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We show that the large cell size problem of the real space renormalization can be handled 
effectively by Monte Carlo methods. As a demonstration, the second-order cumulant 
expansion is calculated for the three-dimensional simple cubic Ising model, using a 3 x 3 x 3 
cell. 

I. Introduction 

In recent years a variety of methods have been intro- 
duced for carrying out renormalization-group transfor- 
mations [1-5]. Among them the Niemeijer-van Leeu- 
wen cumulant-expansion method I-2] is the simplest-  
both conceptually and technically. It has been applied 
to several two and three dimensional models [6-14] 
and the results are surprisingly good. In most cases 
the critical points and indices, calculated from the 
second-order cumulant expansion, agree with the 
available exact and series results within a few percents. 

The Niemeijer-van Leeuwen method is a truncation 
scheme: the expansion goes in powers of the nearest- 
neighbour coupling, and to a given order only a 
certain number of couplings are treated self-consis- 
tently. In order to have some confidence in the method, 
one has to investigate the nature of the expansion. 
Third-order results [15] seem to indicate that the 
expansion is asymptotic and there is an optimal cell 
size in every order of the expansion. The investigation 
of cell-size dependence is not easy [7, 14, 16] since 
working with cells of n spins means calculation of 
sums over 2"-1 states, which makes the calculation 
impractical for large n. 

Besides the investigation of the cell-size dependence, 
the problem of large cell-size arises also when applying 
the Niemeijer-van Leeuwen method to various three- 
dimensional models. 

An obvious candidate to overcome the computational 
difficulties is the Monte Carlo (MC) method 1-17, 18]. 
The idea of combining the renormalization-group 

and the MC methods has been used first by Ma [5]. 
He showed that one can derive a renormalization- 
group transformation by monitoring the time devel- 
opment of the system and by making local measure- 
ments i.e. by observing the behaviour of a small number 
of neighbouring spins. In this way he succeded in 
estimating not only the static but also the dynamic 
exponents of the kinetic Ising model. 
In this paper we pursue a simpler task, namely we 
suggest to overcome the problem of large cell size in 
the cumulant expansion by using the Monte Carlo 
method for evaluating the needed averages. The MC 
method is an especially practical tool for our purpose, 
since in not too large a cell the number of spins is 
much less than in a usual MC calculation (103-  104 
spins), where the aim is to find the properties of an 
infinite sytem. So in our case the same number of MC 
steps/spin requires only a small amount of computer 
time and the results are much more accurate because 
the MC samples fill the phase space much more den- 
sely. 
In order to show how the above idea works we calcu- 
lated the second-order cumulant expansion for the 
simple cubic Ising model using a cell of 27 spins. With 
some effort and lots of computer time this case can be 
treated exactly 1-14], so by comparing the results we 
can judge how the MC method performs. 
In Section II we introduce the necessary notation by 
summarising the Niemeijer-van Leeuwen method. 
The results of the MC calculation and the comparison 
with the exact data are presented in Section III. 
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II. Cumulant Expansion Method 

The Niemeijer-van Leeuwen treatment of the Ising 
model is based on the intuitive Kadanoff picture [19]. 
The lattice of spins (s i = + 1) is divided into an iso- 
morphic lattice of cells, each cell containing n spins. 
The cells are assumed to behave like Ising spins, their 
spins (s') being determined by the majority rule: 

s '=  sgn s i . (1) 
i 

The original Hamiltonian ~ ( s )  and the cell Hamilto- 
nian ~ ' ( s ' )  are related by 

exp [~f '  (s')] = ~ '  exp [2/f (s)], (2) 
{s} 

where the summation is restricted to configurations 
{s} compatible with the cell configuration {s'}. Equa- 
tion (2) determines the renormalization group trans- 
formation (oW(s)--,~'(s')) mapping the m o d e l  on 
itself with different coupling constants. Since this 
transformation cannot be carried out exactly, one has 
to resort to approximations. In the cumulant expansion 
scheme Yf (s) is separated into an intracell (W0 (s)) and 
intercell (~U(s)) part, containing all the intracell and 
intercell interactions, respectively. Treating the inter- 
cell part as a perturbation the expansion for ~ ' (s ' )  
takes the following form: 

Yf'(s') = In ~ '  exp [Yf o(S)] + ( ~ ) o  + ½ ( ( ~ 2 ) o  
fs} 

- { ~ ) ~ ) +  ..., (3) 

where { )o denotes the canonical average in the system 
without the intercell interactions, calculated at a fixed 
cell configuration {s'}: 

~ '  ~4 (s) exp [ J4,~0 (s)] 

(~4)o = (~/~' exp [Yfo (s)] (4) 
{s} 

One can see from (3) and (4) that apart from the com- 
binatorial factors the calculation of W'(s') involves 
the evaluation of canonical averages of spins and spin 
correlations in an isolated cell at fixed cell spin. It is 
clear that the problem of large cells is the problem of 
calculating these quantities. 
Evaluating (3) we find a system of nonlinear equations 
relating the new set of interaction parameters K' to 
the old ones K: 

K'=R(K).  (5) 

There is a further approximation used for evaluating 
the mapping K- ,K '=R(K) ,  namely the nearest- 
neighbour coupling is assumed to be a small quantity 

of first order and the order of every other coupling is 
determined by the order of the cumulant expansion in 
which it is generated. 
In order to find the critical indices, the approximate 
renormalization group transformation (5) has to be 
linearized around its stable fixed point K*=R(K*):  

K ' - K *  = T ( K -  K*). (6) 

The largest eigenvalue 2 r of T in the subspace of even 
spin couplings determines the critical index of the 
correlation length 

In l 
v In 2 r (7) 

where 1 is the ratio of the new and old lattice constants. 

If the starting Hamiltonian includes a magnetic field, 
then T has a second relevant eigenvalue 2n, which is 
related to the magnetic scaling index by 

In I 1-1 
3 =  d l n ~ u -  i j (8) 

We have carried out the program outlined above for 
the Ising model on a simple cubic lattice, using as the 
basic cell a cube of 27 spins. In this case the second 
order cumulant expansion includes the nearest neigh- 
bour (K), second neighbour (L) and fourth neighbour 
(M) interactions. They satisfy the following set of 
recursion equations: 

K'-=gll K+g12 L+g l3  M (9) 

L'=g21 K2 +g22 L (10) 

M'=g31 K 2, (11) 

where g~k are expressed through single spin averages 
{si)o and two spin correlations (s i Sj)o in a single cell 
at a fixed cell spin. The derivation of their expressions is 
straightforward but the resulting formulae are too 
lengthy to record here [20]. Up to the second order 
they all depend only on K. 
Once gik is known, the remaining steps of the renorma- 
lization group procedure (6-7) are carried out easily. 
The exact calculation of g~k is quite a formidable task, 
since at fixed cell spin a cell of 27 spins has 226 con- 
figurations to be summed over. This problem, however, 
can be attacked effectively by MC methods, as shown 
in the next section. 

III. Monte Carlo Calculation for the 3 x 3 x 3 Cell 

The MC method of estimating canonical averages is 
well known [17, 18]: an ergodic path is generated in 
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the phase space and the averages are evaluated as 
sums over a finite sequence of the path. In our case the 
ergodic path is generated by simulating the time 
evolution of a kinetic Ising model [21] consisting of 
27 spins. The ensemble averages, needed for g~k, are 
found as time averages and the additional complication 
of fixed cell spin condition is taken into account by 
calculating the single spin averages as 

1 ! si(t ) sgn [s'(t)] dt, (12) 

where s'(t) is the cell spin at the moment t. 
The two spin correlation functions <s~ s j )  o are invariant 
under cell spin reflection, so for them the fixed cell spin 
condition can be omitted. This makes it possible to find 
<s i sj)  o exactly. A spin decimation [22] is performed 
which reduces the number of spins to 13, thus making 
the problem easily solvable by computer. 
There are several unsettled questions in connection 
with the MC method [23]. For example, it is not known 
how long the time sequence should be in order that the 
time average would reliably represent the ensemble 
average. In this respect the MC calculation is more 
like an experiment: longer and longer time sequences 
are tried until the results of several independent runs 
converge. 
As an example of our MC results, on Figure 1 we 
displayed g13 as a function of K. The error bars are 
estimated from the results of four independent runs, 
using 3000 MC steps/spin in one run. The computer 
time required for one point is 5 minutes on a CDC 
3300 computer. Similar plots can be drawn for all g~k. 
In order to have an idea of how accurately the fixed 
point of the renormalization group transformation is 
determined, on Figure 2 we plotted the function g(K), 
which is defined in the following way: we set E = L  
and M ' = M  in Equations (10) and (11) and the ex- 
pressions for L and M are substituted in (9). Then one 
arrives at an equation of the form 

K ' =  g(K) K (13) 

and the condition g ( K * ) =  1 gives the fixed point value 
of K in second order. From Figure 2 one can see that 
K* is determined with better than 1% accuracy. 
The results for the critical indices are less accurate. 
Their calculation involves the evaluation of gik and 
dgik/dK at K*. Since most of the gik-S are quite steep 
functions of K, the derivatives introduce an uncertainty 
of order 10-15 % in some matrix elements of T. This 
large uncertainty, however, does not appear in the 
largest eigenvalue (2T), because of the restriction 
that all the eigenvalues of T have to be real [24]. It 
turns out that all the eigenvalues of T are real only for 
a narrow region in the allowed range of parameters, 

<0 
 scK) 

t 
t 

t 

t 

70 

, > 

0..2 0.25 0.'3 
Fig. 1. Monte Carlo results for the function g13(K) defined by 
Equation (10). The locations of the first and second order fixed 
points are denoted by K* and K* 

g ~  

1.0 

t 

t 
{ 

KC2 ) 

0.5 . . . . . .  
0.2 0.25' 

Fig. 2. Monte Carlo results for g(K) defined by Equation (13). From 
the condition g(K*)= 1 the second-order fixed point value of K is 
found to be K* = 0.234_+ 0.002 

and in this region the largest eigenvalue is almost 
constant. This observation severely restricts the pos- 
sible values of the largest eigenvalue and it brings us 
back to 5 % accuracy. It is interesting that the largest 
eigenvalue is quite stable even without the restriction 
of the reality of the eigenvalues; its uncertainty is less 
than 10 %. 
One can try to avoid the large uncertainty introduced 
by the numerical derivation of glk. The derivatives 
dgik/dK can be expressed through higher-order (three- 
and four-point) correlation functions and they can be 
estimated directly from the MC runs [5]. It turns out, 
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Table 1. Comparison of the critical parameters obtained by a) Monte 
Carlo method; b) exact evaluation of the first and second-order 
cumulant expansion (Hsu and Gunton [14]) and c) high temperature 
series (Domb [25]) 

Order of 
perturbation K C 2 r ).~ 

1st a) 0.26_+0.005 3.6_+0.2 16.3_+0.4 
b) 0.2599 3.596 16.129 

2nd a) 0.25_+0.005 3.6_+0.2 - 
b) 0.2371 3.676 14.837 

Series c) 0.2217 5.6 15.6 

however, that the MC estimates of the higher-order 
correlation functions converge much slower than 
those of the one point functions. In our case (4 x 3000 
MC steps/spin) the accuracy of the direct estimates of 
dgik/dK is not better than that of the numerical 
differentiation. Of course, if the fixed point is known 
a priori, the direct calculation of dgi~]dK is preferable 
to the numerical derivation because it requires less 
computer time. 
In Table 1 the results are summarized together with 
Hsu and Gunton's exact second-order values and with 
the corresponding high-temperature series estimates 
[25]. One can see that the MC method performs well, 
although a little discrepancy remains in the critical 
point value K c. Both the linearization of (2) and the 
direct iteration of the recursion formulae (9, 10, 11) 
give a somewhat larger value than the exact one. The 
error introduced by the MC calculation, however, is 
less, even in this case, than the uncertainty inherent in 
the second-order cumulant expansion. 
In view of the little amount of computer time used for 
achieving such an accuracy, the method seems to be 
well suited for more sophisticated calculations. For 
example the Nienhuis-Nauenberg method [26] could 
be applied to the three-dimensional Ising model. It 
would probably give much better results than the 
second-order cumulant expansion, since this scheme 
incorporates characteristic three-dimensional inter- 
actions, which would enter only in high orders of the 
cumulant expansion. 
A relevant work came to our attention after completing 
the manuscript. Friedman and Felsteiner [27] used 

the Monte Carlo technique to carry out renormaliza- 
tion group transformation on finite lattices of two 
cells with periodic boundary conditions. Their results 
for the two- and three-dimensional Ising models de- 
monstrate also that the Monte Carlo technique is a 
practical and accurate method for evaluating re- 
normalization-group transformations. 
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