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Abstract. Let K be a cubic number field. Denote by A, (x) the number of ideals
with ideal norm < x, and by Oy (x) the corresponding number of squarefree ideals.
The following asymptotics are proved. For every ¢ > 0

Ag(x) = ¢, x + O (xP9,
Qx(x) = c;x + O(x'exp {— c(log 0)**(loglog x) =7} .

Here ¢y, ¢, and ¢ are positive constants. Assuming the Riemann hypotheses for the
Dedekind zeta function (g, the error term in the second result can be improved to
0 (X53/“6+F).

1. Introduction. Let K be a number field of degree n = [K: Q] over
Q. Denote by 4, (x) the ideal function, e.g. the function which counts
the number of ideals with norm < x, and by O (x) the corresponding
function counting the number of squarefree ideals with norm < x.
Using LANDAU’s classical estimate ([5], p. 135)

Ag(x) = ggx + O (x~ e+l (1)

where gz denotes the residue of the Dedekind zeta-function ¢, at
s = 1, elementary considerations prove that

Ok i
Ok (x) ON +0(x), 2)
withi=m—1)/(n+ 1) forn>= 3 and 1 = 1/2 for n < 2. In the case
of a quadratic number field 2, the evaluation of 4, (x) can be reduced
to a twodimensional divisor problem. As indicated by W. G. NOwAK
[7], the new investigations of Mozzochi and Iwaniec in the divisor
problem lead to

Ay (x) = pox + O(XNZZH)

for every ¢ > 0. With some ¢ > 0 Nowak [7] obtained the estimate
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Qo(x) = : (2)X + O (x'"exp {— c(log x)**(loglog x) ~7}) .
2

Assuming the Riemann hypothesis for ¢, he sharpened this result to

_ Lo 15/38+¢

x4+ O(x .
Qo(x) = Q) ( )
For cubic number fields the general estimates (1) and (2) seem to be
the best published ones. In this paper the following theorems are
proved.

Theorem 1. For every cubic number field K over ) and every ¢ > 0
one has

Ag(x) = ggx + O (x**9 3)
where oy is the residue of (g at s = 1.

Theorem 2. For every cubic number field K over Q there is a constant
¢ > 0 such that
Zexp {~ c(log x)**(loglog x) "'} . (4)

Ox(x) = x+0(x

Lk (2)
If tx has no zeros in the half plane Res > 1/2, then for every ¢ > 0

Ox(x) = X+ O (x¥Mers G)

CK (2)

Remarks. 1) The O-constants in both theorems may depend on ¢
and K. 2) The generating Dirichlet series for Qy(x) is {x(5)/Lx(25).
Therefore the exponent 1/2 in Theorem 2 cannot be improved with-
out further assumptions on the zeros of {.

2. Auxiliary results. Lemma 1 collects the algebraic properties of
cubic number fields which are used in the proof of Theorem 1.

Lemma 1. Let K be a cubic number field over Q and D = df?
(d squarefree) its discriminant; then

i) K is a normal extension if and only if D = f*. In this case

k() = C() L (s, 2) L, 1) 5
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where [ (s) is the Riemann zeta function and L(s,y,) is an ordinary
Dirichlet series (over Q) corresponding to a primitive character y,

modulo f.

i) If K is not a normal extension, then d # 1 and

Lg() = L) L(s, 22
where L(s,y,) is a Dirichlet L-series over the quadratic field

2= @(@:
L(s, 1) = ), 12(@ No(@) ™, (Res>1).

Here summation is taken over all ideals a # 0 in 2 and N, denotes the
(absolute) ideal norm in Q. To describe the character y, let H be the
ideal group in Q according to which the normal extension K (1/21) is the
class field. Then H divides the set A’ of all ideals a < Q with (a,f) = 1
into three classes A" = Hu C U C', and (v := e*""®)

, 1 aeH

w aeC

1(@) = 6 acC
0 (@hH+#1.

The substitution T = (ﬂ - — ﬂ) in 2 maps C onto C'.

Proof. Denote by Bc C the normal closure of K and by
G = Gal(B|Q) its Galois group. Then G is a subgroup of S; and 3
divides [B: Q] = ord (G), e.g. G is cyclic of degree 3 or G ~ S;. In the
first case K = B is an abelian extension and K is the class field with
respect to an ideal group H, of index 3 (the ideal class group is
isomorphic to G). Hence by [2], p. 33, Theorem 14

Lx(8) = L) L(s, 20 L(s, 1)

and via the discriminant formula (]2], p. 38)
D = H-f;t = 51’
4

where f, denotes the conductor of the character y, D = f* and f, = f.
The case of a non-normal extension K was studied in [3]. There all the
statements of ii) can be found up to {x(s) = £ (s) L(s, ). To prove
this, the factorization
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[TA =N =1 - g)]]A = 2@ Nalp) )

2lq rlq
has to be established for all rational primes ¢ (here & denotes prime
ideals in K and p prime ideals in ). But this can be checked easily
using the prime ideal factorization of ¢ in K and 2 as it is summerized
in [2], p. 568.

Lemma 2. Let K be any number field over U and denote by uy the
MGébius function of K, then
Mg(x):= Y ug(@) = O(xexp {— c(logx)**(loglogx) ~'"}) ,
NK(G)QX
with some positive constant c. Here summation is taken over all ideals
a # 0 in K with (absolute) ideal norm Ny (a) < x.

Proof. For K = Q this is a classical result due to Walfisz. For the
quadratic case see [7]. The proof of WALFISz [11}, p. 191, can be
transfered to the.general situation using the known zero free region
of ¢y ([6], p. 246), which is (up to the constants involved) the same as
those for ¢. Following Walfisz, one first proves that

a)log
NK(Za)stMK( ) Ng (@)

where 8 (x) = exp {— c(logx)*” (loglogx) 7’} is used as abbrevia-
tion. To get rid of the factor log (x/Ng(a)), observe that furthermore

X

= 0(x0°(x)) ,

x
Ng(a)

ux () 1og( (1+ a(x») < x6*(x)

Ne@<(1+8(0x) x

holds; hence

My (x)log(1 + () + Y, M(a)log( X )+

Ne@<x Ni(a)
x(1 +6(x) 2
+ ug(a)log=—— " < x0°(x) .
x< NK(u);U—}-é(x))x K NK(a)

The first sum is of the order O (x *(x)) and the second one (using a
weak version of (1)) is less than

log(l + 6(x)) =

x<Nr(@) <(1+8(x))x

= log (1 + 8 (%) (Ax (1 + () x) — Ax(x)) < x8*(x) .
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Hence M (x) < x6*(x)/log(1 + 6(x)) € xd(x), which proves the
Lemma.

3. Proof of Theorem 1. Denote by F(n) the number of ideals in K
with norm equal to n. First a method of ATKINSON [1] is used to
establish

Ag(xX) = gxx + exP Y F(myn~ 2P f( ﬁ(nx) ‘/3>+ O+ X7 (6)

n<X

for every ¢> 0. Here ¢ is a real constant, fe{sin,cos} and
x!? < X < x is a free real parameter. Since F(n) < n, it sufficies to
consider x to be half an odd integer. For every ¢>0 and
T:= (x X)'? < x?P the truncated version of Perron’s formula (e.g. [9],
p.376) yields

1 14+e+iT
Ag(x) = [ k@ x*s™tds+ 0T,
JTll-(~e iT

where (g (s) =) F(n)n~", Res = o > 1, is the zeta function of K.
Next the line of integration is shifted to 6 = — . The residue at s = 1
contributes g, x to the integral. Since
3 -0t9
Lr(s) < | 1]
(uniformlyin — e <o <1+, | 1] > 1, cf. [10], p. 200), the integrals
along the horizontal lines [— e+ iT,1 +e+ i7] are of order
O (x'**T1); hence

—e+iT

- | kX sTHds + O(x'TTTY .
2ai

Ag(x) = ogx +
Now the functional equation i (1 — ) = Z(s) {x(s) with
Z@%:SDI”@n%DD”Gm%ﬁxmﬁ—yfﬁﬂ

is used (cf. [5], p. 76). Here (r,r,) = (3,0) or (r,7,) = (2, 1) according
as all embeddings of K in C are real or not. One obtains

1+e+iT

Ad@=hx+§ﬁf Z@q@
nll+b iT

ds + 0" T Y.
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By Stirling’s formula for s = 1 + ¢ + it

%?F I — 1) = — 43223 TBs—2)(1 + O(ls| ) =

kE

1og. _
o e T v o,
and with some fe {sin, cos}

4((:osnj?)r(sin%g)r2 = if(%s)ﬂ + 0(e” ") = 0(6222“‘) .

Hence

1+e+iT ; .,
A = oxx+exs | L) IBs— 2)32-3Sf(§f s><8j_x> st

2mipiir 2
T
O [t d) + O T .
1
The first O-term is less than the second one. The substitution

35 — 2 s yields

Ag(x) — oxx =
1 14+3:43:iT 1 2 7 7 67[ _s
— 1/3_+ - “Ar e A Y AT d
oG 3PS 3 ()
+ 0(x1+e T—l) — (7)

= x"PY Fmyn L+ O(x'*"T7Y,
n=1

where
1 143e+iT

and f; € {sin, cos}. This integral has been studied by ATKINSON [1] in
his Lemma 1 and Lemma 2 for f, = cos. Replacing cos by sin, his
arguments remain unaffected. Also the summation of (7) can be taken
over from [1], where the same sum is evaluated with d; (n) in place of
F(n). This all together proves (6).
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The trivial estimate of the exponential sum in (6) proves (1) with
an extra factor x°. To improve this, Lemma 1 is used. The factoriza-
tion of {y gives

F(ny=> q(a,

d|n
where in the case of a normal extension ¢(d) = nyz () ().

Otherwise ¢ (d) is equal to the number of ideals ae H with N,(a) = d
minus two times the number of ideals ae C with N,(a) = d. In both
cases |g(d)| < d".

Let N< N < 2N < X:=x%? then partial summation yields

Fm)n P f(c (xn)'") < N~ F(mye(d (xn')1, (8)
) 2,

N<ngN N<n< N,

where N, < N’ and e(?):= ¢>""". Hence it suffices to estimate

Y gme(d (xnm)'?) .

N<nm<N;

The range of summation is divided into domains of the type
D={nmN<nm< N, M, <ms< M, <M, (1 + ¢,
X1<H<X2<X1(l + &)} -

The arising sums

Si=1 Y gqme(d(xnm)'P)|
(n,mye
have been estimated by G. KOLESNIK [4], p. 240—246 (for an arbitrary
function ¢ (n) satisfying |g(n)| < n°). Assuming x'"? < N< X he
obtained

. N2/3 t11/96+s for )(1 < N16/35,
S1 < {(tN)l/G N—8/35 + N27/35 4 (IMI/12N3/70 4
+ (tAf)i/Q N18/35 + (IN)l/G 1—1/20 N49/100 + N(l]V) -1/6} t° else.

In the remaining case the trivial estimate

Y F(myn=f(e,(xn)'P) < x!™
n< %1132
1s sufficient. Using Kolesnik’s estimate and (8), summation over N
yields the same bound for the sum on the right side of (6). This
completes the prove of Theorem 1.
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4. Proof of Theorem 2. The following elementary convolution
argument is used to prove part one of the theorem. For the
sake of brevity set N(a):=Ng(a), Y:=(xd(x))"% and d(x):=
.= exp { — ¢ ([log x)*” (loglog x)'"}:

k()= Y wk@= Y Yu®d= Y )=

N(a)<x N{@<x b2la NG)?N() < x

= X () +

+N<c><xyz< <\/N()> K(Y)>=SS1+S2.

By Theorem 1, Ag(x) = pxx + O (x") with 1 < 1/2, hence

Si=okx Y ux(B)NDB) > —oxx Y w(B)N(B) >+

b#0 NB>Y

+0@" Y N®B.

NB<Y
In the second sum partial summation is used together with Lemma 2;
this yields
Ok 1-24
Si=—2 x4+0xY18(x)+0K'Y
= py R O YT + O V) =

_ % )
CK(Z)X+O(X5(X) ) .

Using Lemma 2 again

S,= Y OPN@ PE@) = 0(xY 8 (%) = 0(x8" (%),

N{<xY?2

where ¢’ (x) and &' (x) are defined as 6(x) with suitable positive
constants ¢’ and ¢”’. This proves (4). To establish the conditional
result (5), a refined convolution method (going back to Montgomery
and Vaughan) is used in its general formulation due to W. G. NowAK
and M. SCHMEIER [8]. By Theorem 1 the required assumptions are
satisfied with 2 = 43/96, h = 1/2, a = 2, b = 1 (in the notation of [8])
and (5) follows immediately.
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