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Abstract. Up to conjugation, there exist three different polarities of the projective plane P2�90 over 
Hamilton's quaternions H. The skew hyperbolic motion group of P2 H is introduced as the centralizer of 
a polarity "of the third kind". According to a result of R. L6wen, the qnaternion plane is characterized 
among the eight-dimensional stable planes by the fact that it admits an effective action of the centralizer of 
a polarity of the first or second kind (i.e., the elliptic or the hyperbolic motion group). In the present paper, 
we prove the analogous result for the skew hyperbolic case. 

1. Polarities of the Quaternion Plane 

This section collects basic information about  polarities of  the projective plane 
over Hamil ton 's  quaternions.  It seems that most  of the contents of this section is 
folklore. As I could not  find adequate  references, I combine the introduct ion of the 
elliptic, hyperbolic and skew hyperbolic polarities with a p roof  that  they represent 
the conjugacy classes of polarities of  the quaternion plane. 

A polari ty of a projective plane (~,  A ~ is an involutory correlation, i.e., a map-  
ping ~:: ~ • Ar -> A ~ ~ ~ such that  ~2 is the identity mapping,  and that  K interchanges 
points and lines, but  preserves incidence. 

In this first section, we are going to classify the polarities of the projective plane 
p2 H ~ (ul( ~ 3), u2(• 3)) over Hamil ton 's  quaternions ~ .  Here u~(H 3) denotes the set 
of all n-dimensional vector subspaces of the left vector space ~ 3 consisting of rows 
x = ( x l , x 2 , x 3 ) .  If  x = ( x l , x 2 , x 3 ) ~ ( O , O , O ) ,  then the one-dimensional  subspace 
spanned by x will be denoted by [x]  = Ix1, x2, x3]. 

Nota t ion  1.1. The skew field of Hamil ton 's  quaternions is defined as the 
(associative) R-algebra H = R + Ni + Nj + Rk = C + Cj, subject to the rules 
ij = k = - j i ,  j k  = i -= - k j ,  ki = j --- - i k ,  and i 2 ___j2 = _ 1 = k 2. The mapping  

p: ~ ~ H, h = h I + h2i + h3j  + h4k~-->h:= h I - h2i - h3j  - h4k 

is called conjugation, it is an an t i -au tomorphism of H. The eigenspaces o fp  are ~ and 
P u l l  = ~i + Ej + Rk. 
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We wilt need the following compact subgroups of the multiplicative group. 

V = {t~Clt?-= 1}, ~ = {u~Hlu~-= 1}. 

Note that the inverse ofh e ~ \{0} is h-  1 = h/hh; in particular, we have that u-  1 = ~ if 
u e U. For  every matrix A = (a,~)~ ~,,~ ~ 3 E H 3 • a and every anti-automorphism e of 
N, we write A~:= (a~,)x ~ , ~  3 (i.e., the matrix A ~ is obtained from A by transposing 
and applying e to the entries). This convention applies also to x = (Xl, x2, x3)~ H 3; 

we have x ~= i x~/.  

\xU 
In order to classify the polarities, we need to know all involutory anti-automor- 

phisms of H. 

Lemma 1.2. Assume that ~ is an anti-automorphism of H such that 0~ 2 = id a. Then 
there exists u ~ U such that u 2 ~ {1, - 1}, and h ~ = ~hu for every he H. 

Pro@ Every automorphism of H is of the form t~, = (h ~ ghu) for some u~ U, see 
[18, Prop. 10.20, Prop. 10.25], and the group of all automorphisms and anti- 
automorphisms of H is the direct product of the group of all automorphisms and the 
group generated by p. For  every anti-automorphism e of H, we obtain that pe = i u 
for some ueU,  and ~2 =idH implies that id a -  ~ -  - t , -  tu2. This means that u 2 is 
contained in the center of U, which is { 1, - 1 }. [] 

Theorem 1.3. Up to a change of basis, every polarity ~ of P2 ~ is described by 
a semi-bilinearform f(v, w) = vS# accordin9 to Iv] ~ = {w]f(v, w) = 0}, where S is one 
of the following diayonal matrices: 

(111) (111) (i i) 
Proof. According to [1, IV.3 Thm. 1, IV.2 Thm.], every polarity ~c of P2 H is 

described by a symmetrical e-form f ,  where c~ is an anti-automorphism of H such 
that c~ 2 = idH. The term "symmetrical" means that f(v,  w) = f(w, v) ~. From [1, IV.4 
Prop. 3] we infer that there exists a basis of H a such that the form is described by 
a diagonal matrix S = diag(s 1, s2, s3), according to the formula f(v, w) = vSw ~. The 
fact that f is symmetrical (with respect to e) implies that 

Set = 
(st ;) 

~t ~ S .  s 2 

s 

From 1.2 we know that there exists u~ U such that u2e{1, - l } ,  and s~ = ti~,u for 
#E{1,2,3}. If u2= 1, we obtain that s ,~R, and a basis transformation involving 

x / ~ ,  [ transforms S to a matrix with diagonal entries from { 1, - 1 }. Replacing f by 
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- f ,  if necessary, we obtain that 

S~ {t 111)(111)) 
Ifu 2 = -- 1, we have that i = - u, and s, = s~ = - uguu implies that - s ,u  = suu. This 
means that s , u s P u H .  Now 

( ) - -  f ( v ,  w ) u  = v s2i #. 
s3u 

Transforming the basis by a diagonal matrix with entries x/~ui l ,  we obtain that the 
polarity ~: is described by a semi-bilinear form (sl ;) 

f ( , w) v s 2 
s 

where s',EU c~PuH. Since the group ~5 acts transitively on the set ~Jc~PuH via 
x ~-* i x u  (see [18, Prop. 10.22]), we find a diagonal matrix which transforms f '  to the 

Note  that the form s is not a symmetrical p-form, but rather a "skew-symmetri- 
cal" one. 

R e m a r k  1.4. Our arguments remain valid for polarities of the projective space 
P,H,  if n >~ 3. Passing to the factor space modulo the radical of the semi-bilinear 
form, one may further extend the classification of semi-bilinear forms on H n to the 
degenerate case, where an interpretation as polarities is no longer possible. See [24] 
for a study of actions of the corresponding unitary groups on 8-dimensional stable 
planes. 

Defini t ion 1.5. The polarities described by the forms (1) (1) (i) 
e(v, w) = v 1 ~,, h(v, w) = v 1 ~,, s(v, w) : v i ~, 

1 - 1  i 

are called the ellipic, hyperbolic,  and skew hyperbolic  polarity of P2H, respectively. 

2. The Skew-Hyperbolic Motion Group 

In this section, we will study the centralizer of the polarity ~c of P2 H that is 
described by the form s. This centralizer is the s0-called skew-hyperbolic group, it is 
induced by the unitary group with respect to s. 
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Definitions 2.1. If I: e {N, C} and r and n are natural numbers such that r ~< n, we 
write O,(I:, r) for the orthogonal group with respect to the bilinear form 

q((xv)l.<u.<o,(yu)l.<u.<o) = -- ~ X.Yu + ~ xuYu 
,u=l N = r + l  

on 1 :~ The unitary group U.(C, r) is defined with respect to the form 

#=1 # t=r+ l  

on C ~ Finally, we define the anti-unitary group U,~(N) by the form 

g((x.)l <.~<.,,, (Y.)I <..<..) = ~ x~i~ 
~=1 

on N ~ . Note that 

U,~(H) = {A EH"• i~ }. 

The prefix S in SO,(I:,r) or SU,(C,r) denotes the subgroup of matrices of 
determinant 1; the prefix P indicates the factor group modulo the center. Note that, if 
n/> 2, the center of SO,(I:, r), SUn(C, r), and U~(H) is ( - ~ ), compare [2, Theorem 2]. 
We have the natural epimorphism 

x:U~(H)-~ PU,=(H):A ~--> {A, -A}.  

We will write F :=  PU~(H), and call F the skew-hyperbolic motion group of P2 H. 

Theorem 2.2. For n >>. 3, the group PU~(N) = U~(H)/( - ~ ) is simple. 

Proof. By T n, we denote the subgroup of U~(H) that is generated by the 
transvections in U~(H). If n/> 3, then the center of T o is ( - 4 ) ,  see [2, Theorem 21, 
and To/( - ~) is simple [2, Theorem 11. In order to show that T o = U~(N), we use 
the results of G. E. WALL [321, see [3, II w p. 47]. The set of fixed elements of p in 
the multiplicative group H • is just ~• this set corresponds to !2 in the notation 
of [3, II w p.47]. If e, denotes the #-th standard basis element, we have that e~ 
and e 2 span a "hyperbolic plane" in N ~ and [e31 is orthogonal to this plane. We 
have that {g(he~, he3)lh ~ N} = PuN. This set coincides with the set {h - h l h  c H • }. 
Therefore, the subgroup f~  of [3, II w p. 47] equals H • in our case. The com- 
mutator subgroup of H • is �9 see [18, Prop. 10.24]. Now Wall's theorem asserts 
that the factor group U~(H)/T o is isomorphic to H•215 and is therefore 
trivial. [] 

Since - ~ is contained in the connected subgroup {t~ I t e T} of U~(H), we obtain 
the following. 

Corollary 2.3. For n >>. 3, the groups U~,(H) and PU,~(N) are connected. 

Remarks 2.4. The group PU~,(H) is a real form of the simple complex Lie group 
of type Do. It is called Sc~UoH in [31]; its Lie algebra is denoted by u*N in [16], or 
D, ~ in [31]. Note that P U ; ( N ) ~  PSU,(C, t), see [3, IV w 10), p. 113]. The group 
PU~(H) is not simple, but isomorphic to the direct product of 15/( - ~  ) ~ SO3([R, 0) 
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and PSL2(N ), see [2, w p. 379-380] or [3, IV w 11), p. 113] and the description of 
A in Theorem 2.11 below. 

Notation 2.5. We set 

I =  (i o!) (io_i) (_i o!) (io !) i , J =  i , K =  0 i , L =  0 - 
0 0 0 0 1 

and 

P= 0 = p - i ,  Q= 1 =O-' ,  
- i  0 - 0 

0 i) 1 =/#-i 
R = ~ 2 2 \ 0  - i  - 

These matrices will be used in order to obtain different descriptions of the skew 
hyperbolic motion group; this will ease some computations. 

In order to understand certain subgroups of the skew hyperbolic motion group, 
we will need the following. 

Lemma 2.6. For re  {0, 1}, the group U3(C, r) is isomorphic to U3(C, r)/( - ~ >. 

Proof. The group U3(C, r) is obtained from the direct product SU3(C , r) x ~- via 
identification of the (central) elements of order 3. This is realized by a surjective 
group homomorphism e with kernel A = { ( a  l~,a)laeY, a 3 = l  }. The group 
U3(C,r ) / ( -~  ) is isomorphic to the factor group of SU3(C,r ) x ~ modulo the 
normal subgroup B = {(b2~,b)lbeT, b6= 1}. The corresponding natural epimor- 
phism will be denoted by ft. The mapping 7:(S; t )~(S ,  t 2) is a surjective endomor- 
phism of SU3(C,r ) x ~- with kernel C = {(~,c)lce{1,-1}}. Since C is contained 
in B, we obtain a factorization fi=76, where the kernel of 6 is 
D = B' = { (b2~, b2) lb 6 = 1 } -- { (a~, a) la 3 = 1 }. Since the mapping (S, t)~-~(S, t - ~) is 
an automorphism of the group SU3(C,r) x T, the assertion follows. [] 

The following lemma will be used several times; recall that U ~ SU2(C , 0). 

Lemma 2.7. I f  SU2(C, 0) acts linearly on R", then it leaves invariant some positive 
definite bilinear form on ~". In particular, the action is completely reducible. I f  the 
action is not trivial, we have that n >t 3. I f  the action is effective, then even n >i 4. 

Proof. The invariant bilinear form is obtained by Weyl's trick, see [6, II.4.14] or 
[16, Ch. 3, w Since SU2(C, 0) equals its commutator group, every linear action on 
R 2 is trivial; recall that O2(N, 0) is solvable. The centralizer of an involution in 
SO3(~, 0) is also solvable. Therefore, the group SU2(C, 0) cannot act effectively on 
Na, since it has a central involution. [] 
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Theorem 2.8. (1) The set U of absolute points of ~c is homeomorphic to the 
sphere Ns. 

(2) The compact subgroup 

E:= {A~C3• = I, detc A = 1}~-  ~ SU3(C,0 ) 

of F acts transitively on U, while the group F even acts 2-transitively on U. 
(3) The stabilizer of the absolute point [1, O, - j ]  = [1, O, 01 e is 

(krP: --- F[1,O,O]~" = 

( ru 0 

h t 
uhih uhti 

xu q 2r r 

i )  r>O'ueU'heHte~ 

t~Y,x~[R I ' 

the stabilizer of the two absolute points [1, O, - j ]  and [i, O, kl = [0, O, l] P is 

oEool f(ru 
Proof. (i) After conjugation by P, the form s is described by the matrix J. Now 

one computes easily that the stabilizer of the absolute point [1,0, 0] e is q~, and that 
�9 to,omp has the form described in (3). 

(ii) Let Iv], [w] be two absolute points. Then h:= vI~, r O, and we may assume 
that h = 1. According to Witt's Theorem (see [171 or [3, I w p. 211), there exists an 
element o f f  that maps Iv] to [0,0,1] e and [w] to [1,0,0] P. Thus F acts 2- 
transitively on U. Since F is connected by 2.3, we infer that U is connected. 

(iii) Since dim ~ = 10, we infer from the dimension formula [51 (compare [27, 
1.141) that 

dim U = dim (q)/(~t~,0,kJ)) = dim �9 -- dim (q)ti,0,k~) = 5. 

The stabilizer of the absolute point [1, j, 0] in E is 

i( ) t EEI,~,o~ = b ~ a, beC,(ag~+bb)=l --- SU2(C, 0). 
1 

Thus the E-orbit of [1, j, 01 has dimension 5 as well. From [4, 1.8.101 we infer that 
this orbit has non-empty interior in U. This implies that it is open. On the other 
hand, it is compact, and we conclude that E acts transitively, since U is connected. 

From the usual action of E=SU3(C ,0 )  on C 3, we infer that E/(Etl.j, ol) is 
homeomorphic to  S s. [] 

Corollary 2.9. The group F has dimension 15. 

Proof. Since dim U = 5 and dimq~ = 10, the assertion follows from the dimen- 
sion formula again. []  
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Proposition 2.10. The subgroups ET, where T = {t~ lt e ~}~, and 

"~ = h 1 > O, h e H , x ~ R  
hih hi 

x +  2r r 

form a polar decomposition of F; i.e., F = EET, and Ec~ET = {~}. The group E is 
homeomorphic (though not isomorphic) to E 6, and ET is a maximal compact subgroup 
ofF. 

Proof. The given parametrization of E by r, h, x shows that E is homeomorphic 
to N6. By the Theorem of MALCEV and IWASAWA [7, w Th. 13], every locally 
compact connected group G is homeomorphic to E" x C for some natural number 
n and any maximal compact subgroup C of G. As a nontrivial compact group is riot 
contractible, we infer that the group E has no non-trivial compact subgroup. Thus 
we obtain that E and ET have trivial intersection. The quotient space F/E has 
dimension 9, and the orbit of E under ET in this quotient space satisfies 
dim((EET)/E) = dim((ET)/(E m E)) = dim ET = 9. From [4, 1.8.10] we infer that this 
orbit is open. On the other hand, it is compact, and we conclude that ET acts 
transitively, since F, and therefore also F/E, is connected. [] 

Theorem 2.11. (1) With respect to the usual action, the group F has two orbits in the 
point space (and, dually, in the line space) of P2 H. The stabilizer of a non-absolute 
point (or line) is a conjugate of 

F _ t U,DeSL2(~) } 

and the stabilizer of an absolute point (or line) is a conjugate of @. Moreover, the 
stabilizer of two points is both a conjugate of a subgroup of A and a conjugate of 
a subgroup of ~. 

(2) The group A has two orbits in the pencil of lines through [1, 0, 0]; namely, the 
sets of absolute and non-absolute lines, respectively. Dually, there are two orbits on the 
line [1,0,0]~ = {[w]lw 1 = 0} under A. 

(3) The group �9 has two orbits on the pencil of lines through [1, 0, - j ] ;  namely, the 
sets consisting of the absolute line [1, 0, - j ]~ ,  and the non-absolute lines, respectively. 
Dually, there are two orbits on the line [1,0, - j ] ~  under q~. 

Proof. After conjugation by R, the form s is described by the matrix L. Now it is 
easy to verify that the stabilizer of [1, 0, 0] = [1,0, 0] R is A. For every anisotropic 
vector x, the length s(x, x) belongs to Pull.  Therefore, there exists a scalar multiple of 
x of length i. Thus transitivity on the set of non-absolute points follows from Witt's 
Theorem. The last part of assertion (1) follows from the fact that two absolute 
points are always joined by a non-absolute line, cf. 2.8. Assertions (2) and (3) follow 
from Witt's Theorem, since two absolute (or two non-absolute) lines are always 
isometric. [] 
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Putting t =  0 ~F, we obtain that the lines [1,0,0]K' 
0 

= [1,0,01 '~ = [0, 1,01 ~ and [1,0, - j ]~ '  = [1,0, - j l  '~ = [0, 1, - j ]  ~ are representa- 
tives for the F-orbits in the set of all lines, and at the same time, for the A-orbits in the 
set of all lines through the point [1, 0, 01. 

W e  are now in a position to apply the result of [21], where the familiar 
description of flag-homogeneous incidence structures by means of homogeneous 
spaces has been generalized. For  the reader's convenience, I briefly state this result. 

Lemma 2.12. Let (P, L, I) be an incidence structure, and let G act as a group of 
automorphisms of (P, L, I); that is, as a group of bijections of P ~ L preserving the 
relation I ~_ P x L. Assume that there exists a point p ~ P and a set R ~ L such that the 
following hold: 

(1) The set {p} x R is contained in I. 
(2) The group G acts transitively on P. 
(3) The set R forms a set of representatives for the G-orbits on L. 
(4) The set R also forms a set of representatives for the @-orbits on 

gp:= {l~g[(p, I)~I}. 

(5) For different representatives r, seR ,  the stabilizers G r and G s are different. 
Then the incidence structure (P ,L , I )  is isomorphic to (G/Gp, Ur~RG/G,,J), where 
J = { (Gpg, Gg) lg E G, r ~ R}. (That is, two cosets are incident iff they have nonempty 
intersection.) 

If P is locally compact and G is a a-compact locally compact group acting 
continuously on P then the Open Mapping Theorem yields that G/Gp is homeomor- 
phic to P. 

Corollary 2.13 The incidence structure that is induced on the (open) orbit [1, 0, 01 r 
is reconstructible from the action of F by the method of [211. That is, this incidence 
structure is isomorphic to (F/A, F/(A')u F/(qY)); where two cosets are incident if, and 
only if, they have non-empty intersection. 

Proposition 2.14 The groups A and a9 are maximal subgroups of F. 

Proof. According to 2.8, the group F acts 2-transitively on the set of absolute 
points. Thus we have that qb is a maximal subgroup. 

The group A centralizes the involution a -- , a reflection with 

center [1, 0, 01. We conclude that A coincides with the centralizer of a in F. Since a is 
the only involution in the center of A, we infer that the normalizer of A centralizes or, 
whence it coincides with A. As a consequence, every subgroup X of F that properly 
contains A satisfies dim X > d i m A .  Via the adjoint action, the subgroup 

f ( ) ?  1 h e ~J acts therefore effectively on the Lie algebra of X, and this 
Z =  h~ 
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algebra is the sum of the Lie a lgebra  of A and a vector  subspace of dimension at least 
4, cf. 2.7. This implies that  d im(F/X)  ~< 4. As the group  F is simple, it acts effectively 
on F/X, and so does the maximal  compac t  subgroup  ET -~ U3C, in contradic t ion to 
[15, Th. 1]. [ ]  

Proposit ion 2.15. (1) There are exactly 3 conjugacy classes of involutions in F, 
respresented by 

z = I ~ =  i , a =  --1 

i - 1  
) ~, az = (  i --i __i) ~. 

(2) The centralizers are the following: 

Cr(z ) = {AeC3X31AIA : I} ~ = ET m U3(C, 0), 

c r ( a )  = A = Z Z ~  -~ U ] ( H )  x U ~ ( n ) ,  

Cr(az) = {AeC3• = K} e~ = Y |  - U3(C, 1), 

where 

E = S U 3 ( C , O )  ~, T = ( t ~ l t ~ V }  =, 

z={( 
 {(11 R: ' 

~={(1 oto~sc2,~,? ' 
Y = SU3(C, 1) ~'~, O = T Q=. 

(3) We also record the following relation to the stabilizer of an absolute point. Let 

H : =  0 . Then 
0 

= { (  ut u) 
in fact, the 9roup Z griP is a Levi-complement to the solvable radical ZneE of 09, where 
7; is defined as in 2.10. 
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(4) The groups 

�9  ET=f(1 
A) A U2 C,0 t 

are maximal compact subgroups of qd and EUd, respectively. 

Proof. The decompositions U3(C, 0) ~ = ET, A = ZE~F, and U3(C, 1) e~ = -r| are 
verified by easy computations. Obviously, the involutions z, a, and az belong to F, 
and the groups ET, A, and TO are contained in the respective centralizer. The 
centralizer of ~ in PGL3H is FI:={/AIAEC3• 1}} ~. We infer that 
Cr(z )~<YIc~F=ET. Since a z = K  ~ = I  e ~ = z  e~, we have that Cr(~Z )~< 
~< Yl ~ ~ F  = T| According to 2.14, the group A is a maximal subgroup of F, and 
A = Cr(a ). This completes the proof of assertion (2). 

Regarding assertion (3), we observe that 2; ~n~ has trivial intersection with ZneE. 
It is easy to see that ZnPE is a solvable closed normal subgroup of ~, and that 
~P = ERnPZ~eE. As E RI~P is almost simple, we conclude that ZneE is the radical of (I), 
and that Z Rue is a Levi-complement. 

The equations in (4) are obtained by easy computations. It is well known that 
WnET~-SO2(R,0)  is maximal compact in ~F---SLzR. This yields that 
E ~  c~ ET = Z(u? c~ ET) is maximal compact in Z~.  

It remains to prove assertion (1). Since they have non-isomorphic centralizers, 
the involutions a, z, and az belong to different conjugacy classes. The subgroup ET is 
isomorphic to U3(C, 0) by 2.6. In this group, there are exactly three conjugacy classes 
of involutions; namely, those represented by the diagonal matrices 

(111)( 111)and( l 1) 
Finally, every involution in F has a conjugate in ET, since the latter is a maximal 
compact subgroup of F by 2.10. [] 

3. Actions of the Skew-Hyperbolic Motion Group 

Definition 3.1. A stable plane is a linear space ~ = (M, rig,), where the point 
space M and the line space J / /are  endowed with locally compact topologies such 
that 

- The mappings V (joining points) and A (intersecting lines) are continuous. 
- The set ~A of pairs of intersecting lines is open in ./d x J{  (axiom of stability). 
- The point space M has positive and finite (topological) dimension. 

If this is convenient, we will tacitly identify a line of a stable plane with the set of 
points that are incident with it. The pencil of all lines that are incident with a point 
p will be denoted by drip. 
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General information about stable planes can be found in the work of R. L6WEN; 
in particular, see [8] and [11]. Most important is the deep result [11, Th. 1] that 
dim M = dim Jr ~ {2, 4, 8, 16}. I will also need the fact that dim M E {2, 4} implies 
that M is a manifold, and that J/lp is homeomorphic to a sphere of dimension 
�89 dim M, see [8]. For  recent developments of the theory, compare also [28]. 

Endowed with the compact-open topology derived from the action on M (or on 
.J/l), the group Aut(M) of all continuous collineations of M is a locally compact 
transformation group both on M and on .~l. An action of a topological group G on 
M is a continuous group homomorphism from G to Aut(M). Let /~  = (A, sJ) and 

= (B, N) be stable planes, and assume that ~: G ~ Aut(~) and fi: H ~ Aut(B) are 
actions of topological groups G and H. If 7: G ~ H is a continuous homomorphism 
of groups, and 2: A ~ B is a continuous mapping that preserves collinearity (a 
so-called lineation), such that g~2--2g ~ for every g~G, then we say that (7,2) is 
a morphism of  actions. If both ? and 2 are injections, we call (7, 2) an embedding of  
actions. See [28, Chapter 3] and [23] for a discussion of these concepts. 

The study of involutions in Aut(M) plays a crucial role. This is due to the fact that 
the possible actions are well understood. Every involution zeAut(M) has a set 
Jr = {x~xlx ~ M, x r x ~} of fixed lines. For  each point x va x ~ we find that a suitable 
neighborhood ofx~x in ~/Y~ is homeomorphic to some neighborhood ofx  in any line 
through x different from x~x, compare [9, 1.1]. We will frequently use the following 
results from [25]. 

Lemma 3.2. (1) I f  ~ is an involution of  a stable plane M = (M, ~r (that is, a non- 
trivial automorphism such that ,2 = idM) ' then one of  the following cases occurs: 

The involution ~ f ixes  no point; such an involution is called free. 
The involution ~ is planar; i.e., the f ixed points and lines form a subplane 

B = (B, ~ )  such that dim M = 2 dim B. In this case, the space B is locally homeomor- 
phic to any line (or line pencil) in ~ .  

- The involution ~ has a center c or an axis A; i.e., there exists a point c such that 
acts trivially on J/lc, or a line A such that ~ acts trivially on A. I f  c~ has both center and 

axis, then ~ is called a reflection. 

(2) I f  a and fl are commuting involutions with the same axis, then ~ = ft. 
(3) I f  three commuting involutions have a common f ixed  point p, and if none of  the 

involutions is planar, then p is the center o f  at least one of  the involutions. 
(4) Axis  and center o f  a reflection are never incident. 
(5) I f  an involution ~ with center c f ixes a line L then L passes through c, or L is an 

axis o f  c~. 

(6) I f  an involution ~ with center c f ixes a point a r c then c~ has also an axis A, and 
a~A.  

(7) I f  an involution c~ with axis A f ixes a point c outside A then c is a center o f  ~. 

It is easy to see that the center or axis of a non-trivial automorphism c~ are 
uniquely determined, and therefore fixed by the centralizer of c~ in Aut(~) .  

In the sequel, we study actions of the skew hyperbolic motion group F = PU;(H) 
on 8-dimensional stable planes. We will use the information that we have collected 
in the previous section. 
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Lemma 3.3. Assume that F acts non-trivially on a stable plane ~ = ( M, de) such 
that dim M = 8. Then every point stabilizer contains a subgroup which is isomorphic to 
T 2. Moreover, we have the following. 

(1) The involution T is planar, its centralizer ET induces the elliptic motion group 
E/(T)  -- PSU3(C, 0) on the subplane Y_ = ( E, g) of fixed elements, and s is isomorphic to 
P2 C. 

(2) The involution aT is planar, its centralizer YO induces the hyperbolic motion 
group Y / ( a T ) =  PSUa(C, 1) on the subplane ~ = ( F , Y )  of fixed elements, and ~ is 
isomorphic to some Y /  @T )-invariant subplane of P2 C. 

(3) The involution a is a reflection, and every point in M lies on the axis of some 
conjugate of a. 

Proof. (i) According to [-26, 2.10], there is no 8-dimensional orbit of E in M, 
whence dim Ep > 0 for every point p e M .  Since every involution in E ~ SU3(C, 0) is 
a conjugate of a, we infer that every point p is fixed by some conjugate of a. The 
centralizer A of a contains a semi-simple group which is not almost simple. From 
[-22, 6.5] we infer that a is not planar. Therefore, every point either is the center or 
belongs to the axis of a conjugate of a. 

(ii) If the involution v fixes a point x, then it is planar, since its centralizer acts 
neither on a line pencil nor on a line of M, see [-26, 2.10]. According to [,14], the 
subplane ~ of fixed elements o f t  is isomorphic to P2 C, and E - SU3(C, 0) induces the 
usual action. In particular, the involution a has both a center and an axis in IF, and 
therefore is a reflection of M. Now a and aT induce the same reflection on IF. Since  
commuting reflections with the same axis are equal by 3.2(2), the involution o-T is 
planar. 

In its usual action on P2 C, the group E has discrete centralizer in the automor- 
phism group of PzC. This yields that T acts trivially on IF, and that every point of ~ is 
fixed by a subgroup of ET which is a conjugate of s  

We have thus proved that the assertions (1)-(3) hold if v fixes a point. In the 
sequel, we are going to reduce all cases to step (ii). 

(iii) I claim that aT has no center. Indeed, a center of a-c is fixed by T, and we infer 
that aT and a induce the same reflection on IF, compare step (ii). Since a is not planar, 
this implies that az and o- are commuting reflections with the same axis and center, in 
contradiction to 3.2(2). 

(iv) If the involution a has a center c, then ~ fixes c, and from (ii) we know that a is 
a reflection, and that az is planar. 

(v) Ifo-T is planar, then Y induces on the subplane I: of fixed elements the complex 
hyperbolic motion group u PSU3(C, 1), and we infer from [,-14] that I: is 
isomorphic to some open subplane of P2C, and that Y acts as usual on I:. The (1)  
involutions a and a ' :=  - l  represent the two conjugacy classes of 

1 
reflections in the complex hyperbolic motion group Y/ (a r ) ;  namely, those with 
interior and exterior center, respectively. We infer that at least one of these 
involutions has a center in I:. Since o-' and a are conjugates in F, we obtain that a has 
a center in M, and step (ii) applies. 
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The next step establishes the existence of a subgroup isomorphic to ~2 in each 
stabilizer. Afterwards, we complete the proof of assertions (1)-(3). 

(vi) The maximal compact subgroup ET o f f  has dimension 9. According to [26, 
2.10], there is no 8-dimensional orbit of ET in M. Therefore, every stabilizer in ET 
has dimension at least 2. Aiming for a contradiction, we assume that F x does not 
contain a subgroup isomorphic to T 2. As the connected group F leaves the 
connected components of M invariant, we may also assume that M is connected. 

Every maximal compact subgroup X of the connected component of F x is 
a compact connected Lie group of rank at most 1 and dimension at least 2, and 
therefore locally isomorphic to SU2(C, 0). Since ET is a maximal compact subgroup 
ofF, we may assume that X < ET. Since X equals its commutator  subgroup, we have 
that X ~ E x. As step (ii) would imply the existence of a subgroup isomorphic to T 2 in 
Fx, we have that the point x is moved by r, and E~ is contained in the stabilizer of the 
line x~x. According to step (i), the involution r has an axis. From step (iv) we infer 
that o has no center. 

We consider the action of E on d<. This space is connected (since we assumed 
that M is connected) and locally homeomorphic to a line. According to [26, 2.14], 
the group E does not act trivially on .d/<. Applying [15, Th. 2] to a nontrivial E-orbit 
in d<, one sees that the action of E on this orbit is equivalent to the usual action on 
P2 C. In particular, the orbit has dimension 4 and is therefore open in Jt , .  As the 
orbit is also compact and Jd~ is connected, this implies that E acts transitively on J/de, 
and that T acts trivially on Jd~. In particular, we obtain that the stabilizer 
(ET)~, x = E~,~T is a conjugate of TZE, and we may assume that X = E. 

Up to isomorphism, the only linear semi-simple Lie groups that contain 
SU2(C, 0), but no subgroup isomorphic to T 2 are SU2(C, 0) and SL2(C), see [31] or 
[16]. Since SL2(C ) is not contained in F, we conclude that F~ is the product of E and 
some solvable, compact-free normal subgroup f~ such that dim fl >~ 4. From Lie's 
Theorem (see [6, II.2.11] or [16, Ch. 1, w Th. 5]) it follows that the group f~ fixes 
some point of P2 b] in the usual action. Since A does not contain a compact-free 
subgroup of dimension greater than 3, we conclude that f2 fixes exactly one point of 
P2 H, and that this point is absolute with respect to/c, see 2.11. Being the unique fixed 
point of a normal subgroup, this point is also fixed by Fx, and we may assume that 
F x ~< ~; note that every subgroup of q) that is isomorphic to SU2(C, 0) is a conjugate 
of E ~ue in ~. Since f~ is not contained in the centralizer of c~ RLrP, we have that 
E RHp acts effectively on the Lie algebra off~ via the adjoint action. Under the action 
of E~He, the Lie algebra of q3 splits into the sum of the Lie algebras of 

{<r 1 

It 1 and A = h 1 
hih x+~- ii 

p {(1 
, t 

h~H, 

i 

)}'" tc~- , 

1 
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Of these components, only the Lie algebra of A splits further into the Lie algebra of 
the commutator  group 

A' = 1 1 x~N 

and its ZvR-invariant complement, the tangent space of 

t} D = lh 1 hEH 

Note that D is not a group. The centralizer of atone in qb is 

C.(oRnP) = t ue~ , r>O,  teY,  xelt~ 
U 

0 

and D is the eigenspace of - 1 under the adjoint action o f a  ~ue on the Lie algebra of 
~b. Thus our observation that E ~nP acts effectively on the Lie algebra of f~ implies 
that D, and therefore A = ( D ) ,  is contained in f~. 

We consider the action of F~ on the orbit ofx  under ~. Being a normal subgroup 
ofq~, the group A acts trivially on this orbit. Since dim A = 5, we infer from [22, 7.3] 
that x* is contained in a line L. Since a has no center, we know from step (i) that L is 
the axis of o, and we conclude that F = ( ~  u A )  fixes L. This contradicts the fact 
that E cannot fix a line of ~ ,  see [26, 2.10]. 

We have proved that F x contains a subgroup that is isomorphic to T 2. We now 
turn to a study of the possible triplets of commuting involutions in such a subgroup. 

(vii) If three commuting conjugates of a fix a point x, then x is the center of one of 
these involutions by step (i) and 3.2(3), and step (ii) applies. 

(viii) Assume that Fx contains three commuting conjugates of az. If ~rz had an 
axis, this would imply that a~ has a center, as in step (vii). This is impossible by step 
(iii). Therefore, the involution crz is planar, and step (v) applies, leading to (ii). 

(ix) There remains the case that F~ contains or, ~, and crc~, where a is a con- 
jugate of ar  that commutes with or. Then the involution e has no center by step (iii). 
Conjugates of~ cannot have a center by step (ii). Ira, c~, and ~e are all axial, we obtain 
that one of them has center x by 3.2(3). If ere has a center, we therefore know that ere is 
a conjugate of or. Thus a has a center as well, and step (ii) applies. If c~ or o-e is planar, 
we obtain that G~ or r is planar, since no conjugate of a is planar by step (i). Using 
step (v) in the first case, we arrive at (ii). 

(x) We have proved that a is a reflection, and that ~ and a~ are planar. Moreover, 
every point p of M either is the center or belongs to the axis of some conjugate of or. 
The center c of ~r belongs to the axis of or', cf. step (v). [] 
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The existence of planar involutions implies the following, see [22, 3.7, 3.8]. 

Corollary 3.4. I f  F acts non-trivially on a stable plane ~ -= (M, Jd) such that 
dim M = 8, then each line pencil is homeomorphic to the sphere ~ 4. 

Theorem 3.5. Assume that F acts non-trivially on a stable plane ~ = (M, d/l) such 
that dim M = 8. Then the open subpIane D = (D, 9 )  induced on the orbit D of the 
center of a is isomorphic to the open subplane of  P2H which is induced on the set of 
non-absolute points. The action of  F on D is equivalent to the usual one. 

Proof. (i) According to 3.3(2), the involution a has a center c. The stabilizer F~ 
contains the centralizer A ofa.  Since A is a maximal subgroup, we obtain that either 
F~ = A or F~ = F. In the latter case, the simple group F would act trivially on d/l~, 
since T 3 does not act effectively on 54 by [19, 3.4]. But a trivial action of F on a line 
pencil is impossible by [25, l lb)] .  Thus dimcr  = dim(F/A) = 8, and c r is open in 
M by [11, Th. 11]. We denote the subplane induced on D:= c r by D. 

(it) We recall from 2.15 that A = ZZUd. The group Z centralizes r = L R~, and 

centralizes IR~= i e(az) r. Both involutions are planar by 3.3, and 
- i  

Z resp. �9 acts effectively on the subplane ~ resp. F' of fixed elements. Since neither 
Z nor tp acts trivially on the pencil gc resp. ~-'~ by [25, 10], we obtain that Ztt ' acts 
almost effectively on d/l~. Applying [19] to a maximal torus (for instance, to 
T |  _-_ T 3) in A, we infer that A cannot act almost effectively on d/l~. This yields that 
A~ 1 = Z. From 2.15(4) we know that 

Y ~ n E T = { (  1 A ) A e U 2 ( C ' 0 ) }  ~ 

is a maximal compact subgroup of E~F. Thus the maximal compact subgroups of 
A / Z - ~ ( 2 q 0 / ( a )  are isomorphic to SO3(~,0)x SO2(R,0 ). Applying [19] to the 
effective action of such a compact subgroup, we obtain that it acts in the usual way 
(as a subgroup of SO5(~,0)) on ~ ~ ~4. In particular, the group ~ has a subset 

~ ~ of fixed lines. This set is of course invariant under A = 2FFZ, and �9 acts 
transitively on ~ .  We infer that there exists a line S e 2 ~ such that As = (Z2)~t's, and {(1 )- 

tPs= u u~IR, v e ~  

V U - 1  

As EU/~ET acts as usual on Jr it is easy to see that for each T e M c \ ~  the 

) }  stabilizer E r is a conjugate of s s e t  in 2. Choose T such that E r 
S 

I( ) ) t . In particular, coincides with this group. Then (EZ)T = Er Z = S t, S e T 
S 

the line T is fixed by z. According to 3.3(1) the subplane E = (E, g) of fixed elements of 
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T is isomorphic to P2C, and E induces the usual action. This means that there is an 
involution in E c = E ~ A  that fixes each point of T c ~ E .  Thus T is fixed by the 
centralizer of that involution of E, and therefore by a maximal torus in E. This 
maximal torus contains three commuting reflections. We infer that there is a reflec- 
tion ~ e F  with axis T, and A r = CA(C 0 (by maximality). As c~ fixes exactly two lines 
through c and as only one of them is the axis, we infer that axis and stabilizer 
determine each other. Since the candidates for such reflections form a single 
conjugacy class in A, we conclude that A acts transitively on JC/c\Y. The stabilizer 
F r contains Cr(~), which is a conjugate of A. As A is a maximal subgroup of G, we 
have F r = Cr(c 0. Since no element of • is the axis of a reflection, the group F has 
exactly two orbits on .1///, represented by S and T. 

(iii) Applying the results of step (ii) to the incidence geometry ({c}, Jic) we obtain 
that the action of A = F c on the pencil d//C is always equivalent to the usual one, cf. 
2.12. Moreover, we know already that the stabilizer F r of every line Te  Jf~\gF is the 
centralizer of the involution in A that has axis T. In order to apply the reconstruction 
method 2.12, it remains to determine the stabilizer F s for Ses  Since 
dim A s < dim F - 8, we have that dim F s > dim A s. In particular, the involution o-, 
and (afortiori) the group Z do not centralize F s. Therefore, the adjoint action of 
Z ~ SU2(C, 0) on the Lie algebra of F s is effective, and splits this Lie algebra into the 
Lie algebra of A s and some vector space complement of dimension at least 4, cf. 2.7. 
From Fs, r = A s we infer that dim F s = dim A s + 4 = 10. 

The semi-simple Lie groups of dimension 10 are known, see [-31] or [16]: such 
a group is always almost simple, and locally isomorphic to SOs(R,r ) for some 
re{0, 1,2}. None of these groups contains a subgroup that is isomorphic to A s. 
Therefore, the connected component of F s is not semi-simple, but contains some 
minimal abelian closed connected normal subgroup fX see [27, 7.3, 7.4]. 

If a does not centralize fL then Z acts effectively on f~ via conjugation. In this 
case, the group f) is isomorphic to R" for n >~ 4, see [27, 7.4] and 2.7. Combining Lie's 
Theorem (see [6, II.2.11] or [16, Ch. 1, w Th. 5]) and 2.11, we infer that ~ fixes 
exactly one (absolute) point in the usual action on P,  H. This means that the group 
flI2 is contained in a conjugate ~ of~.  Now Z ~-~ is a I~evi complement of~,  and thus 
a conjugate of Y ~ P  in �9 by 2.15(3). Considering the Z~s~-invariant decomposition 
of the Lie algebra of O as in step (vi) of the proof of 3.3, we arrive at the contradiction 
that q5 has no subgroup isomorphic to f~s 

There remains the case that f~ ~< Cvs(O- ) = A s. Being a normal subgroup, the 
group f~ acts trivially on the orbit c vs. In particular, we have that f ~ Z  is trivial; 
recall from step (ii) that Z has the same center and axis as o-. Since ~) is contained in 
the solvable radical ~ s  Z of A s and ~sZ  is not abelian, we obtain that dim f2 = 1. 
Since Z is the unique maximal compact subgroup of UgsZ, we infer that f~-~ R. If 
f~ c~ ~s  were trivial, we would obtain that ~ s  Z ~ f~ x ~s.  This contradicts the fact 
that ~ Z  is not homeomorphic to R 3. Thus f~ ~ ~ s  is a non-trivial closed normal 
subgroup of 'Ps.  There exists only one proper non-trivial closed normal subgroup 

{(i ~ l of ~s ,  namely, the commutator  subgroup ~ s  = 1 v e ~  , and we 
/) 
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conclude that Q = ~s. In the usual action on P2H, the group ~s  is just the group of 
all translations in F with axis K R, where K = { Iv]Iv 3 = 0}. Therefore, the normalizer 
o f ~  s in F is the stabilizer FKR, viz., a conjugate ofq~. Since @ is a connected maximal 
subgroup of F and d i m ~  = 1 0 - - d i m F  s, this means that Fs = FKR. Now the 
geometry D can be reconstructed by the method of [21]. []  

Theorem 3.6. Every non-trivial action of F on an 8-dimensional stable plane M is 
embeddable into the usual action of F on P2 H. I f  M is not isomorphic to P2 ~,  then 

is the subplane induced on the open F-orbit. 

Proof. From 3.5, we know the subplane D = (D, @) that is induced on the open 
orbit c r, where c is the center of a. 

(i) The set ~ is open in ~r since it consists of all lines that meet the open set D. 
On the other hand, the space N is compact, since no line of P2 H is entirely contained 
in the unital U. Since d{ is connected [28, 1.4d], we obtain that ~ = .~. 

(ii) If there exists a point p ~ M \ D ,  then we may assume that p belongs to the axis 
A of a, see 3.3(3). According to step (ii) of the proof of 3.5, the centralizer A of o- acts 
with two orbits on the pencil J~c. As D is even invariant under the action of F, we 
infer that A has at least two orbits on A. This implies that every line through c meets 
the axis A, and A is homeomorphic t o /~c  via projection. Every compact line in 
a stable plane is a projective line (i.e., it meets every other line), see [8, 1.15]. Let L be 
the line that joins p and c. I fa  is a point in A c~D, then investigation of D shows that 
L intersects every element of df~\{A} in a point of D. Since p is the intersection of 
A and L, we obtain that L is a projective line as well. Since L represents the F-orbit 
d/Z\A r, this implies that ~A is a projective plane. Now [10, w says that the action of 
F on ~ embeds into the usual action of F on P2H, and of course M ~ P2H. [] 

Theorem 3.7. Assume that A is a locally compact, connected, almost simple group 
such that the center factor 9roup is isomorphic to F. I f  A acts non-trivially on a stable 
plane M = (M, J/~) such that dim M = 8, then the center acts trivially (and the effective 
action embeds into the usual action of F on P2~). 

Pro@ The group A contains a covering group of E. Since E is simply connected, 
this covering is trivial, and step (i) of the proof of 3.3 yields that every point of 
M either is the center or belongs to the axis of a conjugate of o-. The stabilizer of the 
center or of the axis of a is the centralizer of~r in A, which has dimension 7. Therefore, 
the center of A acts trivially on either an open set of points (the orbit of the center of 
o) or an open set of lines (the orbit of the axis of o-). Thus the center acts trivially on 
~ ,  and the assertion follows from 3.6. [] 

4. The Symplectic Group 

In several respects, the structure of PSp6IR is similar to that of the skew 
hyperbolic motion group. Therefore, we will use the acquaintance we have got by 
now in order to prove that no group with center factor group PSp6[~ acts 
non-trivially on any 8-dimensional stable plane. This contributes to the project of 
determining all actions of almost simple groups on stable planes [30], compare [28, 
Section 9] and [20, Kap. 9]. In [29] the results of the present paper are used in order 



270 M. STROPPEL 

to determine "almost all" 
projective planes. 

Notation 4.1. We set 

actions of almost simple groups on 8-dimensional 

1 -~o 
I =  0 1  

- 1 0  

- 1  

j _ -  

0 1  
- 1 0  

O1 
- 1 0  o1 ~) 

Q= 

1 

1 t 1 
1 

--1 

and define Sp6~ = {Ae~6X6]AIA'=I} .  The image of Sp6E under 
the natural epimorphism n : A ~ { A ,  - A }  is A:= PSp6~. Note that 
J = I Q. 

L e m m a  4.2. (1) The conjugac y classes of involutions in PSP6 ~ are represented by 

"c = t ~, 

(11 ) 
= 1 and ~ =  J~. 

t 
- 1  

- 1  

(2) The centralizer of  z is the maximal compact subgroup 

CA(z ) = { A I A I A ' =  I, A I  = IA} ~. 

Putting E = CA(z )' ~ SU3(C,0) and T = {c~ + sI[c 2 + s 2 = 1}" _-- -~, we have that 
CA(z) = ET ~ U3(C, 0), and aeE .  

(3) The centralizer of  a is the maximal subgroup 

CA(a ) =  ~ , ~ , D e  2 . 

Putting 

o{(~ o)o~Sp~O}~a~ {( ~ ~)"SP~~ ~ 
we have that Ca(o ) = @T. 
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(4) The centralizer o f  or is the group 

Ca(or) -- { A I A I A '  = I, A J  = JA}  ~ = {B]BJB'  = J 'B I  = IB} ~". 

Puttin 9 T = Ca(tTz )' - SU3(C, 1) and 6) = T Q", we have that Ca(oz) = r 6 )  ~ U3(C, 1). 

Proof. The centralizers are easily computed, using the representation of C by 

similitudes of ~2. In particular, we have that I = i~ and J = i in C 3 • 3. 

- i  

Since ET is a maximal compact subgroup of A = PSp~N, cf, [31] or [163, we have 
that every involution in A is a conjugate of some involution in ET. Obviously, the 
involutions z, o, and oz represent the conjugaey classes of involutions in ET, Since 
the centralizers are not isomorphic, no fusion of conjugacy classes takes place in A. 
By arguments that are analogous to the proof  of 2.14, one obtains that the 
centralizer of o is a maximal subgroup of A. []  

Lemma 4.3. l f  a subgroup of  A is isomorphic to SU2(C, 0), then it is a conjugate 
of 

{(A Y-:= - B '  B) 1 A' A ' B E N Z •  + B B ' =  ~' 

A I = I A ,  B I = I B  

Regarding the centralizers of  E, we obtain that Ca(Z ) = qbT, and that 

i( A )AA;  t Z : =  Cv(E) = A ~ T. 
det A = 1 

Proof, Let E be a subgroup of A that is isomorphic to SU2(C,0 ). Then E is 
compact and semi-simple, and we may assume that E < E. The central involution 

of E is a conjugate of o, and we obtain that E coincides with the commuta tor  
subgroup of the centraIizer of ~ in E. This means that E is a conjugate of 2;, which is 
the commuta tor  subgroup of the centralizer of G in E. The decomposition of the 
centralizer of 2; is verified by an easy computation, using 4.2(3). [] 

Lemma 4.4. I f  A acts non-trivially on a stable plane ~ = (M, J / )  such that 
dim M = 8, then no involution in A has a center, and ~ acts freely. 

Proof. (i) If ~ fixes a point, then one proceeds as in step (ii) of the proof  of 3.3 to 
show that ~ is planar, the centralizer induces the elliptic motion group on the 
subplane of fixed elements, and o is a reflection. 

(ii) If  an involution in A has center p, then a commuting conjugate of ~ fixes p, 
and o has a center by step (i). 

(iii) I f a  has center c, then z is planar, and e is a reflection by step (i). The stabilizer 
A c coincides with ~ ,  compare step (i) of the proof of 3.5. From [-22, 3.7, 3.8] we infer 
that ~/~c is homeomorphic  to the sphere 5,~. The maximal compact  subgroups ofq)q j 
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are conjugates of EZ| According to [19], no maximal compact subgroup of qsW 
acts almost effectively on ~c .  Since qJ cannot act trivially on J/c by [25, 11], we 
obtain that qb is the kernel of the restriction of qbqJ to ~/c. The maximal compact 
subgroup ZZ of q? induces an effective action of  S O 3 ( ~  , 0) • 502( [~  , 0) on  J{c, which 
is equivalent to the usual action on 5 4 by [19]. In particular, the group Z fixes a line 
LeJ/c.  Denoting the stabilizer of L by A, we obtain that A c = A n A c is the centralizer 
of o- in A. This implies that, via the adjoint action, the reductive group qbZ acts 
effectively on a vector space complement V of the Lie algebra of A C in the Lie algebra 
of A. Since the orbit c A is contained in L, we obtain that dim V ~< 4. This implies that 
Z acts irreducibly on V by 2.7, and qb is contained in the multiplicative group of 
a skew field by Schur's Lemma. As a closed subalgebra of the real algebra End(V), 
this skewfietd is isomorphic to JR, C or H, and its multiplicative group cannot 
contain a group isomorphic to ~. This is a contradiction. [] 

Proposition 4.5. There is no nontrivial action of  A = PSP6N on a stable plane 
= (M, d/l) such that dim M = 8. 

Pro@ Assume that A acts non-trivially on an 8-dimensional stable plane M. 
As in step (i) of the proof of 3.3, we obtain that every point of M is fixed by some 
conjugate of a, and that o- is not planar. Combining 4.4 and 3.2(1), we infer that a 
has an axis A, but no center. The group �9 contains the commuting involutions 
a and 

1 
- 1  

- 1  
1 

As a, ~ and c~o- are three commuting involutions in o-rc~ ~ ,  the group �9 cannot fix 
any point of A by 3.2(3). 

We consider the action of the compact group K = ZZ|  ~< A on A. Let a be an 
arbitrary point of A. Then dim K a ~< 1 would imply that dim a K >~ 4, and that K acts 
transitively on A, in contradiction to [26, 2.10]. As the almost simple group �9 acts 
nontrivially on A, there exists a e A  such that Y~ ~ K a. We conclude that Ka contains 
a subgroup isomorphic to T 2. This means that there are three commuting involu- 
tions (r, fl, and o-fl in K~. By 3.2(2), only one of these involutions has axis A. According 
to 4.4, none of them has a center. Therefore, we may assume that fl is planar. Since 

acts freely and o- has an axis, we obtain that fi is a conjugate of o-'c. As in step (v) of 
the proof of 3.3, we infer that o- has a center, a contradiction. [] 

Proceeding analogously as in the proof of 3.7, we obtain: 

Theorem 4.6. I f  A is a locally compact, connected, almost simple dr| such that 
the center J~tctor 9roup is isomorphic to PSp6 ~, then there is no non-trivial action of 

on a stable plane • = (M, ~ )  such that dim M = 8. 
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