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Abstract. Let K be a cubic number field. Denote by Ax(x) the number of ideals 
with ideal norm ~< x, and by QK(x) the corresponding number of squarefree ideals. 
The following asymptotics are proved. For every e > 0 

AK(X ) = Cl X-]- 0(X43/96+3, 

QK(x) = e2x + O(x~/2exp {-  c(log x) 3/5(loglog x) -~/5}) . 

Here cl, c2 and c are positive constants. Assuming the Riemann hypotheses for the 
Dedekind zeta function gx, the error term in the second result can be improved to 
O (x~/H6+3. 

1. Introduction. Let  K be a number  field o f  degree n = [K: Q] Over 

Q. Deno te  by A K (x) the ideal funct ion,  e.g. the funct ion which counts  

the number  o f  ideals with n o r m  ~< x, and  by QK (x) the corresponding 

funct ion  count ing  the number  o f  squarefree ideals with n o r m  ~< x. 
Using LANDAU'S classical est imate ([5], p. 135) 

A K ( x )  = ~oKx + 0 (x  (~-~)/(~+1)) , (1) 

where oK denotes the residue o f  the Dedek ind  zeta-funct ion ~x at  
s = 1, e lementary  considerat ions prove tha t  

QK(x) = ~ x  + O(xX),  (2) 
gx(2) 

wi th  ,t = (n - 1)/(n + 1) for n ~> 3 and ,1 = 1/2 for n ~< 2. In the case 

o f  a quadra t ic  number  field X2, the evaluat ion  of  A~ (x) can be reduced 
to a twodimens iona l  divisor problem. As indicated by W. G. NOWAy: 
[7], the new invest igat ions o f  Mozzochi  and  Iwaniec in the divisor 
p rob lem lead to 

A~ (x) = ~ x  + O (x 7/22+~) 

for every e > 0. Wi th  some c > 0 NOWAK [7] obta ined  the est imate 
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Q o ( x ) -  ~0 x + O(xl/2exp { -  c(logx)3/S(loglogx)-l /5})  . 
gQ(2) 

Assuming the Riemann hypothesis for gQ, he sharpened this result to 

Q (x) - + O ( x t 5 / 3 8 + 3  . 

~o (2) 

For cubic number fields the general estimates (1) and (2) seem to be 
the best published ones. In this paper the following theorems are 
proved. 

Theorem 1. For every cubic number f ield K over Q and every e > 0 

one has 

A K ( X  ) = QK x + O ( X  43/96+e) , (3) 

where PK is the residue o f  ~K at s = 1. 

Theorem 2. For every cubic number field K over Q there is a constant 

c > 0 such that 

QK(X) = Q ~ x  + 0 (xl/2exp {-- c(log x)3/5(loglog x)-~/5}) . (4) 
r 

I f  r has no zeros in the half  plane Res > 1/2, then for  every e > 0 

QK (x) = --xOK + 0 (x 53/t16+~) . (5) 
r 

Remarks. 1) The O-constants in both theorems may depend on e 
and K. 2) The generating Dirichlet series for QK(x) is CK(S)/r 
Therefore the exponent 1/2 in Theorem 2 cannot be improved with- 
out further assumptions on the zeros of CK. 

2. Auxiliary resuRs. Lemma 1 collects the algebraic properties of 
cubic number fields which are used in the proof of Theorem 1. 

Lemma 1. Let K be a cubic number field over Q and D = d f  2 

(d squarefree) its discriminant; then 

i) K is a normal extension i f  and only i f  D = f2. In this case 

~K(s) = ~ (s) L (s, Zl) L (s, Zl), 
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where ~ (s) is the Riemann zeta function and L(s,  Z~) is an ordinary 
Dirichlet series (over Q) corresponding to a primitive character Zl 

modulo f. 

ii) I f  K is not a normal extension, then d ~ 1 and 

~,,(s) = ~ (s) L (s, z9 ,  

where L(s,  z2) is a Dirichlet L~series over the quadratic field 

L(s,  z 2 ) = ~ z 2 ( a ) N e ( a )  -~, ( R e s > l ) .  
a 

Here summation is taken over all ideals a # 0 in Y2 and No denotes the 
(absolute) ideal norm in Y2. To describe the character Zz let H be the 

ideal group in O according to which the normal extension K(3/d ) is the 
class field. Then H divides the set A f  o f  all ideals a ~ Y2 with (a,f) = 1 
into three classes A f  = H u  C u  C', and (~o:= e 2"//3) 

i a ~ H  
~o ae  C 

z2(a)= go a~C'  

0 (a,f) # 1. 

The substitution ~ = (3/d~ - 3/d) in ~ maps C onto C'. 

Proof. Denote  by B c C  the normal  closure of  K and by 
G = Gal (BI Q) its Galois group.  Then G is a subgroup of  S 3 and 3 
divides [B: Q] = ord (G), e.g. G is cyclic of  degree 3 or G -~ S 3. In the 
first case K = B is an abelian extension and K is the class field with 
respect to an ideal group //1 of  index 3 (the ideal class group is 
isomorphic  to G). Hence by [2], p. 33, Theorem 14 

~,,(s) = ~ (s) L (s, z0 L (s, L ) ,  

and via the discriminant  formula  ([2], p. 38) 

D =  H L = f ~ , ,  
Z 

where f ,  denotes the conductor  of  the character ;~, D = f2 and fz, = f 
The case of  a non-normal  extension Kwas  studied in [3]. There all the 
statements of  ii) can be found up to ~K(s) = ~ (s)L (s, z2). To prove 
this, the factorization 



214 W. MO.LLER 

I-I (1 - NK(~) -s) = (1 -- q-S)1-[ (1 - )~(p)N~2 (p) -s) 
~[q plq 

has to be established for all rat ional primes q (here ~ denotes pr ime 
ideals in K and p prime ideals in ~2). But this can be checked easily 
using the prime ideal factorization of  q in K and .(2 as it is summerized 
in [2], p. 568. 

Lemma 2. Let  K be any number f ield over �9 and denote by #K the 
M6bius function o f  K, then 

M,~(x)..= )-" ~K(a)=  O ( x e x p { -  c(logx)3/5(loglogx)-~/5}),  
NK(a)<~x 

with some positive constant c. Here summation is taken over all ideals 
a ~ 0 in K with (absolute) ideal norm NK (a) <~ x. 

Proof. For  K = Q this is a classical result due to Walfisz. For  the 
quadrat ic  case see [7]. The p roo f  of WALFISZ [11], p. 191, can be 
transfered to the 'general  si tuation using the known  zero free region 
of  r ([6], p. 246), which is (up to the constants  involved) the same as 
those for r Fol lowing Walfisz, one first proves that  

~K(a)log ~ x  - O(xO2(x)) 
:vK(a)<.<x NK(a) ' 

where ~ (x) = exp { - c (log x) 3/5 (log log x) -1/5} is used as abbrevia- 
tion. To get rid of  the factor log ( x /N  x (a)), observe that  fur thermore  

~K(a)log (1 + d(x)) ~ x~2(x) 
Wx(a)<~(l +~(x))x 

holds; hence 

Nx(a)<~x 

+ ~ #K (a) log X (1 + 6(x)) 
X<NK(a)<~(l+6(x))x NK(a)  ~ X02(X)  . 

The first sum is of  the order O (x ~2 (x)) and the second one (using a 
weak version of  (1)) is less than  

}2 log (a + (x)) = 
x<NK(a) <~ (1 +5(x))x 

= log(1 + O(x))(Ax((1 + O(x))x) - AK(x)) ~ xO2(x) .  
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Hence MK(X ) "~ x62(x)/log(l + 6(x)) ~ x6(x), which proves the 

Lemma.  

3. Proof of Theorem 1. Denote  by F(n) the n u mb e r  of  ideals in K 

with n o r m  equal  to n. Firs t  a m e t h o d  of  ATKINSON [1] is used to 
establish 

. n<xF(n)n-Z/3f 3~(nx)l/3)-} - AK(x) = OKX + cxl/3 ~ (31~/~ I O(x2/3+~x-l/3) (6) 

for every e >  0. Here  c is a real constant ,  f ~ { s i n ,  cos} and 

x 1/2 < X < x is a free real parameter .  Since F(n) ~ n ~, it sufficies to 

consider x to be ha l f  an  odd  integer. F o r  every e > 0 and  
T.-= (x X) 1/3 < x2/3 the t runca ted  version of  Perron 's  fo rmula  (e.g. [9], 

p. 376) yields 

| l + e + i T  

AK(X)--Zjz i  ~ ;K(S)X'S- lds+ O(x l+ 'T-1) '  
1 + e - i T  

09 - s  
where fix (s) = ~ , =  1 F(n) n , Re s = ~ > 1, is the zeta funct ion of  K. 

Next  the line o f  in tegrat ion is shifted to G = - ~. The residue at  s = 1 

contr ibutes  OKX to the integral. Since 

3 - r + e) 

CK(s) < I tl 

(uni formly  in - e ~< ~ ~< 1 + e, I t l >~ to, cf. [10], p. 200), the integrals 
a long the hor izonta l  lines [ -  e___ iT, 1 + e + iT] are of  order  
O (x 1+" T- l ) ;  hence 

1 - e + i T  

A K ( x ) = e a x  + ~  i ~ r O(xl+~T 1). 
- - e - i T  

N o w  the funct ional  equa t ion  ~K(! -- S) = Z(s)OK(s) with 

s 9 Z S  r 

is used (cf. [5], p. 76). Here  (r, r2) = (3, 0) or (r, r2) = (2, 1) according 
as all embeddings  o f  K in C are real or not.  One obtains  

X l + e + i T  - s  

x ds + O(xl+ T-1) . AK(X) = OKX + 2 ~ i l + , _ i r  I -- S 
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By Stirling's formula for s = 1 + e + i t 

l - s  
F2(s)F(s -  1)=  - ~ 2 ~ 3 2 - 3 ~ r ( 3 s  - 2)(1 + O( I s l -1 ) )=  

tl l+3e -3zltl) 
= O ( I  e 2 + O ( 1 ) ,  

and with some f E  (sin, cos} 

4 ~ c o s ~ - )  sin = i f  s (1 + O ( e - i " ) ) =  O ( e ~ l " ) .  

Hence 

1 l+e+iT 2 - 3 s  3z~ 8 y g 3 X  - s  
AK(X)~KX-~-CIX-- I ~K(S)F(3S--2)3 7(~S~(~D~\ / \  / ds-[- 

2Xil+~-iT 
T 

+ O(x ~It-�89 O(x1+~T -1). 
1 

The first O-term is less than the second one. The substitution 

3 s - 2 ~ s yields 

AK (x) -- Q/(x = 

f ) + = CzXl/32:ria+3 -3iT 

+ O(x '+~ T - ' )  = (7) 

oo 

= c3 xl/3 ~ F(n)n-2/3In + O(xl+~T-1), 
n = l  

where 

! r(s)f, ~s (nx)" ds 
In"-- 2z~ i 1+3 -iT 

and fl  ~ {sin, cos}. This integral has been studied by ATKINSON [1] in 
his Lemma 1 and Lemma 2 for f~ = cos. Replacing cos by sin, his 
arguments remain unaffected. Also the summation of  (7) can be taken 
over from [1], where the same sum is evaluated with d3 (n) in place of  
F(n). This all together proves (6). 
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The trivial estimate of  the exponential  sum in (6) proves (1) with 
an extra factor x ". To improve this, Lemma  1 is used. The factoriza- 
t ion of  ~x gives 

F(n) = ~ q(d) , 
din 

where in the case of  a normal  extension q ( d ) =  ~xy=aZl(x)z~ (Y). 

Otherwise q (d) is equal to the number  of ideals aE H with N e (a) = d 
minus two times the number  of  ideals a~ C with No(a) = d. In both  
cases I q (d) I ~ d ~. 

Let N ~< N' ~< 2 N ~< X.-= x 2~/32, then partial summat ion  yields 

F(n)n-Z/3f(c'(xn)I/3) ~ U -2/3] ~ F(n)e(c ' (xn) l /3) i ,  (8) 
N<n<~N" N<n<~N~ 

where N~ ~< N' and e (t).-= e 2~it. Hence it suffices to estimate 

q (m) e (c' (x n m)1/3). 
N<~nm<~Nx 

The range of  summat ion  is divided into domains  of  the type 

~ = {(n,m) lN  ~ nm <~ N~,M~ ~ m ~ M2 <<. M~(l + e), 

The arising sums 

$I :=]  ~ q(m)e(c ' (xnm)l /3) l  
(n,m)e@l 

have been est imated by G. KOLESNIK [4], p. 240~246  (for an arbitrary 
function q(n) satisfying rq(n) l ~ n'). Assuming x H/32 <~ N <~ X he 
obtained 

' f N  2/3 t 11/96+~ for  X 1 ~< N 16/35, 
$1 ~ ~ {(t N)~/6 N-8/35 + N27/35 + (t N) ~/lZ N3/7~ + 

(t N) 1/9 N18/35 1/20 N49/100 - 1/6} t , + + (tN)~/6t + N ( t N )  else. 

In the remaining case the trivial estimate 

~, r (n)  n-2/3f(e 1 (xn) 1/3) ~ x ll/93+~ 
n~xll/32 

is sufficient. Using Kolesnik 's  estimate and (8), summat ion  over N 
yields the same bound  for the sum on the right side of  (6). This 
completes the prove of  Theorem 1. 
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4. Proof of Theorem 2. The following elementary convolut ion  
argument  is used to prove par t  one of  the theorem. For  the 
sake of  brevity set N(a),=NK(a),  r : = ( x 6 ( x ) )  1/2, and O(x):= 
:= exp { - c ([log x) 3/s (log log x) l/s}: 

Qx(x)= ~ /~(a)= ~ ~ K ( b ) =  ~ ~K(b)= 
N(a)<.x N(a)<~x b2la N(b)2N(c) <~ x 

= ~, #K(b)AK + 
N(b) < V 

+ MK --MK(I2) = ' S  1+ Sz. 
N(c)<~x y -2  \ 

By Theorem 1, AK(x) = Oxx + 0 (x ~) with 2 < 1/2, hence 

$1 = ~xx ~ , / ~ ( b )  N(b) -2  _ OKx ~ /~K(b) N(b ) -2  + 
b:/:O N (b) > Y 

+O(x a ~ N(b)-2~). 
N(b)<~ Y 

In the second sum partial summat ion  is used together with Lemma  2; 
this yields 

S 1 = - ~ x  + O(x  y - l d ( x ) )  + O(x  ~ yt-2x) = 
r 

_ ~OK 

;K (2) x + O (x O (x) ~- ~) . 

Using Lemma  2 again 

&= 
N(c)<~x y -2  

where O' (x) and 8" (x) are defined as 0 (x) with suitable positive 
constants  c' and c". This proves (4). To establish the condit ional  
result (5), a refined convolut ion  me thod  (going back to Mon tgomery  
and Vaughan)  is used in its general formula t ion  due to W. G. NOWAK 
and M. SCHMEIER [81. By Theorem 1 the required assumptions  are 
satisfied with 2 = 43/96, h = 1/2, a = 2, b = I (in the no ta t ion  of  [8]) 
and (5) follows immediately.  
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