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Abstract. In this note, we will prove that for commuting ergodic measure preserving trans-
formations R,Sand T,if RT ™', ST ! and TR™* are also ergodic, then the limit

(.
lim — 2 RN £5(8™) f5(T70)

exists in L'-norm. The method used in this note was developed by CONZE, FURSTENBERG,
LESIGNE and WEISS.

1. Introduction

For several commuting measure preserving transformations
R;,..., R, on a probability space (X, 4, u), limit theorems of the type

N
T L iR R,

where f,,..., f; are bounded measurable functions, have been studied
by J. BOURGAIN, J. CoNzE, H. FURSTENBERG, E. LESIGNE, and B. WEISS
(see[2,3,4,7,8,9,10]). Although most people believe the existence of
the limit in a certain sense (e.g. pointwise or I}-norm), the cases in
which one knows the answer are scarce. This paper follows these
works in this direction and focuses on the case with mean convergence
for three commuting measure preserving transformations R, S and T.

In Section 2, we bring some facts about Kronecker factors and
Conze-Lesigne type modules. Readers should be able to find more
details in [3, 4, 5, 9, 10, 12, 13]. In Section 3, some properties of
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one-dimensional (E)-cocycles are discussed and in Section 4, we used
those properties to prove the convergence of (E)-cocycles. In Sec-
tion 5, lemmas and propositions are prepared for proofs of our main
theorems. Finally, in Section 6, we give some conditions for conver-
gence of

N-1
% Z_‘ S1(R"x)f,(S"x) f5(T"x).

Also a proof of a known theorem (Theorem 6.2), due to Conze and
Lesigne, Furstenberg and Weiss, is given.

We will use R, C and U(d) denote the set of real numbers, the set of
complex numbers and the set of all d-dimensional unitary matrices. In
particular, U(1) is the multiplicative group of all complex numbers
with norm one. We sometimes also use T = R/Z to denote U(1). By
a probability space, we mean a regular space (see [6, pages 103—1041)
with the measure of the whole space being equal to one. For any set A4,
we will use A* to denote the set

A X - x A,
k

The author wishes to thank Professors V. Bergelson and H.
Furstenberg for their continued help and valuable discussions. Dur-
ing writing this paper, the author got a lot of valuable suggestions,
advices, encouragement and support from Professor E. Lesigne. He
also pointed out several mistakes in early drafts. The author likes to
express special thanks to him.

2. Preliminaries

A measure preserving system (X, 4, i, R) is 2 measure preserving
transformation R on a probability space (X, %, u). Sometimes we also
use (X, R) as short abbreviation. We will say a measure preserving
transformation T has f.m.e.c. ( finitely many ergodic components) if its
ergodic decomposition has finitely many components. Let E(R) de-
note the closed subspace spanned by all eigenfunctions of R. It is clear
that if R has f.m.e.c., then the eigenspace for each eigenvalue has finite
dimension. Actually, the dimension of the eigenspace is equal to the
number of ergodic components.

LetR,,..., R, be commuting measure preserving transformations
ona probability space (X, 4, u) such that R;, R,R; ! havefm.e.c.forall
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i# j. Then it is clear that for i # j,
E(R)= E(R)=E(RR]"). (1)

Let E denote this subspace and let & denote the sub-g-algebra of
2 such that [*(X, 2, u) = E. Let T" be the abelian group generated by
Ry,...,R,. If T is ergodic on X, then there exist a compact abelian
group G and o,,..., %,€G such that (G, {p,,,...,p,,}) is the maximal
group rotation factor (Kronecker factor) of (X, {Ry,..., R;}). We will
call G a Kronecker group. Let p: X — G be the factor map and let % be
the g-algebra on G generated by open sets. It is clear that p(2) = %,;.
Abusing terminologies, we will use 2 to denote % and call a &-
measurable function on X a function on G.

Assume that I', being a finitely generated abelian group of measure
preserving transformations on X, acts ergodicly. Let G be a Kronecker
group of (X,4%, 1, T") and let n: X — G be the projection map. Then
there exists a family of conditional probability measures {;1,:ge G} on
(X, #) with following properties:

i) p,(m”'(g))=1for almost all g G.
ii) Forevery fel'(X, 4, ), the functiong — | f du, is measurable
and | fdu= [{f fdu,}dpug. Here pg is the Haar measure on G.

The Symbols {-,->,, [ -], will be used to denote the inner product
and the norm with respect to the measure y,.

A closed subspace # < I*(X,%,u) is called a G-module if
f M = .# for any bounded function f on G. A finite set
{@1,-.., 0} = [XX) spans a G-module .# if the set

{101+ + Y0 for any ¥,,..., ¥, on G}

is dense in .#. In this case, we also say that .# is a finite dimensional
G-module since it can be spanned by finitely many functions. For any
finite dimensional G-module .#, one always can find a finite set
@15, @ spanning .# such that (@;, ¢;>, =0fori# j,and || ,=1
or 0. We will call this set a global orthonormal basis or just a basis of 4 .
Let ¢4,..., @, be a basis of .#. For ReT’, if .# is R-invariant (i.e.,
R.# < M), there exists a matrix-valued function H on G such that

¢1{Rx) ?4(x)
: =H(x)| :
¢(Rx) / \ P(x)
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We will say that H is induced by R with respect to a global orthonor-
mal basis ¢, ..., ¢, In particular, if R is ergodic, then H is unitary and
[ @, = 1for alli. For any positive integer n, H™ will be used to denote
the product H(R" ™ ' x)H(R"™ Vx)-.. H(x).

Let p, be the rotation on G with respect to R on X. A R-invariant
G-module is irreducible if it does not contain any non-trivial R-
invariant sub-G-module. A matrix-valued function H on G is irreduc-
ible with respect to a rotation p, if for any matrix-valued function
A satisfying

A(g + «)H(g) = H(g)A(g). @)

A must be a product of a constant and the identity matrix, ie.
A(g)=cl. One can show that a finite dimensional R-invariant G-
module is irreducible if and only if the matrix-valued function H in-
duced by R is irreducible with respect to the rotation p,.

As before, we assume that I is a finitely generated abelian group of
measure preserving transformations on a probability space (X, 4, u).
Let G be the Kronecker group. For any ReI’, we will use K(G, R) to
denote the space spanned by all finite dimensional R-invariant G-
modules. One can show that there is an R-invariant sub-o-algebra %,
such that I*(X, %, 1) = K(G, R). More details about finite dimen-
sional modules can be found in [5, 6, 7, 13].

A k x k unitary matrix-valued function H on a compact abelian
group G is called an (E)-cocycle with respect to a rotation p, if
there exist measurable functions A,:G— U(1) and F:G x G— U(k)
such that

F(t,g + 9)H(g) = AH(g + D)F(t, g). (3

The pair {F(,,"), A("}} will be called an (E)-pair.

Now let R be ergodic. For a finite dimensional R-invariant
G-module .#, if the unitary matrix-valued function H induced by
R with respect to certain basis is an (E)-cocyle, then .# will be called
a Conze-Lesigne type G-module. If H is irreducible, LESIGNE (see [9,
pages 184-186]) showed that if there exist measurable 4,:G— U(1)
and (not necessarily measurable) F: G x G — U(k) such that (3) is true,
then H is an (E)-cocycle. Recently, RUDOLPH proved that any irreduc-
ible (E)-cocycle on the Kronecker factor must be a one-dimensional
cocycle. This result significantly reduced the complexity of our work.
A proof can be found in [12, Corollary 2.3].
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Theorem 2.1 (Rudolph). Let G be the Kronecker factor of an
ergodic measure preserving system (X, %, u, R) and let H:G — U(d) be
an irreducible (E)-cocycle induced by R on an irreducible G-module.
Then H must be a one-dimensional cocycle (i.e. d = 1).

From now on, we only consider one-dimensional (E)-cocycles.
Finally we would like to state a classical result due to Van der Corput.
A proof can be found in [1].

Lemma 2.2 (Vander Corput). Let {u,;neN} be a bounded family of
elements in a Hilbert space # . If

1M1Nl

lim lim —= > Y ity

M—’CDN‘-'OOMNm 0 n=0

then

3. Conze and Lesigne Algebra

The following proposition is due to Lesigne. (see [9, pages
179-1837)

Proposition 3.1 (Lesigne). Let p, be an ergodic rotation on a com-
pact abelian group G. Then any (E)-cocycle H(x) with (E)-pair {F(-,"), 1}
is cohomologous to a constant.

We can have the following immediate corollary.

Corollary 3.2. Let aeG such that IG/<—CL>‘l < 0. Then any (E)-
cocyle H(x) with (E)-pair {F(-,"), 1} is cohomologous to a p -invariant
Sfunction on G.

Let V< G be an open neighborhood of the identity. A function
A7)V x V->U(1) is called a Lm.b. (locally multiplicative bilinear)
form if

i) fort,seV, At,t)=1and A(s, 1) = Az, s) and
ii) foranyt,,t,and seVwitht, +1,eV, A(s, t, +1,)=As, t1)As, t,).

A correct proof of the following result, without the assumption that
G is connect, can be found in [9, pages 188—192].
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Proposition 3.3 (Conze and Lesigne). Let H(x)be an(E)-cocyle with
respect to an ergodic rotation p, on a compact abelian group G. Then
there is an (E)-pair {F(:,"), A()} and a Lm.b. form As, 8):V x V->U(1)
(where V < G is open) such that

i) for every te V,lim,_ ,A(t,s) =1 and
ii) fors,teV, we have that

F(s,x + t)F(t, x) = Ms, t)F(t, x + 5)F (s, x). 4)

From now on, such a 1. m.b. form will be called a L.m.b. form induced
by (E)-cocycle H(x). Using Lesigne’s method, one can have the follow-
ing property for a L. m.b. form.

Lemma 34. Let A(,*) be a l.m.b. form on V and for any teV,
lim_, 4 A(t, s) = 1. Then thereis a neighborhood V, < V of the identity of
G, a k-dimensional torus T*, a finite abelian group F, surjective
homomorphisms with the following commutative diagram

G- eTkx F

|

Tk

and a locally multiplicative bilinear form (-, ) defined on a neighbor-
hood U of the identity of T* such that

i) ker(py) = Vy and p, (Vo) = T* x {0};
i) |ker(p)/ker(p,)| < co; .
iii) p(Vy) < U and for s, te Vy, A(p(s), p(t)) = A(s, t).

Proof. Let G, = V be a closed subgroup such that G/G, =T x F,,
where F, is a finite abelian group. For any se V, A(s, ) is a character of
G,. Since lim,_, 4 A(s, t) = 1, there is a neighborhood V; < V such that
for any seV,, A(s,")=1. Let V, < V, such that V, + V, = V;. Then
there is a closed subgroup G, of G, such that G, < ¥V,nG, and
G,/G,=T" x F,, where F, is a finite abelian group. It is clear that G,
is a closed subgroup of G and G/G, =~ T* x F, where F is a finite group.

Let p,:G—T* x F, p,:T* x F— T* be the natural homomorphisms
and let p=p,op,.

Letting V, = V,np; "(T* x {0}), we have that ker(p,) = G, =V,
and |ker(p)/ker(p,)| = | F|. Since ker(p,) = G,, we have that for any
seV; and teker(p;), As,t)=1. Noticing that V,+ker(p) <V, +
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+ Vo=V, and s, t)=Ats), one can define a lmb. form
2, ):p1(Vo) % py(Vo) =T by Apy(s), py(t)) = As, t). Since p, :T" -
:—»T" x F, defined by p, (1) =(u,0), is an injective homomorphism,
Z=4Aop," is a locally multiplicative bilinear function on
p(Vo) % p(Vy).

Let U = p(V,). Then U is open because p is open. Now the lemma
follows. [

The torus T, described in Lemma 3.4, will be called an essential
torus for A(:, ). We still use the same notations as Lemma 3.4. It is clear
that there is a bilinear form B(-,-) on R* x R¥ such that

;L(S, t) == z(u, V) —_ ezﬂiB(u,v).

for w = p(s), v=p(t) and s,t V. If B(n,m)eZ for n, me Z*, we will say
M, ) 18 k-dimensional expandable or expandable.

Proposition 3.5. Let H(x) be an (E)-cocycle with respect to the
ergodic rotation p, on a compact abelian group G and let /(-,") be al.m.b.
form induced by H(x). Then A(-,) is expandable.

Proof. We still use the same notations as in Lemma 3.4. Let B(:, )
be the local bilinear form on T* x T* induced by A(-, ). It is clear that
B(:,") can be extended to a bilinear form on R* x R*¥ and we still denote
this bilinear form by B(-, ).

Let

v;=(0,...,0,1/L,0,...,0)eU.
%}
We can choose a sufficiently large integer L so that for any 1 <i<k
there exists t,€ V,, with p(t;) = v,. Let

' F(Lt,, x)

Noticing that p(Lt;) =0 and t,eV,,, we have that p,(Lt;) = 0 which
implies that Lt,eV,. By Proposition 3.5, for any seV, and
j=0,1,...,L—1,

F(Lt;, x + s) = A(Lt;, $)F(s, x + Lt;)F(Lt;, x)/F(s, x)

3

and

F(t, x4+ jt; +s) = At;, )F(s, x + (j + De,)F(t,, x + jt,)/F(s,x + jt,).
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Therefore one has F(x +s) = (A(s, 1,))"A(s, L)' F(x). Since Lt,e V,
and p(Lt;)=0, A(Lt;, s)=1 for any seV,,. Thus F,(x +s)=(A(s, t,))"F(x).
Now for any i, since t;, € V,,

Fix + L) = (Aty, )Filx + (L— i) =
= (At )2 EF (x + (L= 2)ty) = -+ = (Ut 1))X F ().
Same as ¢;, Lt; € V,. So A(Lt;, s) =0 for all se V, and
Fix+ Lty) = (MLty, t)F (x) = F(x).

Now we have (A(t,, ,))~ = 1 which implies that B(v,,v;,)eZ. Let B be
the matrix such that B(v;, v;) = v, Bv;. Then the coefficients of B must
be in Z. L]

Definition 3.1. Let G be a compact abelian group with a rotation
p, (not necessarily ergodic). A complex-valued function f(x) on G is
a nil-boundary with respect to « if there is a finite dimensional simply
connected order 2 nilpotent group N with a lattice I', a homomor-
phism p:G—N/I'[N,N], an 4eN with p(o)=4&I'[N,N] and
a bounded function b:N/T — U(1) such that, for a.e. xeG, a.e. ve N
with p(x) =vIN,N]

f(x) = b@vI)b(vT).

A U(1)-valued function M(x) is an (E)-boundary if there is a nil-
boundary f(x), a character y(x) of G and an a-invariant U(1)-valued
function D(x) such that M(x) is cohomologous to y(x)f (x)D(x).

Proposition 3.6. Let H(x) be an (E)-cocycle with respect to an
ergodic rotation p, on a compact abelian group G. Then there exists an
integer d such that H9(x) is an (E)-boundary with respect to do.

Proof. Let A(,,") be the L. m.b. form induced by H(x) and let T* be
the essential torus. By Lemma 3.4, there are surjective homomor-
phisms p, p, and p, such that the following diagram commutes.

G- Tkx F
pj P

1]
Tk

Since A(,-) is expendable, there is B(,") on R* x R* and an open set
V, < G such that
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i) ker(py) = Vo= py (TF x 0),
ii) for n,meZ* B(n,m)eZ and
iii) for any s, teVy, A(s, t) = exp{2niB(p(s), p(t) }.
Therefore there is an antisymmetric matrix Begl(n, Z) such that
B(v,,v,)=v,BvY,. Let B' be a triangle matrix such that B= B — (B')".
Then one can define a bilinear form B'(z,z) =7 B'z" such that
B'(n,m)eZ for n,me Z*. Next, we will use B'(-,") to define a nilpotent
group.
For z,zZ €R* and s, 5’ R, define
(z,9)%(z,s)Y=(@2Z+17,s+5 —B(z,7)).
Then (R**1, ) is a step 2 nilpotent group. Let T' = {(z,s);ze Z* and
seZ} and let
b(z,s) = exp{ —2in(s + B'(z,[z]))}.
Then b is a function defined on N/T" and f(z,z) = b((Z, 0)=(z, 5))b(z, s)
is a function on N/T'[N, N] = T* By calculation, one also can show

! "

that, for any z, 7, z" e R,
fZ,z+2")f(2',2) = exp{2niB(",2)} (2", 2+ 2) [ (z',z).  (5)

Letd =|F| o; = p,(o) and oy = p(at) = p,(;). Then a; = (aty, h) for
some he F and doy, = (do,, 0). Choose e€ V,, such that Lp, (¢) = du, for
some integer L and let

F(x)= F(dou— Le, x + Le) F(e, x + (L — 1)¢)--- F(g, x).
Then
F(x + t)F(t, x) = Mdec — Le, t)(Me, ) F(t, x + do) F(x).

Since p,(da — Le) =0, do — LeeKer(p,) = V,,. Thus Mdo — Le,t) =1
forteV,. So

Mdo— Le, t)(Me, t))* = exp{2nip(t) B(do, ).
From (5) we immediately have
f(dog, plx + ) E(x + 1) f(p(t), p() F (2, x) =
= f(p(0). plx + do)) F(t, x + dor) f (dotg, p()) F ().

Let M(x) = f(dog, p(x))F (x) and let F'(t,x) = f(p(t), p(x))F(t, x). Then
forteVand xeG

M(x+ t)F'(t,x) = F'(t,x + do) M (x).
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Since p, 1s ergodic, | G/{da >| < co. Therefore, by Corollary 3.2, M(x)
is cohomologous to a dz-invariant function Dy(x).

Considering the relation between F(x) and H(x), one can find out
that '

H9(x + da)F(x) = Mdo — Le)AX(e) F(x + da) H(x).

Let A= A(do— Le)A™e) and D(x) = F(x)*H“)(x). Then D(x + dz) =
= AD(x). So H¥(x) = f~(da,, p(x))D4(x)D(x). Noticing that D(x) is
a product of a character and a da-invariant function, we have the
lemma. ' ]

4. Properties for (E)-Cocycles

The following result belongs to Lesigne. A proof can be found in
[10].

Theorem 4.1 (Lesigne). Let T" be a lattice of a simply connected
finite dimensional step 2 nilpotent Lie group N and let c be a continuous
Sfunction on N/I'. Then for any a,ve N, any real polynomial Q, the limit

N—-1

lim% Y expinQ(n))c(a™vI)

N—-ow n=0
exists.

Now we have an immediate corollary and readers can figure out
a proof by considering a direct product of nilpotent groups. A proof
also can be found in [10].

Corollary 4.2. Let c,,...,c,, be continuous functions on N/I". For
anya,,...,a, and ve N, and for any z,,z,€C with |z;| =|z,| = 1, the
limit

: 1 gt n_nn—1)/2 - n
lim — ) ziz) [T ex(@apvD)

N—>00Nn:0 k=1
exists.

We will use C(Y) to denote the space of all continuous functions on
a topological space Y.

Lemma 4.3. Let Y be a compact space with probability measure
v and measure preserving transformations S.,. .., S, and let Q be a set
of sequences of complex numbers with norm less than 1. Let
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A c LX) LP(Y) for i=1,...,m. If for any c;eA;, i=1,...,m
there is a set A with full measure such that for ye A, for any o = {w,}
the limit

I}T:ON Z H c(Sey)

exists, thenfor any fie A(in M(Y)Lo(Y)i=1,..., m, thisis also true,
ie., there is a set A with full measure such that for ye A, for any
o= {w,}eQ, the limit

exists.

Proof. Let B,(Y)={feL*(Y);|f]|<1}. Without loss of general-
ity, we assume that f,,..., f,,€ B{(Y).

For any geZ™, there exist ci€N;, i=1,...,m, such that for
1<k<m,

J )~ KOy <,

Let

1
Ay = {er s}ipN Z fe i (Sey) — fk(S;yN??}.

Then, by the Maximal Ergodic Theorem,

WA,) < ffch(y — fly)ldv <§IE

By assumption of the lemma, there is a set 4 with full measure such
that for ye A4, for any o = {w } and any q the limit

Jim N Z H CalSiy)

exists. Now for any ye A\, »,(Ui=14,4) for any weQ, we can
choose N > 0 such that when N,,N, > N,

]1N11 m

‘N Z H qk(Sky X7 Z H qu(Sky
1 n=0
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Therefore

Ni—1 Ny—1

1 m
v & ol hsm—5 3 o, 11 | <

k=0

|

21

<3y 2 | flS1y) — StV +

m

) lz:_: H Ce(Sky) — N, Zo H calSey)| +

| —

+

Mz =2

Ly L
k lNZ

<?.m+1
2‘1

fk(Sky) qk(SZy)l <

Ny—1

n

Since v({yq(Ur= 1 4,4)) — 0, the lemma follows. ]

Proposition4.4. Let f,(x),..., f,,(x) be nil-boundaries on a compact
abelian group G with respect to rotations p,,.. ., p, respectively. Then
for a.e. xeG, for any zl,zzeC with |z,| =|z,| =1, the limit

hm - Z Zn nn—1)/2 H f;;n)(x)
N—»ooN k=1

exists. Here f"(x) = fi(x +(n— Day) - fi(x) fork=1,....m

Proof. Suppose that f,,..., f,, set in tori T,,..., T,, respectively
and let p,, ..., p,, be the corresponding surjective homorphisms from
GtoT,,..., T, respectively. Define p:G—-T, x --- x T, by

p(x)=(p1(x),-- ., pul(x))-

Then G, =p(G) is a compact abelian group. Let I';,...,T’,, be
lattices of simply connected step 2 nilpotent groups N,..., N,, re-
spectively such that T, = N/T',[N,, N, Jfor k=1,...,m. Let 4 ,eN,
such that 4,;I',[N,, N, ] =p,(a;) for k=1,...,m. By definition, for
any k=1,...,m, there is a function b, on N,/T", with |b,| =1 such
that

filx) = b(a, v, T )b (v, Iy)

where v, I',[N,, N,] = p.(x). We first assume that b,,...,b,, are con-
tinnous. Let N=N, x--- x N, andletI'=T, x --- x I',,. It is clear
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that
[NaN]:[Nl»Nlj X oo X [Nm’Nm]:

NI =N,/ x--xN,T,
and
N/T[N,N]=N T[N, ,N;]1x - x N /T, [N.N,]1
Fork=1,...,m,let
A=,

Since N,/T',, k =1,...,m,are factors of N/I', b, can be respectively
considered as functions on N/T' and G,. Therefore for any
v=(v,,...,V,)e N with p(x) = vI'[N, N],

Silx) = b EYT)BE ().

Then
1 N~ n n n— 0 n n n— ~N
- z ( 1)/2 1"[ f() — z ( 1)/2 H bk(akvr)b,’f(v).
k=1
Since by,..., b, are continuous functions, by Corollary 4.2, the limit

exists for any xeG.
Now we consider the convergence of

Z n n(n 1)/2 H b akV (6)

for general b,.

Let No={veN,vI'[N,N]eG,} and Y={v['eNT;vI'[N,N]eG,}.
Then Y/[N,N]=Gy, No/T =Y and Y is a compact space. Since
N, o T, there is a unique invariant probability measure v on Y (see
[11, page 23]). Itis clear that v is induced by the Haar measure on N,,.
Let p: Y - G, be the homomorphism p(y) = y[ N, N]. Then p*(v) is the
Haar measure on G,. These tell us that G, is a factor of N,/T". Since
a(,....,4,eNy, mapsvl —-a,vI, k=1,...,m, are measure preserving
on Y.

Now let p,: N/T" - N, /T', be the natural projection. Then one can
check that p(N,/I') = N,/T',. Since the invariant measure is unique,
N, /T, is a factor of Ny/I". Then b, k =1,..., m, can be considered as
functionson N,/T". Let A, be the set of continuous functions on N, /T,
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fork=1,...,m. Thenforanyc,eA,k=1,...,mand anyz,, z,e U(1),
the limit

1- IN_l n_nn—1)/2 - ~n

1m N Z 212, n c(ay)

N—-w n=0 k=1

exists for any yeY. By Lemma 4.3, for any b ,eL*(N,/T,) with
k=1,...,m, thereis a set A = Y with full measure such that for ye Y
and for any z,, z, e U(1), (6) converges. This will give the proposition.

O

Lemma 4.5. Let f,,...,f,, be nil-boundaries on a compact abelian
group G with respect to rotations defined by o,...,a,, respectively.
Then for any bounded functions ¢, ..., ¢, on G, thereis a set A with full
measure such that for xe€ A, for any ¢ with |¢| =1, for any d,(x),...,
d,(x):G— U(l) and for any characters y,,...,v,, on G, the limit

tim =% [T o ) 0)

exists.

Proof. By Proposition 4.4, there is a set A, with full measure such
that the limit

I\III_I;IOION Z Zn n(n— 1)/2 1:[1 f;cn)(x)

exists for all z,, z,eC with |z,|]=]z,|]=1 and xeA, We first
assume that ¢,,..., @, are characters of G. Letting

Z=¢ H e (%)

and
ZZ = l—[ 'yk(ak)a
k=1

we have that the limit

tim 5 2 T om0 =

_1315130;]<Ni1 " ,,(n 1)/21—[ f(")(x)> ﬁ ¢k(x)

k=1

exists for all xe 4.
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Since G is compact, the set of all linear combinations of characters
is dense in C(G) with respect to the norm: | ¢ |, = max,.q|¢(x)|.
Therefore (7) converges for all continuous ¢,,..., ¢, and all xe 4,.
Now let

Q= {g" TT 740"~ D2 fiP(x)di(x); for all xe A, and y,e G}

k=1
Then the theorem follows from Lemma 4.3. O

The following corollary follows from the above proposition im-
mediately.

Corollary 4.6. Let G be a compact abelian group and let
M,,...,M,, be (E)-boundaries with respect to o.,...,a, respectively.
Then for any bounded functions @,,..., ®,, there is a set G, with full
measure such that for any xe G,,, the limit

Nlm

hm — H @, (x + no) M (x)

N"wNn 0 k=
exists.

Now we give a certain type of convergence theorem for (E)-
cocycles.

Theoremd4.7. Let H,,..., H, be (E)-cocycles on a compact abelian
group G with respect to ergodic rotations Pogs s Do respectively, and
let ®,,...,®, be bounded functions on G. Then, for any integer
Jiseees jms the limit

lim — Z [T ®@ulx + njo) HYP (x)
N—w N n=0 k=1

exists for a.e. xe@.

Proof. By Proposition 3.6, there are positive integers d,,...,d
such that

m

(@) (dn)
Hll,-.-,Hm

are (E)-boundaries. Let / be the least common multiple of d 1, R
Then

“j) i) (£ Jm)
HYD g ¢
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are (E)-boundaries with respect to £j,a,,£j,0,, ..., £j,0, respectively.
By Corollary 4.6, for almost all xe G, the limit
N—-1 m

1 )
lim = ) J] ®ux+ ntj ) HI 9 (x)
N-o N T iy
exists. Therefore the limit

N—1 m

1
lim — ) ]_[ @, (x + nj, o) HIP(x) =
k=

N—->w n=0
1/1 1N1m

— / ( lim — ¥ ﬂ D, (x + njoy, + Jj o) He P (x + jjkock)) X

=0 N_’°0Nn 0k=
x HH(JJk)

exists. These give us the theorem. O

Finally we state an immediate corollary which will be used to
prove Theorem 6.2

Corollary 4.8. Let H be an (E)-cocycle with respect to an irrational
rotation p,. Then for any @, ..., ®, and any integers j,, ..., j, the limit
N-1 m

1
lim — ) H @, (x + nj o) H"9(x)

N—’OONn 0 k=

exists for a.e. xeG.

5. Decomposition Based on Conze-Lesigne Algebra

The method used in this section is similar to the method CoNzE
and LESIGNE used in [4]. We begin with a proposition dealing with
two commuting measure preserving transformations. For sake of
completeness, we give a proof.

Proposition 5.1. Let T, S be commuting (i.e. ST = TS) measure
preserving transformations on a probability space (X, %, u) such that
ST~ has f.m.e.c. Let E(S), E(T) denote the closed subspaces spanned by
all eigenfunctions of S and T, respectively. Then for any bounded
functions f| and f, with either f; L E(S) or f, LE(T),

1 N-1
lim ||=
N1v>oo J Nn=0

Y f1(8™) [, (T™x)|dp=0.
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Proof. Let e,,..., ¢, denote an orthonormal basis of the ST~ '-
invariant space. We first assume f, and f, are bounded and use the
Van der Corput Lemma. Let u, = f,(S"x)f,(T"x). Then

-1

hm i Z <un’un+m> -

N—w N
1 N—-1
= lim > ffl(S"X)fz(T”X)fx(S"+’”X)f2(T"+'"X)du=
N=co =0

i

[f 1(0£1(8™x) lim —]% ; (TS~ %) fo(T™x))dp =
k
= ; ffl(x)fl (§™x)< S, T" fre; v edp =

; S 8" f1e > [, T e,

Let P denote the orthogonal projection from L*(X x X, % x &, i X )
to the § x T-invariant subspace. Since the S x T-invariant space
is contained in the closed subspace spanned by E(S) x E(T), we
have

1 M-1N-1

lim lim 11 Y Y Kyt =

M_’OON”’OOMNm 0 n=0

k
=% fim L z (o % for(S X TV, % )8 x 5 =

i=1 M~>oo

Il

‘21 CTix [ P(fyx fre xe)=
=0,

. I _v- .
By Lemma 2.2, th_,wNZfLol J1(8"x) f,(T"x) =0 in the L,-norm
which implies the theorem. O

If Sand T are commuting measure preserving transformations on
a probability space (X, 4, u) such that S, T and ST ! have fm.ec,
then E(S) = E(T) and there is a basis {e,} of E(S) such that e, e,,...
are eigenfunctions of S, T'and ST 1.
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Corollary 5.2. Let S, T be commuting measure preserving trans-
formations on a probability space (X, %, n) such that S, T and ST 1
have fm.e.c. Let {e,} be a basis of E(S) such that ey, e,,... are
eigenfunctions of S and T. Let in, AL be eigenvalues with respect to
{e,} for S and T respectively. Then for any f,, f,€L*(X,%, 1), the
limit

lN 1
Jim 5 L AEOLTN= 2 (e fnlndex)e ) 8)

n=im

exists in the L-norm.

Now we consider measure preserving transformations R, S and
T on a probability space (X, 4, p). Since our goal is to find conditions
for the convergence of

1N 1

~ Z J1(R™%) 15(8"%) f3(T"x),

without loss of any generality, we can assume that the abelian group
(R, S, T) acts on X ergodicly. Thercfore from now on, we always
automatically assume the ergodicity of (R, S, T) and readers can
generalize to nonergodic situation.
Define a measure w on X*: for any 4, Band Cc %
1N~1
w(AXBxC)= Aliim N Y fl AR (S"™ )1 (Tx)du.  (9)
- n=0
The existence of the above limit directly follows from a result of CONZE
and LESIGNE (see [3, Théoréme 4, page 152]). It is clear that w is
a joining of (X, R), (X, S) and (X, 7).

Proposition 5.3. Let Z be the subspace of I*(X3, %3, w) spanned by
all R x S x T-invariant functions (with respect to ) and let
P, I2(X3, %% w)—>Z be the projection. Then for any f, f,,
fel*(X, B, with {1 ® [, f31Z,

Iim

N—-w

N-1
3 2 HERNLE LT =

Proof. We will use the Van der Corput Lemma. Let
u, = f1(R"X) [(8"x) f3(T"x).
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Then

1M1N1

z z <unﬂ n+m

mOnO

x ff L(R"X) f,(5"x) f3(T"x) f1(R"77x) f5(S"7"x) f3(T" " "x)dp =

M~1 N-1
- P (1 » j R"mRmfns"(fzsmfz)T"(faT%)du)

n=0

Therefore

1

(AR"f)® (28" ) ®(f3 T f3)dw

1M1

(1 ® 2@ IR x §" x T"(f1 ® [, ® [f3))dw

Q___——\.‘———\'O

This means

1M1N1

lim lim _1-— Z Z <un> n+m>""

M_’OON"(X)MNm 0 n=0

= J(f1®fz®f3)Pz(f1®f2®f3)dwZO-

Now the theorem follows from the Van der Corput Lemma. O
IfR,S, Tand RS™L, ST, TR ! have fm.e.c, then
E(R)=E(S)=E(T)=E(RS Y=EST Y= E(TR™1).

Let {e,} be the set of all characters of Kronecker group. Then {e,} is
abasisof E. Let A, ,, 4, ,,, 43, 415 0> 423, a0d A5, , be eigenvalues for
e, with respect to R, S, T, RS™!, ST~ * and TR ™! respectively. It is
clear that Ay, , =2, A3 0, Arzn=~Aa,usn and Ay;,=73,4 . Let
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Aijn = Ajin- By Corollary 5.2,

lim z j FUR™) £,(S™) FA T™)dps =

=/1 Z_:l ‘<f1>ei><f2ae—j><f3’e_iej>- (10)

The following theorem is due to H. FURSTENBERG (see [5, page
2447).

Theorem 5.4 (Furstenberg). Let (X, %, u,,R,),i=1,...,k, be er-
godic measure preserving systems and let 9,,...,9, be factors of
B,..., B, respectively. Let w be a joining such that

Jhl(xl)"'hk(xk)dw = JE(hl]@1)(x1)"'E(hk,@k)(xk)da)

for h,e L*(X;, D, ), i =1,2,..., k. Then the subspace of I([ i~ X,
]—ﬂ-‘:l%, w) spanned by all of R, x --- x Ry~invariant functions (with
respect to o) is contained in (X);-  K(Z;, R,).

One can generalize this result without difficulty to the case where
R,,..., R, are fm.e.c. So we can have the following corollary.

Corollary 5.5. Assume that R, S, T and RS™*, ST~ !, TR~ have
fm.e.c. Let G be the Kronecker factor of (X, {R, S, T}) and let w be the
measure defined by (9) on (X3 %° w). Then the subspace of
I2(X3, %3, w) spanned by all of R x S x T-invariant functions (with
respect to ) is contained in K(G, R)® K(G,S)® K(G, T).

Proof. We need to check the conditions in Theorem 5.4.
By (10),

o(f1® f,® f3)= Z <f1>ei><f2>éj><f39éiej>:

Ao1,i= Asj
= Z <PGf13ei><PGf2’éj><PGf39 e_iej> =
221,i= 431, j
=w(Pgf ® Psf2®Pgf3)-
Hence all conditions in Theorem 5.4 are satisfied. This implies the
corollary. Ol

The following lemma is slightly different from a theorem in [3, 4].
For the sake of the completeness, we give a proof here.
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Lemma 5.6. Let R, S and T be measure preserving transformations
with fm.e.c. If f,e L°(X, B, 1) fork=1,2and 3with P,(f1 ® [, ® f3)#
#0, then for any sequence {n,} of integers there exist bounded functions
u, v and w such that

lim sup sup |{uR™f,e;>| >0,

k— 0 i

limsup sup | {vS™f,,e;>]| >0,

k—> o0 i
and
lim supsup [{wT"f5,¢e,>] >0,
k— oo i

Proof. First of all we claim that given {n,} there exist bounded
functions u, v and w such that

lim sup

k— o0

If this is not the case, then for any YeI*(X3, %°, ),

J‘(u®v®w)(R"’<fl ®S™f, @ T™f3)dw| > 0.

lim f PR™f, ® S™f, @ T f3)dew =0,

k=

Hence for any R xS x T-invariant function W, we have
[¥(f1® f,® f3)do=0. This contradicts the condition

Pf1®f,® f3)#0.
Assume that for some u, v, we L*(X, 4, u),

lim sup

k— oo

By (10} we have

j(u@v@w)(R"kf1 QS"™f,® T”kf3)dwl > 0.

lim sup

k—w

> 0.

z <URnkf1aei><vSnkf2:éj><WTnkf3’éiej>

Za1,i = A3y,

Let K be an integer such that the dimensions of RS™!, ST~ ! and
TR~ '-invariant spaces are all less than K. Then

Z <“Rnkf1vei><USnkfzaéj><WT"kf3=éiej>

421,17 A31,

< ( Z | CuR™f 1, e;> | <US"’<f2,e_j>]>Slipl(wT""fg,,e,)l <

Aa1,i= 431,

<




296 Q. ZHANG

1/2 1/2
<K<Z'<“R"’°fuef>lz) (ZIvS"kfz,epIZ) sup | (wT™ f3e,0] <
<K [uR™f 151087, |5 sup [ KwT™ 3, )| <

<Kiullgllvl,ll fy HZHf2||2Sl;1p]<WTnkf3=et>"

We have that
limsupsup [{wT™f5,e,>| > 0.

k= t
Since the positions of R, S and T are same, we can get the rest of the
lemma by similar arguments. ]

We use the following result of CONzE and LESIGNE to finish this
section. A proof can be found in [3, pages 167-169] and [4].

Proposition 5.7 (Conze and Lesigne). Let R be an ergodic measure
preserving transformation on a probability space (X, %, i) and let G be
the Kronecker group. Let .# be an irreducible finite dimensional
R-invariant G-module and let fe Hl ~L*(X, %, 1) be a bounded func-
tion. If for any sequence {n,} = N there exists a bounded function u such
that

lim sup sup |<uR™f, e;>| > 0,
k= i
then the matrix-valued function H induced by R withrespect to a basis of
A is an (E)-cocycle on the Kronecker group G, i.e. M is of Conze-
Lesigne type.

6. Existence of the Limits
Now we are in the position of summarizing our main results.

Theorem 6.1. Let R, S and T be ergodic measure preserving trans-
formations on (X, A, u) such that RS~*, ST™! and TR™! are ergodic.
Then for any f,, f, and f;€L*(X), the limit

N—-1
lim < Y f,(R)£5(57 £3(T") (11)
n=0

n— oo

exists in the I1-norm.
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Proof. Let G be the Kronecker group. Let @ be the joining on
(X3,2°) defined by (9) and let Z be the closed subspace of
[2(X3, %3 ) spanned by all R x § x T-invariant functions with re-
spect to w. By Corollary 5.5, we know that

Z = K(G,R) ® K(G,S) ® K(G, T).

Now we claim that if f; L K(G,R)nL*(X), then for any f, and
fRel*(X), 1 ® f, ® f3 LZ. Actually we only need to show that for
any ¢, €K(G,R), ¢, K(G,S)yand ¢, K(G, T),

J(f1®f2®f3)(‘(’1®fpz®(P3)dw:0- (12)

Since e;¢, € K(G, R) for any eigenfunction ¢;, {f,¢,,¢;> =0. By (10),
Eq.(12)is true which gives our claim. By Proposition 5.3, we only need
to show (11) for f,€K(G,R), f,€K(G,S) and f,eK(G, T).

Assume that K(R,G)=P,¥,, K(S,G)=P);.#; and K(T,G) =
@By = N where &, . ;and N are respectively R, S and T-invariant
irreducible finite dimensional G-modules. It follows from Lemma 5.6
and Proposition 5.7 that if one of £, .#; and .# is not a Conze-
Lesigne type G-module then

Pz(gi®%j®-/1/k)=0-

Therefore by Proposition 5.3, we only need to prove the theorem for
f1, f,and f; belonging to Conze-Lesigne type G-modules &, .#; and
A, respectively. Since irreducible Conze-Lesigne type G-module
must be one-dimensional, there are functions @g;, @s;, ¢, for &£, M,
A respectively and (E)-cocycles Hy;, Hg, H; with respect to R, S,
T respectively such that

@ ri(RX) = Hgi(x)pi(x),

QDSJ'(SX) = HSj(x)<PSj(x)
and @ (Tx) = H 1, (x)@ 1, (x). Assume that

filx)= Z a1(X)@gi(x), fo(x) = Zau(x)q’sj‘(x) and f5(x) =
= Z a3 (X)Qri(X),

where a,;, a,;, a;, are G-measurable. Let p,, p, and p, be the
rotations on G with respect to measure preserving transformations R,
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S and T on X respectively. Then
1 N—-1

~ Z J1R™) £5(8"%) f3(T"x) =

[ N-1
= Z ( 2 ay(x +nay)a, (g + noy)as g + nos) x
i,j.k n=0

x Hﬁ?(x)Hém(s)H‘T"’(x)>¢Ri<x)qo5j(x)qork(x).

Now the theorem follows from Theorem 4.7. O

The proof of the following known result is basically the same as the
proof of Theorem 6.1. For sake of completeness, we sketch our proof
again.

Theorem 6.2 (Conze and Lesigne, Furstenberg and Weiss). Assume
that R is a measure preserving transformation on (X, %, p). For any
integers £, ¢, and £ and any f,, f, and fyeL*(X), the limit

1 N—-1
lim — Z [1(R"x) f(R™"x) f3(R™"x) (13)

exists in the L'-norm.

Proof. If we can prove the convergence for the ergodic measure
preserving transformation R, the theorem will follow from the ergodic
decomposition theorem. Here we only prove the theorem for 7, =1,
£, =2and ¢, = 3. Our proof can be easily generalized for all integers
/1, ¢, and /5.

Let o be the joining on (X 3, 3) defined by

(A x Bx C)=lim N— Z 1 (R"x)1 5(R*"x)1(R>"x)
for any 4, B and Ce4%# and let Z be the subspace of I*(X?, %3, )
spanned by all of R x R? x R3-invariant function with respect to
the measure w. Let G be the Kronecker group of the system
(X, R) (notice that (R,R?,R®> =<(R)>) and ¢,, e,,... are all charac-
ters. Since K(R, G) = K(R™, G) for any integer m, we have that, by
Corollary 5.5.

Z < K(R,G)® K(R, G)@ K(R, G).
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It follows from Lemma 5.6 that if P,(f, ® f, ® f5) #0, then for any
sequence {n,} there exist bounded functions u, v and w such that

limsup sup |[{uR™f,,e;>| >0, (14)
k— o i
limsup sup {<vR*™f, e,>| >0, (15)
k— o i
and
limsup sup |[{wR?™f,,¢,>| > 0. (16)
k— i

By Proposition 5.7, if f, is in a finite dimensional G-module, this
G-module must be a Conze-Lesigne type G-module. We still have to
show that f, and f; are also in Conze-Lesigne type G-modules.
Actually, we only need to show that (15) and (16) imply (14).

For any sequence {n,}, there must be an infinite subsequence of
even numbers or odd numbers. Without loss of generality, we assume
that there exists an infinite subsequence of odd numbers, i.e. there
exists a sequence {m;} such that {2m;+ 1} is a subsequence of {n}.
Then there is a bounded function v such that

limsupsup |<vR?*™if,,e;>| > 0.
k— w0 i

Since
KURzmjfza ey = |<RUR2mj+ 1fz> Re;>| = | <RUR2mj+ 1f2a e,
we know that

limsup sup |[{ RuR™f,,¢;>| =limsupsup|{RoR*"*'f, .5 > 0.
k— oo i j—= o i
This tells us that f, must be in a Conze-Lesigne G-module. The same
method can prove that f; is also in a Conze-Lesigne G-module.
Therefore we only need to prove the theorem for f;, f, and f,
belonging to Conze-Lesigne type G-modules. Now, similarly as in the
proof of Theorem 6.1, the theorem follows from Corollary 5.7.
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