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Abstract. In this note, we will prove that for commuting ergodic measure preserving trans- 
formations R,S and T, i f R T  1, ST- I  and TR -~ are also ergodic, then the limit 

1 
lira N Y~=I fl(R"x)fz(S"x)fa(T"x) 

exists in D-norm. The method used in this note was developed by CONZE, FURSTENBERG, 
LESIGNE and WEISS. 

1. Introduction 

For  several commut ing  measure preserving t ransformations 
R1 , . . . ,  R~ on a probabil i ty space (X, N,/1), limit theorems of the type 

1 N 
~=~ fl (R] x)... fk(R~x), 

where f t ,  �9 �9 �9 fk are bounded  measurable  functions, have been studied 
by J. BOURGAIN, J. CONZE, H.  FURSTENBERG, E. LESIGNE, and B. WEISS 
(see [2, 3, 4, 7, 8, 9, 10]). Al though mos t  people believe the existence of 
the limit in a certain sense (e.g. pointwise or L~-norm), the cases in 
which one knows the answer are scarce. This paper  follows these 
works in this direction and focuses on the case with mean  convergence 
for three commut ing  measure  preserving t ransformations R, S and 7". 

In Section 2, we bring some facts about  Kronecker  factors and 
Conze-Les igne  type modules.  Readers should be able to find more  
details in [3, 4, 5, 9, 10, 12, 131. In Section 3, some properties of 
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one-dimensional (E)-cocycles are discussed and in Section 4, we used 
those properties to prove the convergence of (E)-cocycles. In Sec- 
tion 5, lemmas and propositions are prepared for proofs of our main 
theorems. Finally, in Section 6, we give some conditions for conver- 
gence of 

l X - 1  
-~ ~ fl(e"x)f2(S"x)fa(r"x). 

t~=0 

Also a proof of a known theorem (Theorem 6.2), due to Conze and 
Lesigne, Furstenberg and Weiss, is given. 

We will use R, C and U(d) denote the set of real numbers, the set of 
complex numbers and the set of all d-dimensional unitary matrices. In 
particular, U(1) is the multiplicative group of all complex numbers 
with norm one. We sometimes also use T = R/Z to denote U(1). By 
a probability space, we mean a regular space (see [6, pages 103-104]) 
with the measure of the whole space being equal to one. For any set A, 
we will use A k to denote the set 

Ax.-.xA." 
k 

The author wishes to thank Professors V. Bergelson and H. 
Furstenberg for their continued help and valuable discussions. Dur- 
ing writing this paper, the author got a lot of valuable suggestions, 
advices, encouragement and support from Professor E. Lesigne. He 
also pointed out several mistakes in early drafts. The author likes to 
express special thanks to him. 

2. Preliminaries 

A measure preserving system (X, N, #, R) is a measure preserving 
transformation R on a probability space (X, N, #). Sometimes we also 
use (X, R) as short abbreviation. We will say a measure preserving 
transformation T has f.m.e.c. (finitely many ergodic components) if its 
ergodic decomposition has finitely many components. Let E(R) de- 
note the closed subspace spanned by all eigenfunctions of R. It is clear 
that if R has f.m.e.c., then the eigenspace for each eigenvalue has finite 
dimension. Actually, the dimension of the eigenspace is equal to the 
number of ergodic components. 

Let R 1 . . . .  , R k be commuting measure preserving transformations 
on a probability space (X, N, #) such that R i, RiRf 1 have f.m.e.c, for all 
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iva j. Then it is clear that  for i v a j, 

E(R,) = E(Ri) = E(RIR 7 1). (1) 

Let E denote  this subspace and let ~ denote  the sub-a-algebra of 
-~ such that  L2(X, ~ ,  #) = E. Let F be the abelian group generated by 
R1 , . . . ,  R k. If F is ergodic on X, then there exist a compact  abelian 
group G and a l , . . . ,  czkeG such that  (G, {P~l," ' ,  P~k}) is the maximal  
group rota t ion factor (Kronecker  factor) of (X, {R1, . . . ,  Rk}). We will 
call G a Kronecker group. Let p:X  -+ G be the factor map  and let No be 
the o--algebra on G generated by open sets. It is clear that  p(~) = NG. 
Abusing terminologies,  we will use @ to denote No and call a ~ -  
measurable  function on X a function on G. 

Assume that  F, being a finitely generated abelian group of measure 
preserving transformations on X, acts ergodicly. Let G be a Kronecker  
group of (X,~,/~, F) and let re:X-+ G be the project ion map.  Then 
there exists a family of condit ional  probabil i ty measures {#g:g e G} on 
(X, N) with following properties: 

i) #~(rc-l(g))= 1 for almost  all geG. 
ii) For  every f e D ( X ,  N', #), the function g --+ S fdl~g is measurable 

and S f d #  = ~ { ~ fd#g}d#G. Here #o is the Haar  measure on G. 

The  Symbols (-, ")g, [i'll g will be used to denote  the inner product  
and the norm with respect to the measure #g. 

A closed subspace S cL2(X, .~ ,# )  is called a G-module if 
f d g c J l t  for any bounded  function f on G. A finite set 
{qol,... , qok} c L2(X) spans a G-module  Jg  if the set 

{~1~01 + " "  + Okq0k; for any 0 1 , . . . , 0 k  on G} 

is dense in J/t. In this case, we also say that  J/l is a finite dimensional 
G-module  since it can be spanned by finitely many  functions. For  any 
finite dimensional  G-module  Jg, one always can find a finite set 
(Pl . . . .  , q)k spanning JN such that  ( qoi, ~0i)y = 0 for i # j, and il (P Ily = 1 
or 0. We will call this set a global orthonormal basis or just  a basis o f ~ .  

Let P1 , . - . ,  ~~ be a basis of J/t. For  R e F ,  i f JE is R-invariant  (i.e., 
R J / c  J t ) ,  there exists a matrix-valued function H on G such that  
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We will say that  H is induced by R with respect to a global or thonor-  
mal  basis (p 1, .- . ,  ~0k. In particular, if R is ergodic, then H is uni tary and 
[I ~0i [[ = 1 for all i. For  any positive integer n, H (n) will be used to denote  
the p roduc t  H(R"- ax)H(R~n - 1)x)... H(x). 

Let p~ be the rota t ion on G with respect to R on X. A R-invariant  
G-module  is irreducible if it does not  contain any non-trivial R- 
invariant sub-G-module.  A matrix-valued function H on G is irreduc- 
ible with respect to a rota t ion p~ if for any matrix-valued function 
A satisfying 

A(g + = I-I(g)A(g). (2) 

A must  be a product  of a constant  and the identity matrix, i:e. 
A(g) = cI. One can show that  a finite dimensional  R-invariant  G- 
module  is irreducible if and only if the matrix-valued function H in- 
duced by R is irreducible with respect to the rotat ion p~. 

As before, we assume that  F is a finitely generated abelian group of 
measure preserving t ransformations on a probabil i ty space (X, N,/~). 
Let G be the Kronecker  group.  For  any R e F, we will use K(G, R) to 
denote  the space spanned by all finite dimensional  R-invariant  G- 
modules.  One can show that  there is an R-invariant  sub-a-algebra ~R 
such that  L2(X, NR, #)= K(G, R). More details about  finite dimen- 
sional modules  can be found in [5, 6, 7, 13]. 

A k x k unitary matrix-valued function H on a compact  abelian 
group G is called an (E)-cocycle with respect to a rota t ion p~ if 
there exist measurable  functions 2t:G~U(1 ) and F:G x G ~  U(k) 
such that  

F(t, g + cQH(g) = 2fl(g + t)F(t, g). (3) 

The pair {F(-, .), 2(.)} will be called an (E)-pair. 
N ow let R be ergodic. For  a finite dimensional  R-invariant  

G-module  JH, if the unitary matrix-valued function H induced by 
R with respect to certain basis is an (E)-cocyle, then ~/~ will be called 
a Conze-Lesigne type G-module. If H is irreducible, LESIGNE (see [9, 
pages 184-186]) showed that  if there exist measurable 2z :G~  U(1) 
and (not necessarily measurable) F: G x G ~ U(k) such that  (3) is true, 
then H is an (E)-cocycle. Recently, RUDOLPH proved that  any irreduc- 
ible (E)-cocycle on the Kronecker  factor must  be a one-dimensional  
cocycle. This result significantly reduced the complexity of our  work. 
A proof  can be found in [12, Corollary 2.3]. 
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Theorem 2.1 (Rudolph). Let G be the Kronecker factor of  an 
ergodic measure preserving system (X, .~, #, R) and let H: G--> U(d) be 
an irreducible (E)-cocycle induced by R on an irreducible G-module. 
Then H must be a one-dimensional cocycle (i.e. d = 1). 

F r o m  now on, we only consider one-dimensional  (E)-cocycles. 
Finally we would  like to state a classical result due to Van der Corput .  
A p roof  can be found in [1]. 

L e m m a  2.2 (Van der Corput). Let {G; n e N }  be a bounded family of  
elements in a Hilbert space 2,~. I f  

l im lim 1 1 M-~N- 
m=0 n=0 

then 

i N _ 1  
E u.:0 

r~=O 

3. Conze and Lesigne Algebra 

The following proposi t ion is due to Lesigne. (see [-9, pages 
179-183]) 

Proposition 3.1 (Lesigne). Let p~ be an ergodic rotation on a com- 
pact abelian group G. Then any (E)-coeycle H(x) with (E)-pair {F(', '), 1} 
is eohomologous to a constant. 

We can have the following immediate  corollary. 

Corollary 3.2. Let c~eG such that IG/<cz)[ < oo. Then any (E)- 
cocyle H(x) with (E)-pair {F(',-), 1} is cohomologous to a p~-invariant 
function on G. 

Let V c G be an open ne ighborhood  of the identity. A function 
2(', .): V x V-* U(1) is called a 1.m.b. (locally multiplicative bilinear) 
form if 

i) for t, s ~ V, 2(t, t) = 1 and )o(s, t) = 2(t, s) and 
ii) for any t l, t 2 and s e V with t l + t 2 e V, 2(s, t 1 + t 2) = 2(s, t l)2(s, t2). 

A correct p roof  of the following result, wi thout  the assumpt ion  that  
G is connect,  can be found in [9, pages 188-192]. 
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Proposition 3.3 (Conze and Lesigne). Let H(x) be an (E)-cocyle with 
respect to an ergodic rotation p~ on a compact abelian group G. Then 
there is an (E)-pair { F(', "), 2(')} and a l.m.b, form 2(s, t): V • V ~  U(1) 
(where V c G is open) such that 

i) for every t~ V, l ims~o2(t  , s ) =  1 and 
ii) for s, t ~ V, we have that 

F(s, x + OF(t, x) = 2(s, OF(t, x + s)F(s, x). (4) 

F r o m  now on, such a 1.m.b. form will be  called a l.m.b, form induced 
by (E)-cocycle H(x). Using  Lesigne's method ,  one can have the follow- 
ing p rope r ty  for a 1.m.b. form. 

L e m m a  3.4. Let 2(-, ") be a 1.m.b. form on V and for any tE V, 
lim~_, o2(t, s) = 1. Then there is a neighborhood V o c V of  the identity of  
G, a k-dimensional torus T k, a finite abelian group F, surjective 
homomorphisms with the following commutative diagram 

G P~ . T k x F 

T k 

and a locally multiplicative bilinear form ~(', ") defined on a neighbor- 
hood U of  the identity of  T k such that 

i) ker (p  0 c V o and pa(Vo) ~ T k • {0}; 
ii) [ker(p)/ker(pl) [ < ~ ;  

iii) p(Vo) ~ U and for s, t~ V o, ~(p(s),p(t)) = 2(s, t). 

Proof. Let  G 1 c V be a closed s u b g r o u p  such that  G/G1 ~- T i x F~, 
where  F 1 is a finite abel ian group.  F o r  any  s~ V, 2(s, ") is a charac ter  of  
G1. Since lims_~o2(S, t) = 1, there is a n e i g h b o r h o o d  V 1 c V such that  
for any  s~ V 1, 2(s, .) = 1. Let  V z ~ V 1 such that  V2 + V2 = Vs. Then  
there is a closed s u b g r o u p  G 2 o f  G 1 such that  G 2 c Vz n  Ga and  
G1/G 2 _~ T i' • F2, where  F 2 is a finite abel ian group.  It is clear that  G 2 
is a closed subg roup  of  G and GIG z ~- T k x F, where  F is a finite group.  

Let  Pa: G ~ T k • F, P2 :Tk • F ~ T k be the natural  h o m o m o r p h i s m s  
and  let p = p2op~. 

Lett ing V o = V 2 ~ p ; I ( T  k • {0}), we have that  k e r ( p l ) =  G2 = Vo 
and [ker(p)/ker(pO[ = IF]. Since ker(p 0 ~ G 1, we have that  for any  
s~ V 1 and  t~ker(p~),  2(s, t) = 1. Not ic ing  that  V o + ker(p) c V o + 



On Convergence of the Averages 281 

+ Vo C V 1 and )~(s,t)=2(t,s),  one can define a 1.m.b. form 
~(.,.):pt(Vo) x pl(Vo)--.T by ~(pl(s), p l ( t ) )=  2(s,t). Since p 2 1 : T k ~  
-~T k x F, defined by p ~ l ( u ) =  (u,0), is an injective homomorphism,  
~ .=2op21 is a locally multiplicative bilinear function on 
p(Vo) x p(Vo). 

Let U = p(Vo). Then U is open because p is open. Now the lemma 
follows. []  

The torus T k, described in Lemma 3.4, will be called an essential 
torus for 4(', "). We still use the same notations as Lemma 3.4. It is clear 
that there is a bilinear form B(', ") on W x R k such that 

2(s, t) = .~(u, v) = e 2~iBt"'v), 

for u = p(s), v = p(t) and s, t ~ V. If B(n, m) e Z for n, m e Z k, we will say 
2(., .) is k-dimensional expandable or expandable. 

Proposition 3.5. Let  H(x)  be an (E)-cocycle with respect to the 
ergodic rotation p ,  on a compact abelian group G and let )~(., .) be a l.m.b. 
f o rm induced by H(x). Then  2(-, ") is expandable. 

Proof.  We still use the same notations as in Lemma 3.4. Let B(., .) 
be the local bilinear form on T k x T k induced by 2(-, .). It is clear that 
B(., .) can be extended to a bilinear form on R k x R k and we still denote 
this bilinear form by B(',-). 

Let 

v i = , ( 0  . . . .  , 0 ,  1/L, 0 , . . . ,  O) ~ U. 
, 

i 

We can choose a sufficiently large integer L so that for any t ~< i ~< k, 
there exists tie Vo with p(t~) = vi. Let 

L - 1  
 i(x) = o F ( t .  x + j t i )  

F(Lti,  x) 

Noticing that p(L t i )=  0 and t ~  V o, we have that pa(Lt~)= 0 which 
implies that L t i ~ V  o. By Proposition 3.5, for any s ~ V  o and 
j = 0 ,  1 , . . . , L -  1, 

F(Lt  i, x + s) = 2(Lti, s) f (s ,  x + Lti)F(Lti ,  x ) / f ( s ,  x) 

and 

F(t i, x + j t  i + s) = 2(ti, s)F(s, x + (j + 1)ti)F(ti, x + jti)/F(s , x + jti). 
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Therefore one has Fi(x + s) : (2(s, ti))L2(s, Lti) _- li~i(x ). Since Ltie V o 
and p(Lti)= O, 2(Lti, s ) :  1 for any se V o. Thus f i (x  + s)= (2(s, ti))L_Fi(x). 
Now for any i', since t~, e Vo, 

Fi(x + Lti, ) = (2(ti,, ti))LFi(x + (L - 1)ti,) = 

= (2(ti,, ti))ZLFi(x + (L - 2)ti,) . . . . .  (2(ti,, ti))L2Fi(x). 

Same as t~, Lt~, e Vo. So 2(Lti,, s) = 0 for all s e V o and 

ff;i(x + Lti,) -2 (2(Lti, ' ti))LFi(x) = Fi(x). 

Now we have (2(t~,, t~)) L2 = 1 which implies that B(v~,, v~)eZ. Let B be 
the matrix such that B(%, v~) = v~,Bv~. Then the coefficients of B must 
be in Z. [ ]  

Definition 3.1. Let G be a compact  abelian group with a rotat ion 
p~ (not necessarily ergodic). A complex-valued function f ( x )  on G is 
a ni l -boundary with respect to e if there is a finite dimensional simply 
connected order 2 nilpotent group N with a lattice F, a homomor-  
phism p : G ~ N / F [ N , N ] ,  an ~ N  with p ( e ) = ~ F [ N , N ]  and 
a bounded function b : N / F ~  U(1) such that, for a.e. xeG,  a.e. v ~ N  
with p(X) : rUIN, N] 

f ( x )  = b(~vF)b(vF). 

A U(1)-valued function M(x) is an (E)-boundary if there is a nil- 
boundary  f(x),  a character 7(x) of G and an e-invariant U(1)-valued 
function D(x) such that M(x) is cohomologous to 7(x)f(x)D(x). 

Proposition 3.6. Let H(x) be an (E)-cocycle with respect to an 
ergodic rotation p~ on a compact abelian group G. Then there exists an 
integer d such that H(d)(x) is an (E)-boundary with respect to de. 

Proof. Let 2(., ') be the l.m.b, form induced by H(x) and let T k be 
the essential torus. By Lemma 3.4, there are surjective homomor-  
phisms p, Pt and P2 such that the following diagram commutes. 

G el ~ T k x F 

T k 

Since 2(',-) is expendable, there is B(', ") on R k x R k and an open set 
Vo c G such that 
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i) ke r (p l )  c V o c p~- l(Tk x 0), 
ii) for n, m e Z  k, B ( n , m ) e Z  and  

iii) for any s, t e  Vo, 2(s, t) = exp{2~iB(p(s),  p(t)}. 

Therefore  there  is an an t i symmetr ic  mat r ix  B egl(n, Z) such that  
B(vl, v2) = vlBv~. Let  B' be a tr iangle mat r ix  such that  B = B' - (B')L 
Then  one  can define a bil inear form B ' ( z ' , z ) = z ' B ' z  ~ such that  
B'(n, m ) e Z  for n, m e Z  k. Next ,  we will use B'(., .) to define a n i lpotent  
group.  

F o r  z, z ' e R  k and s , s ' e R ,  define 

(z, s ) .  (z', s') = (z + z', s + s' - B' (z ,  z')) .  

Then  (R k+ 1, , )  is a step 2 n i lpotent  group.  Let  F = {(z, s); z e Z k and  
s e Z} and let 

b(z, s) = exp{ - 2 i ~ ( s  + B'(z, [z] ))}. 

Then  b is a funct ion defined on  N / F  and f(z ' ,  z) = b((z', 0 ) .  (z, s))b(z, s) 
is a funct ion  on  N / F [ N ,  N ]  = T k. By calculat ion,  one also can show 
that ,  for any z, z', z" e R k, 

f (z ' ,  z + z ' ) f ( z ' ,  z) = exp {2~riB(z', z ' )} f (z ' ,  z + z ')f(z ' ,  z). (5) 

Let  d = IF[, cq = pl (s)  and s o = p(s) = pz(Cq). Then cq = (%, h) for 
some h e F  and  ds  1 = (d%, 0). C h o o s e  ee  V o such that  Lpl(e  ) = ds  1 for 
some integer L and  let 

F(x) = F(ds  - Le, x + Le)F(e, x + (L - 1)0"..  F(e, x). 

Then  

F(x + OF(t, x) = 2(do~ - Lg, t)().(e, t))LF(t, X + ds)F(x). 

Since p l (ds  - LE) = 0, ds  - L ~ e K e r ( p l )  c V o. Thus  )~(ds - Le, t) = 1 
for t e V o. So 

2(ds - Lz, t)(2(g, t) ) L = exp{ 2r@(t)U(dao)*}. 

F r o m  (5) we immedia te ly  have 

f ( d s o ,  p(x + t))F(x + t) f (p( t) ,  p(x))F(t,  x) = 

= t ip( t ) ,  p(x + d~))F(t, x + ds) f (d~o,  p(x))F(x). 

Let M(x)  = f ( d % ,  p(x))lF(x) and  let F'(t, x) = f(p(t) ,  p(x))F(t, x). Then  
for t e  V and  x e G  

M ( x  + t)F'(t, x) = F'(t, x + ds)M(x) .  
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Since p~ is ergodic, [G/(de)[ < ~ .  Therefore, by Corollary 3.2, M(x) 
is cohomologous  to a de-invariant function Do(x). 

Considering the relation between/?(x) and H(x), one can find out  
that  

H(a)(x + de)F(x) = 2(de - Le)2L(e)P(x + de)H(d)(x). 

Let 2 = 2 ( d e -  Le)2L(e) and D(x)= F(x)*H(do)(x). Then D(x + de)= 
= 2D(x). So H(d)(x) = f -  1(d%, p(x))Do(x)D(x ). Noticing that  D(x) is 
a p roduct  of a character  and a de-invariant function, we have the 
lemma. []  

4. Properties for (E)-Cocycles 

The following result belongs to Lesigne. A proof  can be found in 
[10]. 

Theorem 4.1 (Lesigne). Let F be a lattice of  a simply connected 
finite dimensional step 2 nilpotent Lie 9roup N and let c be a continuous 
function on N/F. Then for any a, v E N, any real polynomial Q, the limit 

] N - 1  

lim exp(2irEQ(n))c(a"vF) 

exists. 

Now we have an immediate  corollary and readers can figure out 
a p roof  by considering a direct p roduct  of ni lpotent  groups. A proof  
also can be found in [10]. 

Corollary 4.2. Let c>. . ., c~ be continuous functions on N/F. For 
any a l , . . . ,  am and v~N,  and for any zl, z 2 ~C with ]zl] = [z2]= 1, the 
limit 

1 N -  1 
lim Z122 H Ck(akVF) N--+oo N 2 n ntn-1)/2 n 

n=O k = l  

exists. 

We will use C(Y) to denote  the space of all cont inuous  functions on 
a topological  space Y. 

L e m m a  4.3. Let Y be a compact space with probability measure 
v and measure preserving transformations S1, . . . ,  S,, and let ~ be a set 
of  sequences of  complex numbers with norm less than 1. Let 
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Ai~LI(Y)c~L| for i - 1 , . , . , m .  I f  for any cieAi, i = l , . . . , m ,  
there is a set A with fidl measure such that for yeA ,  for any co = {co,,} 
the limit 

I N-1 f i  
l i m ~  E co,,  ck(S2y ) 

exists, then for any f i ~ Ai( in LI ( Y) ) r~ L~ ( Y) i = 1,...,  m, this is also true, 
i.e., there is a set A with full measure such that for y6A,  for any 
co -- {co,} el2, the limit 

l S - t  ~ i  lira co, fk(Sky) 
N ~  = =~ 

exists. 

Proof. Let B!(Y  ) = { f  eL~ [fl <~ 1}. Without  loss of general- 
ity, we assume that  f l  . . . . .  f~eB~(Y). 

For  any q e Z  +, there exist CqieAi, i = l , . . . , m ,  such that  for 
l<~k<<.m, 

f [Cqk(y) -- fk(y) ldv < ~ .  

Let 

Then, by the Maximal  Ergodic Theorem,  

v(Aqk) ~ 2~ I%(Y) - A(y)lclv < 2- ~. 

By assumpt ion  of the lemma, there is a set A with full measure such 
that  for yeA,  for any co = {co,,} and any q the limit 

1 u -  1 
lira E con 1I c.k(S y) 

N-+~ N k = l  k = l  

exists. N ow for any yeA\Uq,~q(~JL1Ack),  for any coef2, we can 
choose N > 0 such that  when N1,N z > N, 

I 1 N I - I  ] ~  n 1 u,-1 ,, 1 1 

n=O k = i  n = 0  k = 0  
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Therefore 

~ 1  N1-109 m n -1 S2-1 f i  fk(SkY )n  Z . I~ fk(SkY)--';-i - Z o~. <~ 
n=O k = l  1~2 n = 0  k = 0  

<~ I fk(S~Y) -- Cqk(S~y)[ + 
k = l  N 1  n= 

-t- n=O (Dn k=l Cqk(SkY ) -- ~ . -  co,, _ Cqk(Sky ) + 

1N2-1  
+ ~ ]fk(SZy)--Cqk(SZY)[ <~ 

k = l N 2 2  n = 0  

2 m +  1 

2 q 

Since v(Ur 1Aq,k))~ 0, the lemma follows. []  

Proposition 4.4. Let  f l (x), . . . , fro(x) be nil-boundaries on a compact 
abelian group G with respect to rotations P~I," " ,  P~,, respectively. Then 
for  a.e. x ~ G ,  for  any z l , z 2 e C  with Izl [ = [z2l = 1, the limit 

1 N- 1 f i  
lira , 1  N~oc'N Z n n(n-1)/2 

n = 0  k = l  

exists. Here f~')(x) = fk(X + (n -- 1)ak)'. " fk(X) for  k = 1, . . . ,  m. 

Proof. Suppose that f l , . . . ,  fm set in tori T i , . . . ,  T m respectively 
and let p~, . . . ,  Pm be the corresponding surjective homorphisms from 
G to T1, . . .  , T m r~spectively. Define p: G ~ T 1 x " "  • by 

p(x) = (Pl(X),".., Pm(X) ). 

Then Go =p(G)  is a compact  abelian group. Let F 1 , . . . , F  m be 
lattices of simply connected step 2 nilpotent groups N ~ , . . . ,  N m re- 
spectively such that T k ~ Nk/Fk[Nk,  Nk] for k = 1, . . . ,  m. Let hkjeNk 
such that h k f k [ N k ,  Nk]----pk(aj) for k = 1 , . . . ,m.  By definition, for 
any k = 1, . . . ,  m, there is a function b k on Nk/F  k with ]bk]= 1 such 
that 

fk(X) * = bk(akkVkFk)b k (VkFk) 

where VkFk[Nk, Nk] = Pk(X). W e  first assume that b~, . . . ,  b m are con- 
tinuous. Let N = N~ • -.. • N,n and let F = F~ • ... • F,,. It is clear 
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tha t  

IN,  N]  = [ N ~ , N l l  x - . .  x INto, N,,] ,  

N / F  = N1/F 1 • "" • Nm/F,, 

and 

N / F I N ,  N] = N1 /FI [N1 ,N1]  • ... • Nm/Fm[Nm, Nm]. 

F o r  k = 1 , . . . , r e ,  let 

Since Nk/F k, k = 1 , . . . ,  m, are factors ofN/F ,  b k can be respectively 
considered as funct ions on N / F  and G o. Therefore for any  
v = (vl, . . . ,  % ) e N  with  p(x) = vF[N,  N] ,  

fk(X) = bk(fikvF)b*(vF ). 

Then  

- -  Z lZ2  J k  (X) ~ Z1Z 2 bk(akvF)b k (v). 
N ~ n n(n--1)/2 F(n)l x n n(n-1)/2 ~n * 

n = 0  k = l  n = k = l  

Since b~ . . . .  , b,, are con t inuous  functions,  by Coro l la ry  4.2, the limit 
exists for any  x e G. 

N o w  we consider  the convergence of 

1 N - 1  f l  
- -  z l z  2 bk(akv) (6) N ~ , n(n-1)/2 ~n 

n = 0  k = l  

for general b k. 
Let  N O = {yeN,  vF[N,  N ] e G o }  and  Y =  { v r ~ N V ; v r [ U ,  N ] s ~ o } .  

Then  Y/[N,  N] = G o, No/F = Y and  Y is a compac t  space. Since 
N o ~ F, there is a unique  invar iant  probabi l i ty  measure  v on Y (see 
[11, page 23] ). I t  is clear tha t  v is induced by the H a a r  measure  on N o. 
Let  ,5: Y--+ G o be the homomorph i sm/ ) (y )  = y IN, Nl .  Then  ,6*(v) is the 
H a a r  measure  on G o. These tell us tha t  G o is a factor of No/F. Since 
~ . . . . .  , fi,, e N o, maps  vF ---, fikvF, k = 1 , . . . ,  m, are measure  preserving 
on Y. 

N o w  let pk:N/F--, Nk/Fk be the na tura l  projection.  Then  one can 
check tha t  pk(No/F ) = Nk/F k. Since the invar iant  measure  is unique,  
Nk/F k is a factor  of No/F. Then bk, k = 1 , . . . ,  m, can be considered as 
funct ions on No/F. Let  A k be the set of con t inuous  funct ions on Nk/F k 
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for k = 1, . . . ,  m. Then for any c k E A k ,  k = l . . . .  , m and any zl, z 2 E U(1), 
the limit 

1N-1 f i  
l i m -  ~ . n(n-1)/2 ~n 

N ~  ~ N n-- o z 1 z 2  k = l  Ck(akY) 

exists for any y~Y. By Lemma 4.3, for any b k ~ L ~ 1 7 6  with 
k = 1, . . . ,  m, there is a set A c Y with full measure such that for y~ Y 
and for any Zl, z 2 ~ U(1), (6) converges. This will give the proposition. 

[] 

Lemma 4.5. Let f l , . . .  ,fro be nil-boundaries on a compact abelian 
group G with respect to rotations defined by cq . . . .  , c~,~ respectively. 
Then for any bounded functions 01 , . . . ,  Om on G, there is a set A with full  
measure such that for  x ~ A ,  for  any e with ]el = 1, for  any all(x),...,  
dm(x):G-~ U(1) and for any characters 71,.. . ,  7m on G, the limit 

1 N- ~ ~I 
N-~limo~ N ~ en ~1 Og(x + nC~k)7k(X)nTg(~k) ~ -  1)/2f~)(x)d"g(x) (7) 

n = 0  k = l  

exists. 

Proof. By Proposit ion 4.4, there is a set A o with full measure such 
that the limit 

1 N - 1 ] ~  

N-~lim ~ Z z'~z~ ("- 1)/2 l J  f~")(x) 
n = 0  k = l  

exists for all z 1, z2~C with Iz~l=lz21= 1 and x ~ A  o. We first 
assume that 01 , . . . ,  0,, are characters of G. Letting 

z~ = ~ [[  O~(~)7~(x)dk(x) 
k = l  

and 
_% 

z2 = l |  7~(~k), 
k = l  

we have that the limit 

N - 1  m 

lim 1 ~ e" [ I  Ok(x + nC~k)Tk(X)"7k(~k) "("- ~)/2 f(k")(X)k(X) = 
N-*~176 N n=o k= l 

= lim _-= [ ~ " "("- 1)/2 )(x) Z1Z2 f~k" Ok(x) 
N~~ N \ n=O k=l 

exists for all x ~ A o. 
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Since G is compact, the set of all linear combinations of characters 
is dense in C(G) with respect to the norm: LI4~ilc--=max~G[~b(x)l. 
Therefore (7) converges for all continuous ~bl,..., q~,, and all x e A  o. 
Now let 

{A } f~ = e" 7k(X)"Tk(C~k) "("- 1)/2f(k")(x)d"k(X); for all x e A  o and 7keG* . 

Then the theorem follows from Lemma 4.3. [] 

The following corollary follows from the above proposition im- 
mediately. 

Corollary 4.6. Let G be a compact abelian group and let 
M1,.. . ,  M m be (E)-boundaries with respect to et . . . .  , % respectively. 
Then for any bounded functions ~1 , . . . ,  ff~m, there is a set G M with full 
measure such that for any x~  GM, the limit 

1 N - 1  m 

lira --  Z [ I  Ok(X + nei)M~")(x) 
N - , o o  N n -  0 - k = l  

exists. 

Now we 
cocycles. 

give a certain type of convergence theorem for (E)- 

Theorem 4.7. Let H1, . . . , H,, be ( E )-cocycles on a compact abelian 
group G with respect to ergodic rotations p~ , . . . ,  p~,~, respectively, and 
let ~l , . . . , ~m be bounded functions on G. Then, for any integer 
Jl , . . . ,  Jm, the limit 

1 N - 1  ~I 
N-*lim~ ~ ~ 11 ~k( x + nJkO:k)H~"Jk)(x) 

n=O k = l  

exists for a.e. x e G. 

Proof. By Proposition 3s there are positive integers d~,. . . ,  d m 
such that 

H?',..., 
/ 

are (E)-boundaries. Let d be the least common multiple of d~,..., din. 
Then 

j~ 
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are (E)-boundaries with respect to ~j1~1, t~j2~2,. �9 �9 Ejm~m respectively. 
By Corollary 4.6, for almost all x e G, the limit 

1 N - 1  
lim _-= E ~ r x + nfjk)H~"eA)(x) 

N--*+J~ n=Ok= 1 

exists. Therefore the limit 

lim 1 N-1 ,, No+ N ~ I~ Ok(x + njkek)H(k"/k)(x) = 

n = O k = l  

1 t - 1 /  1 N-1 "~ 
= -  ~ / lim --  ~ l~ @k( x + n~jk~k § JJkCtk)H('lA)( x + jjkOtk) j X 

f j = o \ N - ~ + N , = o  k=l 
m 

• H H JJk)(x) 
k=l 

exists. These give us the theorem. [] 

Finally we state an immediate corollary which will be used to 
prove Theorem 6.2 

Corollary 4.8. Let  H be an (E)-cocycle with respect to an irrational 
rotation p~. Then for any @1, . . . , @~ and any integers j l, . . . , Jm, the limit 

lim 1 N- 1 m 

n=O k = l  

exists for a.e. x e G .  

5. Decomposition Based on Conze-Lesigne Algebra 

The method used in this section is similar to the method CONZE 
and LESIG~ used in [-4]. We begin with a proposition dealing with 
two commuting measure preserving transformations. For  sake of 
completeness, we give a proof. 

Proposition 5.1. Let  T, S be commuting (i.e. S T =  TS) measure 
preserving transformations on a probability space (X, ~ ,  t0 such that 
S T -  ~ has f .m.e.c. Let E( S), E( T) denote the closed subspaces spanned by 
all eigenfunctions o f  S a n d  T, respectively. Then for any bounded 
functions f l and f2 with either f l _1_ E(S) or f2 • E(T), 

?1 1 
N- l f a (Snx ) f z (Tnx  ) dp = l imJ 0. 

N~oo N n  
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Proof. Let e > . . . ,  e k denote an orthonormal basis of the ST-1_ 
invariant space. We first assume f l  and f2 are bounded and use the 
Van der Corput  Lemma. Let u, = fl(Snx)f2(Tnx). Then 

N - 1  

lim 1 ~ (U,,,Un+m}= 
N-.~ N ,=o 

= "  ~=o fl(S"x)fa(T"x)fl(S"+mx)f2(r"+'x)d~= 

f 1N_t  = fl(X)~l(SmX)lim --  ~ = 
N - ~ N  n= o 

= ~ l(x)fl(Smx)(f2, T~f2ei}eid~ = 
i = l  

k 

= ~ <f~, S"~flOi}<f2, rmfae~). 
i = l  

Let P denote the orthogonal projection from L2(X x X, • x ~ ,  # x #) 
to the S x T-invariant subspace. Since the S x T-invariant space 
is contained in the closed subspace spanned by E(S)x E(T), we 
have 

lim lim 1 1  M -  1 N -  1 

M-~ooN~ooMN ~' ~ (u , ,  u,+,,} = m~O n=O 

k M - 1  

= ~ lim 1 ~ ( f ~ • 2 1 5 2 1 5 2 1 5  
i = l  M - ~ m M  m =  0 

k 

= ~ ( f l  x f2, P( f l  x f2)Oi x ei} = 
i=1  

= 0 .  

1 N - 1  
By Lemma 2.2, l i m N _ ~ n =  o f l (Snx)f2(T'x)= 0 in the L2-norm 

which implies the theorem. [B 

If S and T are commuting measure preserving transformations on 
a probability space (X, N, #) such that S, T and S T -  ~ have f.m.e.c., 
then E(S) = E(T) and there is a basis {e,,} of E(S) such that e~, e2,...  
are eigenfunctions of S, T and S T -  ~ 
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Corollary 5.2. Let S, T be commuting measure preserving trans- 
formations on a probability space (X,~,l~) such that S, T and ST -1 
have fm.e.c. Let {e,} be a basis of E(S) such that ea,e2,.., are 
eigenfunctions of S and T Let 2 s, 2 [ be eigenvalues with respect to 
{e,} for S and T respectively. Then for any f l ,  f2eL~176 the 
limit 

1 N - 1  

lim ~ f (S"x)f2(T"x) = 
N ~ ~ - N  n-~-O 1 ( f  l,e,)(fz,~m)en(X)em(x) (8) 

S T 

U n = f t ( R n x ) f 2 ( S n x ) f 3 ( T n X ) .  

exists in the Lt-norm. 

Now we consider measure preserving transformations R, S and 
T on a probability space (X, ~,  #). Since our goal is to find conditions 
for the convergence of 

1 N - 1  

~ fl(R"x)f2(S"x)f3(T"x), 
n=0  

without loss of any generality, we can assume that the abelian group 
(R, S, T)  acts on X ergodicly. Therefore from now on, we always 
automatically assume the ergodicity of (R, S, T> and readers can 
generalize to nonergodic situation. 

Define a measure co on X3: for any A, B and C ~  

1N- f 
co(A x B x C)= N~oolim ~ ,=~o 1A(R"x)IB(S"x)lc(T"x)dt~" (9) 

The existence of the above limit directly follows from a result of CONZE 
and LESIGNE (see [3, Th6or6me 4, page 152J). It is clear that co is 
a joining of (X, R), (X, S) and (X, r). 

Proposition 5.3. Let Z be the subspace of L2(X 3, ~3, co) spanned by 
all R x S x T-invariant functions (with respect to co) and let 
Pz:L2(X3,N3, co)~Z be the projection. Then for any f l ,  f2, 
f3eL~176 tO with f l | f 2 |  fa -I-Z, 

lim f ~ ( e " x ) f 2 ( S " x ) f a ( r " x )  = O. 
N ~  n=0  1 

Proof. We will use the Van der Corput Lemma. Let 
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Then 

1 1 M - 1 N - 1  

M N ;U~ = 
m=0 . = 0  

1 1 M-IN-1  

• (R"x)f2(S"x)f3(T"x)fl  (R" + mx)f2(S" + mx)f3(T" + "x)dp = 

) = M m = o  N.=~o R"( f tR"~f l )S"( f zS ' f2 )r" ( f3r '~ f3)d#"  

Therefore 

1 1 ~ - 1 N - 1  
l i m - - - -  2 Y, <u . , u .+m>= 
N~ooM N m=o 1 

= - -  (f l  R " f j  | (f2Smf2) @ (f3 Tmf3) de~ = 
M m=O 

= - -  (fl @ f2 @ f3)( Rm x S m x Tin(f1 | f2 @ f3)) d~ 
M m=O 

This means 

lim lim l l M - l ~ - i  
~ = 0  . = 0  

= f ( f l  | f2 | f3 )Pz( f l  | f2 | f3) dco = O. 

Now the theorem follows from the Van der Corput  Lemma. []  

If R, S, T and R S -  1, S T -  1, T R -  1 have f.m.e.c., then 

E(R) = E(S) = E(T) : E(RS- i) = E(ST- I) = E(TR- i). 

Let {e.} be the set of all characters of Kronecker  group. Then {e.} is 
a basis of E. Let 21, ., '~2,., 2a,., 212,., 223,. and )~31,n be eigenvalues for 
e. with respect to R, S, T, RS-1,  S T - 1  and TR-~  respectively. It is 

-1 ~ ~-1 --1 
clear that 212,.=21,.22, . ,  ~23,n=A.2,n/~3,n and 231,. = 23,,,21,.. Let 



294 Q. ZrIANG 

2q,, = Xji,,. By Corollary 5.2, 

lira ~ fl(e"x)f2(Snx)f2(r~ = 
N--+ oo n = O  

= ~ ( f l , e i } ( f 2 ,~ . j } ( f z ,~ i e j } .  (10) 
~21,/= }t31j 

The following theorem is due to H. FURSTENB~RG (see [5, page 
244]). 

Theorem 5.4 (Furstenberg). Let (Xi, ~ ,  #i, Ri), i = 1,..., k, be er- 
9odic measure preserving systems and let 91 , . . . ,~k  be factors of 
ND. . . , JJk, respectively. Let o3 be a joining such that 

f h~(xl)...hk(xk)dco= f E(h~ l~a)(xl)...E(hkl~k)(xk)dco 

for hie L~(Xi, ~i, #i), i = 1, 2,. . . ,  k. Then the subspace of L2(l~= 1Xi, 
]-l~=~Ni, co) spanned by all of e~ x ... x Rk-invariant functions (with 
respect to co) is contained in @~= 1K(~i, Ri). 

One can generalize this result without difficulty to the case where 
R~,.. . ,  R k are f.m.e.c. So we can have the following corollary. 

Corollary 5.5. Assume that R, S, T and RS-  1, S T -  1, T R -  1 have 
fm.e.c. Let G be the Kronecker factor of (X, { R, S, T}) and let co be the 
measure defined by (9) on (X3, N'3, co). Then the subspace of 
LZ(xZ, ~3, co) spanned by all of R x S x T-invariant functions (with 
respect to co) is contained in K(G, R) | K(G, S) | K(G, T). 

Proof. We need to check the conditions in Theorem 5.4. 
By (10), 

c o ( f l @ f 2 |  = ~ ( f l , e i } ( f2 ,0 j>( f3 ,e . ie j> = 
221,i = 231,j 

= ~ ( P ~ f l , e i } ( P ~ f 2 , e j } ( P ~ f a ,  eiej> = 
221,i = ,~31,] 

= cO(PGfl | P6fe | PGf3)" 

Hence all conditions in Theorem 5.4 are satisfied. This implies the 
corollary. [] 

The following lemma is slightly different from a theorem in I-3, 4-1. 
For the sake of the completeness, we give a proof here. 
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Lemma 5.6. Let R, S and T be measure preserving transformations 
with f .m.e.c. I f  f k ~ L ~ (X, ~ ,  l J) for k = 1, 2 and 3 with Pz ( f  ~ | f2 | f3) r 
-r O, then for any sequence {nk} of integers there exist bounded functions 
u, v and w such that 

lim sup sup ] (uR"~fl, e i) > O, 
k ~ o e  i 

and 

lim sup sup I (vsnkf2, ei) > O, 
k-+oo  i 

?l k l imsupsup l (wT  f3,ei)l  >0,  
k ~ o e  i 

Proof. First of all we claim that given {G} there exist bounded 
functions u, v and w such that 

limsup f (u |174  @Snkf2@ T"kf3)dco > O. 

If this is not the case, then for any ~ e L z ( X  3, ~3, co), 

t'UJ(R"k f l | S"k f 2 | T"k f 3)dco = lim 0. 
k -+oo  3 

Hence for any R x S x T-invariant function ~ ,  we have 
~ ( f  l | f2 | f 3) dco = 0. This contradicts the condition 

Pz(fl  | f2 | f3) e O. 
Assume that for some u, v, weL~(X ,N ,  tl), 

lim sup f (u  | v | w)(R"kfl | Snkf2 @ r"kf3)dco > O. 

By (10) we have 

limsup ~ (uR"kf~ ,e i ) (vS"k f2 ,~ j ) (wT f3,eiei) >0.  
k --+o0 .~QI, i = J.31, j 

Let K be an integer such that the dimensions of RS-1, ST-1  and 
T R -  1-invariant spaces are all less than K. Then 

=~31, j ~ URnk f l' ei ) (vSnk f 2' ~j ) ( W r"k f 3, eiej ) <<, 
221,f 

)],21, 31,j 
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<~K I(uR"kfl,ej)] 2 ~,lvS"~fa, ej)[ 2 supl(wT"~f3e,)[<<. 
\ j  t 

<<. K If uR"kfl II 2 [[ vS"~f2 [[ 2 sup [ ( w T"~f3, e t)] ~< 
t 

~< K t} u II ~ II v II oo IJ f1112 II f2 II 2 sup l( wY"kf3, e,)J. 
t 

We have that 

lim sup sup I ( w T"k f 3, e t)  f > O. 
k ~  t 

Since the positions of R, S and T are same, we can get the rest of the 
lemma by similar arguments. []  

We use the following result of CONZE and LESIGNE to finish this 
section. A proof can be found in [3, pages 167-1693 and [4]. 

Proposition 5.7 (Conze and Lesigne). Let R be an ergodic measure 
preserving transformation on a probability space (X, ~ ,  #) and let G be 
the Kronecker group. Let Jd be an irreducible finite dimensional 
R-invariant G-module and let f ~ c~ L~(X, ~ ,  #) be a bounded func- 
tion. l f for any sequence {nk} c N there exists a bounded function u such 
that 

lira sup sup ] ( uR"kf, e i )] > O, 
k ~ o o  i 

then the matrix-valued function H induced by R with respect to a basis of 
is an (E)-cocycle on the Kronecker group G, i.e. dg is of Conze- 

Lesigne type. 

6. Existence of the Limits 

Now we are in the position of summarizing our main results. 

Theorem 6.1. Let R, S and T be ergodic measure preserving trans- 
formations on (X, ~ ,  #) such that RS-1 ,  S T - a  and T R - 1  are ergodic. 
Then for any f l, f2 and f 3 6L| the limit 

1 N - 1  
l i m ~  ~ f l (R"x)f2(S"x)f3(T"x) (11) 

exists in the La-norm. 
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Proof. Let G be the Kronecker group. Let co be the joining on 
(X3,N 3) defined by (9) and let Z be the closed subspace of 
L2(X 3, ~3, co) spanned by all R x S x T-invariant functions with re- 
spect to co. By Corollary 5.5, we know that 

Z ~ K(G, R) | K(G, S) | K(G, r). 

Now we claim that if fl_I_K(G,R)~L~(X), then for any fz and 
f3~L~ f l  | f2 | f3 _[_Z. Actually we only need to show that for 
any ~PI ~K(G,R), qoz6K(G,S ) and qo3~K(G , T), 

f ( f l  | f2 @ f3)(@1 | (P2 (~) @3) rico = (12) 0. 

Since eiq) * ~ K(G, R) for any eigenfunction el, ( f l  (P 1, ei ) = 0. By (10), 
Eq. (12) is true which gives our claim. By Proposition 5.3, we only need 
to show (11) for f l~K(G,R) ,  f2eK(G,S)  and f3eK(G,  T). 

Assume that K(R, G) = @i•j ,  K(S, G) = @jyftj and K(T, G) = 
@k = Yk where 2,~i, ~/Hj and JV k are respectively R, S and T-invariant 
irreducible finite dimensional G-modules. It follows from Lemma 5.6 
and Proposition 5.7 that if one of ~ i ,  ~/Hj and JU~ is not a Conze- 
Lesigne type G-module then 

Pz( S , | ~/f/j | .A/k) = O. 

Therefore by Proposition 5.3, we only need to prove the theorem for 
f l ,  f2 and f3 belonging to Conze-Lesigne type G-modules 5~ i, -~j and 
JVk respectively. Since irreducible Conze-Lesigne type G-module 
must be one-dimensional, there are functions (PR~, ~0Sj, ~0Tk for 5~ ~) ,  
JV k respectively and (E)-cocycles Hm, Hs, H T with respect to R, S, 
T respectively such that 

cpRi(Rx ) = HRi(X)CpRi(X), 

 Os (Sx) = Hs (X) Osj(x) 

and ~OTk(TX ) = Hrk(X)qOTk(X ). Assume that 

f l(x) = ~ ali(x)p,i(x ), fE(x) = ~ axj(X)qOs~(X ) and f3(x) = 
i j 

i 

where al~, a 2 j  , a3k are G-measurable. Let p~, #~ and P~-3 be the 
rotations on G with respect to measure preserving transformations R, 
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S and T on X respectively. Then 

I N - 1  
-~ ~. f~(Rnx)f2(S"x)f3(r"x) = 

n = 0  

f l U - 1  
= ~ ~ ~ a~,(x + n~)a~j(g + n~)a~(g + n~) • 

i , j , k  \ n = 0 

• I-I~(x)H~"~(s)I4~(xl)~oR,(X)esj(xl~oT~(x). 
Now the theorem follows from Theorem 4.7. [] 

The proof of the following known result is basically the same as the 
proof of Theorem 6.1. For sake of completeness, we sketch our proof 
again. 

Theorem 6.2 (Conze and Lesigne, Furstenberg and Weiss). Assume 
that R is a measure preserving transformation on (X, ~ ,  12). For any 
integers f l, ~2 and (3 and any f l, f2 and f 3~L~(X), the limit 

1 N - 1  

lim ~ ~ fl(R~Wx)f2(R~2nx)f3(R~3nx) (13) 
n-+oo t / = 0  

exists in the Ll-norm. 

Proof. If we can prove the convergence for the ergodic measure 
preserving transformation R, the theorem will follow from the ergodic 
decomposition theorem. Here we only prove the theorem for (~ = 1, 
(2 -- 2 and to3 ~--- 3. Our proof can be easily generalized for all integers 
(~, t~ and (3"  

Let co be the joining on (X 3, N3) defined by 

co(A x B x C) = lim ~ 1A(R"x)lB(R2"x)lc(R3nx) 
n--~ oo n = 0  

for any A, B and C ~  and let Z be the subspace of L2(X3,~3,co) 
spanned by all of R x R 2 • R3-invariant function with respect to 
the measure co. Let G be the Kronecker group of the system 
(X, R) (notice that (R,  R 2, R 3 ) = ( R ) )  and el, e2,.., are all charac- 
ters. Since K(R, G)= K(R m, G) for any integer m, we have that, by 
Corollary 5.5. 

Z = K(R, G) | K(R, G) | K(R, G). 
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It follows from Lemma 5.6 that if Pz( f l  | J~ | fa) r 0, then for any 
sequence {nk} there exist bounded functions u, v and w such that 

lim sup sup I ( uR"kfl, ei )1 > 0, (14) 
k---> vo i 

lim sup sup t(vR2~kf2, ei) I > 0, (15) 
k~ov i 

and 

lira sup sup t(wR3'~kf3, el> I > 0. (16) 
k--, co i 

By Proposition 5.7, if f t  is in a finite dimensional G-module, this 
G-module must be a Conze-Lesigne type G-module. We still have to 
show that f2 and f3 are also in Conze-Lesigne type G-modules. 
Actually, we only need to show that (15) and (16) imply (14). 

For any sequence {nk}, there must be an infinite subsequence of 
even numbers or odd numbers. Without loss of generality, we assume 
that there exists an infinite subsequence of odd numbers, i.e. there 
exists a sequence {r@ such that {2mj + 1} is a subsequence of {nk}. 
Then there is a bounded function v such that 

lira sup sup t ( vR2'~f2, ei )1 > 0. 
k~oo i 

Since 

t ( vR2mj f2 ,  e~ )l = I ( RvR2mj + 1.f2, Rei }l ~ I ( RvR2mj + lf2, e~ ) 1, 

we know that 

lim sup sup t(RvR"kf2, ei)l = lim sup sup t(RvR2mJ + lf2 , ei)l > O. 
k~oo i j-~oo i 

This tells us that f2 must be in a Conze-Lesigne G-module. The same 
method can prove that f3 is also in a Conze-Lesigne G-module. 
Therefore we only need to prove the theorem for f l ,  f2 and f3 
belonging to Conze-Lesigne type G-modules. Now, similarly as in the 
proof of Theorem 6.1, the theorem follows from Corollary 5.7. 
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