in 
EuxSrl_xS can be accounted for quantitatively by 
our simple model with R ~ - ½ .  Exchange with more 
distant neighbors, the dipolar interaction as well as 
the cubic anisotropy are suggested to have insignif- 
icant effects on T~(x) only. A high temperature series 
analysis is used to remove apparent discrepancies 
between the experimental ratio between ferro- and 
paramagnetic Curie temperatures TjO and the 
theoretical one (see also Ref. 16). However, we do 
expect that the dipolar interaction should be relevant 
for the transition from the paramagnetic to the spin 
glass phase at nonzero temperatures, since the exis- 
tence of spin glass phases for isotropic Heisenberg 
magnets is doubtful [12, 47]. From the quantitative 
analysis of the x-dependence of the susceptibility we 
obtain further evidence for the random character of 
the dilution in EuxSr 1 _~S. 

This work has benefitted from numerous stimulating discussions 
with U. K/Sbler, H. Maletta and W. Zinn. 

Note Added in Proof: Similar Monte Carlo results for a diluted bcc 
lattice with J~ >0, J2<0  were recently obtained by G.S. Grest, 
preprint. 

Appendix A. Concentration Expansions 

Here we consider a square Ising lattice with nearest 
neighbor exchange J1 > 0, next nearest neighbor ex- 
change J2<0, with a concentration x of magnetic 
sites at T=0. First we consider the expansion of the 
susceptibilities defined in (1) in powers of x. For 
x <x ;"=  0.41 [19] all spins belong to finite clusters. A 
cluster is defined as a group of exchange-coupled 
atoms. Each cluster configuration k can be character- 
ized by its size sk, its perimeter tk, its magnetization 
m k and its spin glass order parameter Ok- (For dis- 
cussing ZSAF [Eq. (ld)] it is convenient to also in- 
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troduce order parameters of the superantiferromag- 
netic phase, but for simplicity ZSAF will not be consid- 
ered further). Hence s k is the number of spins in the 
cluster and t k the number of non-magnetic lattice 
sites which are nearest or next-nearest neighbors to 
spins of the cluster. If each lattice site is occupied 
randomly with probability x, as we assume from now 
on, then the cluster concentration 

G=xS~-~(1 - x y  ~ (A1) 

is the average number per spin of such clusters. (Of 
course, there exist in general many different cluster 
configurations k with the same size s k and the same 
perimeter tk, for example mirror images of the cluster 
configuration), s~ 
The magnetization of the cluster k is m k = ~, S i in the 

i=~ 
ground state. Trivially, every ground state is at least 
two-fold degenerate, since its interaction energy re- 
mains unchanged if all spins Si reverse their orien- 
tation. But, due to frustration effects there may be 
many degenerate ground states, and we will need an 
average (m 2) over all L different ground states of the 
cluster. Thus in searching for ground states we keep 
the first spin rigidly up and look through all remain- 
ing 2 ~ -  ~ configurations of the spins in the cluster. 
Those with the lowest energy are ground states, 
which we denote by {S~i}, / = I , . . . , L  (for clusters 
which do not contain loops we have L = 1). 

sk 

The order parameter 0k is defined as 0k = ~ SiSI [2], 
i=1 

and again an average ( 0 2 )  over all L different 
ground states of the cluster will be needed. We can 
express the susceptibilities introduced in ( la-c)  as 
[22] 

k B T)@ = x ~ Ck(m~), (A2) 
k 

kB TZEA = kB TZsG = x 2 G (O~) ,  ( a  3) 
k 

while a "susceptibility" measuring the percolation of 
clusters would be 

k B T z p = x  ~ cks~. (A4) 
k 

One easily proves (A2), (A3) by inserting the de- 
finitions of m k and Ok and noting from (1) that there 
is no correlation between any spins belonging to 
different clusters. 
While Zp has been considered for a long time in our 
case [19], Zr and ZsG have to our knowledge not yet 
been considered in previous work. While for J2 > 0 we 

2 the have L =  1 and, then trivially (m 2) = ( O ~ )  =Sk, 

situation for J2 <0  is much more cumbersome, since 
all the clusters with same s k but different structure 
have to be considered separately. 
The susceptibilities are then expanded as power series 
in the concentration x as 

k B T z v = x Z ( m ~ ) x S k - I ( 1 - - X y k = X  1+ ~aV~x" , 
k n = l  / 

(A5) 

-t- a SG X n kBT)~sG=X~.(O~)xSk-- l(1--X)tk=X 1 
k n 1 n 

(A6) 

2 . (A7) kBTZp=X~SkXS~- I (1 - -x ) t '~=X 1+ ~ a ~ x "  
k n = l  / 

F and Thus to get all series expansion coefficients a~, a, 
a sG up to n =  8 we have to evaluate all clusters with 
sizes s k up to 9. (The a p are known from previous 
work [48] and were recalculated as a check; Tables 
of cluster numbers as a function of size (Sk< 10) and 
perimeter t k are published elsewhere [49]). Our com- 
puter program to find all configurations k followed 
Martin [50] where in most cases by going from one 
configuration to the next one only one of the s k spins 
is moved. For the evaluation of ground state proper- 
ties the computer time was reduced to about one 
fourth by not searching through the 2 sk-~ ground 
states separately for each configuration, but by stor- 
ing first the interaction energies and magnetizations 
of the s k -  1 "fixed" spins (with 2 sk-2 configurations). 
Then only the two possible orientations of the mov- 
ing last site are taken into account together with its 
interaction with the other, fixed, spins. Nevertheless, 
for each unit added to the maximum cluster size, the 
computer time increased by about one order of 
magnitude, and reached about one hour for clusters 
of size 9 on the CDC Cyber 76 computer, where 
more than one million configurations were analyzed., 
This procedure is repeated independently for many 
different ratio's R of exchange energies. The results 
were checked by hand up to n=3.  Tables A1, A2 list 
the expansion coefficients for the three series. Direct 
inspection shows already that R = - ½  seems to be a 
rather special case. Our expansion coefficients a, p 
agree with that of Ref. 46 (available up to n = 7). It is 
seen that the series obtained are quite irregular, par- 
ticular for larger n, and hence their analysis is dif- 
ficult. 
Just as the divergence of Zp(x) indicates the geometric 

n n n  transition at the percolation threshold xp , we hope 
that the onset of ferromagnetism is characterized by a 
divergence of Zp(x), and the onset of spin glass order- 
ing by a divergence of ZsG(X). Ratio plots do not 
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Table  A1. Series expans ion  coefficients a a,  ~ and  a sG for var ious  R 

173 

n l  2 3 4 5 6 7 8 

a~ 8 32 108 348 1,068 3,180 9,216 26,452 

n l  2 3 4 5 6 7 8 

R 

SG 
an 0.001 8 32 108 298.2 996.9 2,419.7 8,766.2 10,968.4 

0.200 8 32 108 298.2 996.9 2,419.7 8,766.2 10,968.4 

0.333 8 32 108 298.2 996.9 2,419.7 9,085.4 9,977.3 
0.334 8 32 108 298.2 1,252.9 1,831.2 12,081.0 2,735.3 
0.400 8 32 108 298.2 1,252.9 1,831.2 11,886.8 3,104.7 
0.499 8 32 108 298.2 1,252.9 1,831.2 12,450.8 1,796.7 

0.500 8 32 52 159.7 624.8 - 7 9 9 . 2  5,808.9 -25 ,308.1  
0.501 8 32 108 180 1,508 255.2 15,291.4 - 19,125.7 
0.600 8 32 108 180 1,508 63.2 15,257.6 - 21,051.0 
0.666 8 32 108 180 1,508 255.2 15,099.4 - 18,471.5 
0.667 8 32 108 180 1,266.2 1,357.5 11,114.5 - 6,288.8 
0.800 8 32 108 180 1,266.2 1,261.5 11,570.5 - 7,480.8 
0.999 8 32 108 180 1,266.2 1,261.5 11,570.5 - 7,480.8 

1.000 8 10.7 104.4 64.8 325.5 2,387.8 -4 ,137 .2  18,280.2 

1.001 8 16 116 i00  640 2,400 32 15,952 
1.500 8 16 116 100 640 2,400 32 15,952 

2.000 8 16 116 100 640 2,400 - 728.3 24,207.6 
3.000 8 16 116 100 640 2,400 - 648 23,484 
4.000 8 16 116 100 640 2,400 - 648 23,484 
5.000 8 16 116 100 640 2,400 - 648 23,484 

" In case of non in tegra l  coefficients only  one digi t  beh ind  the dec imal  po in t  is shown. 

Table  A2. Series expans ion  coefficients a a,  r for var ious  R 

R n 1 2 3 4 5 6 7 8 

0.001 0 16 - 20 97.3 - 177.3 602.4 - 872.4 1,740.7 

0.200 0 16 - 20 97.3 - 177.3 602.4 - 872.4 1,740.7 
0.333 0 16 - 20 97.3 - 177.3 602.4 - 927.5 2,148.5 

0.334 0 16 - 20 97.3 - 337.3 1,658.4 - 6,788.8 27,506.7 
0.400 0 16 - 20 97.3 - 337.3 1,658.4 - 6,898.1 28,058.7 
0.499 0 16 - 20 97.3 - 337.3 1,658.4 - 7,226.1 30,098.7 
0.500 0 16 - 76 318.1 1,163.8 4,087.1 - 14,074.3 47,625.4 

0.501 0 16 - 132 628 - 2 , 3 7 2  8,514.4 - 32,161.6 125,267.0 
0.600 0 16 - 132 628 - 2,372 8,322.4 - 31,388.3 123,827.0 
0.666 0 16 - 132 628 - 2,372 8,130.4 - 30,401.6 121,715.0 
0.667 0 16 - 1 3 2  436 - 969.3 2,754.4 - 10,994.9 37,061.7 
0.800 0 16 - 132 436 - 1,041.3 3,474.4 - 14,786.9 52,541.7 
0.999 0 16 - 132 436 - 1,041.3 3,474.4 - 14,786.9 52,541.7 
1.000 0 - 5.3 6.7 4 76.4 - 686.8 2,760.8 - 8,188.9 
1.001 0 - 16 76 - 172 32 1,328 - 5,568 11,444 
1.500 0 - 16 76 - 172 32 1,328 - 5,568 11,444 
2.000 0 - 16 76 - 172 32 1,328 - 5,638.4 12,336.8 
3.000 0 - 16 76 - 172 32 1,328 - 5,656 12,532 
4.000 0 - 16 76 - 172 32 1,328 - 5,656 12,532 
5.000 0 - 16 76 - 172 32 1,328 - 5,656 12,532 

a In case of nonin tegraI  coefficients only  one d igi t  beh ind  the dec imal  po in t  is shown. 

work for Ze and ZsG. Thus instead we used the [4, 3] 
and [3, 4] Pad6 approximants to the logarithm of the 
susceptibilities in order to estimate the position of the 
singularities, i.e. the critical concentrations x' c' for 

ferromagetism and x' c for spin glass ordering. Often 
the Pad6 approximant gave a pole at the negative 
real axis near x = - 0 . 2 .  Thus we expanded in the 
transformed variable [51] u ( x ) = x / ( x + y )  with y 
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about 0.2 in order to get better results. The expansion 
coefficients thus were transformed as 

l+ ~ a~x~=l+ ~ b,,u ", 
n = l  n = l  

with 

n - 1  

n ' =  1 

The resulting estimates for x'~, x'~' are shown in Fig. 5. 
Note that for R < - ½  the behavior of x;' was very 
erratic and is not included. Using one term less in the 
series and smaller Pad6's changed the results of Fig. 5 
considerably particularly near R =½. Thus we did not 
attempt to determine any critical exponents. 
An alternative method is to derive an expansion in 
terms of q = 1 - x for the magnetization. We just have 
to consider the reduction of the magnetization which 
occurs near clusters of holes (Fig. 2). For  the con- 
centration of such clusters we have, from Eq. (A1) 
and invoking particle-hole symmetry, 

ck=qSk--l(1 __q)t~,. ( 1 9 )  

Denoting by r k the number of reversed spins occur- 
ring near a hole-cluster k, the reduction of the mag- 
netization is 

AM=22ck(rk)=2 ~ b~q"[b~t=bf =O] (A10) 
k n = 3  

where again an average over degenerate ground state 
configuration has to be taken, in order to calculate 
(rk} and the coefficients b~. Inspection shows that 
also clusters k contribute where holes are more apart 
than nearest or next-nearest neighbor distances, i.e. 
"clusters" which do not contribute to (12) - (14)  be- 
cause they would correspond to disconnected con- 
figurations of atoms. Hence a computer calculation 
of the series in (A 10) would be much more difficult, 
and has not been attempted. 1 calculation by hand 
(Table A3), which hence still may be subject to slight 
errors, already shows that the resulting series again 
are rather irregular. Inspection of the series shows 
that A M increases when R ~ - ½ ,  as expected. 

Table A3. Series expansion coefficients b~ for various intervals of 
R 

Interval n 3 4 5 

- } < R < 0  0 1 - 1  

- ¼ < R <  -½ 0 1 15 

- 2 < e <  --¼ 4 -31  177 

- ½ < R < - }  4 -31  201 

- ~ < R < - - ½  4 - 7 - 7  

- ~ < R < - }  4 - 7 5 

- ½ < R < - ~  4 - 7 73 

Appendix B. High Temperature Series Expansions 
for Impure Heisenberg Magnets 

We consider an (inhomogeneous) Heisenberg magnet 
with general range of interaction {Jij} between two 
spins at lattice sites i, j and spin quantum number S. 
We consider the correlation 

g(Ro, R ) = (S~oS~R>. (B 1) 

In a homogeneous system this correlation would be 
independent of Ro. The bracket in (1) denotes a 
canonical thermal average, 

( . . .  } = Tr exp( - ~ / k  B T).../Tr exp ( - Jf/k B T), (B 2) 

with 

ae = -½ Y 4 j s , s j -  g (u 3) 
i :~ j  i 

In (3) the sums run over those lattice sites only which 
are occupied by magnetic atoms, if the system is 
diluted with nonmagnetic impurities. 
The high temperature expansion of the correlation in 
(B 1) is 

g(R0, R) = ~ 1/(k B T) k Ck(R 0, R). (B 4) 
k 

Formal expressions for the Ck(Ro, R ), k < 5  have al- 
ready been derived in [52]. Correcting some errors, 
the results are given in terms of infinite-temperature 
averages, denotes by ( . . .}0 

X-= ((SZ)2)0 = S(S + 1)/3, 
+ s  

Y=((S~)*}o = ~ m4/(ZS+l)=X(9X-1)/5 
m =  --$ 

as 

Co=XJor, cl=X2JoR, 

c 2 = X 3 ~, JOKJKR -- xzJzR/4 ' 
K 

c3 = X4 Z Jo~JKLJLR -- X3(½ Z J~KJKR + ½ Z JoIcJI~R 

+ Joi, Z JKoJK. + Jo. Z JL, + Jo. Z +( 6X4 
- 4X 3 - 12 YX 2 + 4 YX/3 + 10 y2/3 + 2xZ/3)J~R/8, 

c4 = X5 Z JOKJ~LJLMJMR-- X~(2JoR Z JO~;JKLJLo 

+ 2JoR Z JRKJKLJLR + 2 Z JOLJLRJZK + Z JZKJKLJLR 
-t- 2 JOKJ2LJLR + 2 JOKJKLJ[R + 2 Z JzKJoLJLR 
+ 2  Z JoLJLRJ~R + 2JoR Z JoKJKLJL.)/12 
+ X3(JoR Z J~K + JoR Z J~,)/Z4 + X (18 X4--12 X 3 

+ 2X 2 -- 36 YX 2 + 4 YX + 10 Y2)(j2 R Z JonJt(n 
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E JL, J,,. E JodG)/8 
+ X2(6 xZ + ½ x - -  ~- Y)(JaR E J~K + JZR E JZR)/16 

+ ( _ ~ X 4 _ l _ 9 y 3 _ 2 . . .  - - T 2  " ' . 5  y2 i 43yX2 

as y) j4 / 16 (B5) Y2 

and the expression for c s is too involved to be 
reported here. In (B5), it is understood that lattice 
sites O, R, K, L, M are all magnetic sites (i.e., no im- 
purity sites), and in each sum different from each 
other. We now specialize to the case of an ideal 
randomly quenched mixture of magnetic ions (at 
concentration x) with nonmagnetic ones, and consid- 
er the correlation function 

gav(R) = [g(Ro, R)]av 036) 

averaged over the disorder. From (B4, B5) we then 
derive the series expansion 

g.v(R) = 2 k .v 1/(k s T) c k (R, x), 
k 

k 
c~,V(R, x)= ~ qk(R)x 2+1, (B7) 

1=0  

with [note that CoK(R)=0 for k4:0] 

Coo(R)=XC~oR, Cll(R)=X2JoR, 

c12(R ) = -X2j2R/4 ' c22(R) = X  3 ~JoKJKR, 

c l3 (R) = - (3 X4 + X 3 - X2/3) J~)R/5, 

c23(R) = -- X 3(½ Z J2KJKR +½ Z JoKJ2R 

+ JoRZ JKoJKe + JoRZ J21c + JoRZ J2.)/6, 

c33(R)=X4 Z JolJKLJLR, 

cI4(R)=(4X* + 2X 3 -X2/3) J4R/16 , 

c24 (R) = X 3 (Jo. Z J~)I; + JoR Z J~R)/24 
1 3 - -  3 2 ( 3  X 4 2¢_ X 3 _ X 2 / 5 ) ( j 2  R 2 JOK JKR 27 ~ 2 JOKJKR 

+ ½ Z JoKJ~R)/5 + X3(J2R Z .12 + j2 R Z JZR)/16, 

c34(R) = -- X*( 2 Jo. Z JOKJKLJLO + 2 JOR Z JRtflKLJLR 

+ 2 J2KJKLJLR + 2 Z J2KJoLJLR + 2 JOKJ2LJLR 

+ Z Jo#,,dL + 2 y JL, + 2 Z Jod #G 
+ 2JOR~ JoKJKLJLR)/12, 

C4,(R) = X 5 ~ JoKJKLJLMJMR. (B 8) 

Note that in the sums in (B8) all lattice sites may 
occur, there is no longer any restriction to magnetic 
sites due to the averaging process. 
The series expansion for the averaged magnetic sus- 
ceptibility Z~v ~ per site becomes 

k tnm zz s IZ.v = (g#s) 2 ~, gav(R) 
R 

= (g/2B) 2 X 2 1/(k s T) k a~, v (x), (B 9) 
k 

with 
k 

a~,V(x)= ~ atkx 1+1, alk=~Ctk(R)/X. (BIO) 
/ = 0  R 

Expressions for internal energy, specific heat, static 
structure factor can be derived similarly but will not 
be considered here. The sums over interaction con- 
stants in (B8) can be conveniently calculated on the 
computer, for a given lattice structure and assump- 
tions on the range of the interaction. We have calcu- 
lated all qk(R) for the fcc lattice with interactions 
between first, second and third nearest neighbors 
Jl, J2, J3 for k < 3 and with interactions between first 
and second neighbors only for k=4.  From these 
coefficients (which are too lengthy to be tabulated 
here) we calculated both the susceptibility series, Eqs. 
(B9, B10), and the series for the square of the cor- 
relation length (which can be expressed by the second 
moment of the correlations, as is well known [52]). 
We only quote here the susceptibility series explicitly, 
which is given by the following coefficients- 

a00=l ,  aal=X(12Ja +6J2+24J3), 

al z = - X (  12J2 + 6j2 + 24 J2)/4, 

a22 = X2 ( 132J2 + 144J1 J2 + 30j2 + 576 J1 J3 

+ 288JzJ3 + 552J2), 

a~3 = - (3  X 3 + X 2 -X/3)(12J~ + 6J 3 + 24 J~)/5, 

a23 = - xZ(444J13 + 288 J2 J2 +216Ja J 2 + 90J23 

+ 1,008 JZJ3 + 1,008 J1J 2 + 144J1JzJ 3 + 432j2 J3 

+ 576J2 J2 + 1,704G2)/6, 
a33 = X3(1,404J13 + 2,376JzJ2 + 1,152J1J 2 + 150J~ 

+ 9,648 j2 J3 + 20,160 J~ j2 + 10,244 J~ J2 J3 

+ 2,520J22 J3 + 9,576J2 j2 + 12,648 J33), 

a14 = (4 X 3 + 2 X z - X/3)(12J 4 + 6J24) 

(J3 = 0 here and in the following), 

a24 = X 2 (264J~ + 144J~ J2 + 144J1 J23 + 60 J24)/24 

+ X 2 (264 j4 + 288 j2 j2 + 60 J4)/16 - 3 (3 X '~ + X 3 

-XZ/3)(136J 4 + 96J~ + 24j2 J 2 +48J1J  ~ + 20 J~*), 

a34 = -X3(14,916J14 + 19,728 J~J2 + 12,456j2J22 

+ 6,912 J a J23 + 1,338 J24)/12, 

a44 = X4(14,700J 4 + 33,696 J~ J2 + 26, 280 J2 J2 

+ 7,920J 1J23 + 726 J4). (B 1 I) 

Eq. (Bll)  agrees with several special cases obtained 
earlier: for J 2 = J 3 = 0  it checks with the fcc lattice 
results of Morgan and Rushbrooke [29], for Ja =J3 
= 0 it yields their sc lattice results, while for x = 1, J3 
=0  one obtains the results of Pirnie et al. [32]. 
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Fig. 14. Ratio plot for the susceptibility of an fcc S=~ Heisenberg 
ferromagnet with/~ = - ¼, O = 20.3 K. All ratios for - ½_< R _< 0 fall 
within the "error bars" shown 

F r o m  (Bll) ,  (B10) it is easy to obtain the coefficients 
ak(x ) whose ratios were analyzed in Figs. 7, 14. Here 
we also consider a modified high temperatures  series 
expansion, which is convenient  for the compar ison  
with experimental data, namely {cf. Eq. (4)} 

Z -  3 k ~ [ r - O ( x ) ]  

F r o m  (B10)-(B12) we immediately find kBO(X ) 
=xa11=xX(12J l+6J2+24J3) ,  by requiring that  
there is no linear term (O(x)/T) within the curly 
bracket  of  (B12). The coefficients ck(x ) are related to 
the ak(x ) by 

ak_t(x)at(x)- -ak(x)  
c~(x)= a](x) (1313) 

E.g. for J3 = 0  one obtains 

etc. These expressions can be used to analyse the 
EuxSrl_xS-data  putt ing X=S(S+I ) /3=za  t, and R 
= j2/ j  1 1 

- -  2 "  

Finally we discuss the extension of  our  method  to the 
case of  non - r andom mixing. While (B5) still holds, 
the averaging process in (B 6) has to take correlations 
in the geometr ic  a r rangement  of  magnet ic  a toms into 
account,  and the c~V(R,x) in (B7) are no longer 
simple polynomials  in x. Let us denote by p~(R) the 
condit ional  correlat ion that  the site R is occupied by 
a magnet ic  a tom if the origin is occupied by a 
magnet ic  atom. Then we find the first two expansion 
coefficients of  gay(R) as 

caoV(R,x)=xXaoR, Cav{l~l ,",  x)=xX2px(R)JoR • (B14) 

(In the case of  r a n d o m  mixing p x ( R ) = x  and we 
recover (B8). The higher order  coefficients would 
involve also triplet, quadruplet  - etc. rather than only 
pair  probabilities.) F r o m  (B14), (B9) we find that  

Z -  3knT " '  

where (z~ is the coordinat ion number  of  the i'th 
neighbor  shell) 

k B 0 (x) = X ~ z, d i p~ (R,). (B 16) 
i 

Hence correlations in the a r rangement  of  magnetic  
a toms show up as deviations of  O(x) from linear 
variat ion with x. On  the other hand, if O(x) = O(1)x,  
it follows that  px(Ri)=x and the mixing must  be 
random.  

R e f e r e n c e s  

t 
c~_(x) = 

12(1 + R  4- R2/4) 

and 

, (1 + R  3) ¢, 
3 + 2 R  + 4R2/3 + 11 R3/18 +(8  + 16R/3 + 4 R  2 +5R3/3)/(12xX) , - ~  kl + 1/(3 X ) -  1/(3X) 2] 

c3(x) - 16 + 2 4 R  + 12R 2 + 18R 3 
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