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Abstract. We perform numerical simulations of the 2-d 
Heisenberg antiferromagnet using a cluster algorithm. 
Comparing the size and temperature effects of various 
quantities with results from chiral perturbation theory 
we determine the low energy parameters of the system 
very precisely. We find eo=-O.6693(1)J/a 2 for the 
ground state energy density, J//~=0.3074(4)/a 2 for the 
staggered magnetization, hc=l.68(1)Ja for the spin 
wave velocity and ps=0.186(4)J for the spin stiffness. 
Our results agree with experimental data for the precur- 
sor insulators of high-T~ superconductors. 

PACS: 75.50.E; 02.50.N; 74.20 

The first high-T~ superconductor to be discovered was 
La2_xBaxCuO4 with x~0.15 [1], which has a layered 
structure with 2-d copper-oxygen planes�9 The copper 
ions are located at the sites of a quadratic lattice with 
lattice spacing a=3.79]~. The undoped material 
La2CuO4 is an insulator, however, with strong antiferro- 
magnetic interactions within the copper-oxygen planes 
between electron spins localized at the copper ions. The 
couplings between different layers are extremely weak. 
Experimentally one observes long range antiferromag- 
netic order, i.e. a spontaneous staggered magnetization 
J//s arises, which breaks the 0(3) spin rotational symme- 
try down to 0 (2)�9 The low energy excitations of the sys- 
tem are spinwaves (the so-called magnons) which are 
the Goldstone bosons of the spontaneously broken 0 (3) 
symmetry. The physical situation can be modeled by 
the 2-d Heisenberg quantum spin system with Hamilton- 
Jan 

H = J  2 Sx.Sx+~, (1) 

where Sx = la~ is a spin �89 operator (a~ are Pauli matrices) 
located at the point x of a 2-d quadratic lattice with 

* Supported by the Sehweizer Nationalfond 

lattice spacing a. The interaction is between nearest 
neighbors (11 is the unit vector in/t-direction) and J > 0 
is the antiferromagnetic exchange coupling. The question 
arises how well this model describes the physics of the 
copper-oxygen planes in La2CuO4, in particular how 
it compares quantitatively with experimental results. 

Here we concentrate on the calculation of the low 
energy parameters of the model, which determine the 
dynamics of the Goldstone bosons. These are the stag- 
gered magnetization J~, the spinwave velocity h c and 
the spin stiffness p~. Based on symmetry considerations 
chiral perturbation theory makes very strong predictions 
for the magnon dynamics, containing the low energy 
parameters as the only unknown constants. Recently, 
Hasenfratz and Niedermayer have worked out the chiral 
perturbation theory for the antiferromagnet in great de- 
tail up to two-loop order [2]. Lower order results had 
been obtained before by Fisher [3] and by Neuberger 
and Ziman [4]. Here we only quote the results of [2] 
that are essential for our study. We consider the system 
at finite temperature T and in a finite spatial volume 
of size L x L with periodic boundary conditions, with 
lS=hc/TL such that I is of order 1. For small enough 
temperatures T~ 2 rcp~ and large enough volumes h c/L 
~2rcp~ Hasenfratz and Niedermayer obtained the fol- 
lowing results: for the internal energy density 

T 
e(T,L)=eo 3L 2 

�9 {1+1 ~ fl0 (/)- ph-~/~/ [31 (l)-! ~ fi~ (1)]+ ...}, 
(2) 

where e o is the ground state energy density; for the stag- 
gered susceptibility 

z~(T,L) - ~ 2  L2 {1 +2  hpsLl 3 T p~ (1) 
/ hc \2 .); 

+ / ~ J  E~I (l) 2 + 3~2(t)3 + . .  (3) 
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and for the uniform susceptibility 

z(T,L) 2p~ {1 1 hc 
-- 3 (~t C)2 -~- 3- ~ / ~ 1  (/) 

1 [ hc \2 6 0 ( / ) ] + . . . } .  " q - ~ )  [~2(/)--11~1(/) 2 -  , (4) 

The functions fii(l), [Ji(1) and ~(1) are shape coefficients 
which depend only on I and which are described in detail 
in [2]. We will use these results of chiral perturbation 
theory to determine the unknown low energy parameters 
Co, ~ ,  he and p, from a fit of e(T, L), z~(T, L) and z(T, L) 
to numerical Monte Carlo data. This method has been 
used before for classical spin models and for relativistic 
quantum field theories [51. 

First we decompose the Hamiltonian into H = H ~  
+ H 2 + H 3 + H 4 with 

H I = J  ~ Sx'Sx+~, 
x = ( 2 m , n )  

H3 = J  E Sx'Sx+i,  
x = ( 2 m +  l , n )  

H 2 = J  ~, Sx'Sx+~, 
x = (m, 2n) 

H 4 = J  Y', Sx'Sx+~, 
x = ( m ,  2 n +  l )  

(5) 

and we use the Suzuki-Trotter formula for the partition 
function 

Z = T r  exp ( - - f lH)=  lim T r [ e x p ( - e f l H 1 )  
N~co 

�9 exp(--eflHz) exp(-e[3H3)exp(--ef iH4)] u, (6) 

where fi = l IT  is the inverse temperature and e = 1IN de- 
termines the lattice spacing in the euclidean time direc- 
tion. By inserting complete sets of eigenstates I1) and 
l - l )  of o .3 between the factors exp ( - e f lH i )  we map 
the 2-d quantum spin system to a 3-d induced classical 
system of Ising-like variables s(x, t )= _+ 1 (t labels the 
euclidean time slice) 

Z = ] - [  • e x p ( - S )  (7) 
x, t s(x,  t) = +_ 1 

with an action 

s= E 
x = ( 2 m ,  n ) , t = & p  

�9 s Is(x ,  t), s (x + f, 0, s(x ,  t + 1), s (x + f, t + 1) ] 
+ Z 

x = ( m ,  2 n ) , t = 4 p +  l 

.Sis(x,  t), s(x + :~, t), s(x, t+ 1), s(x + ~, t+ 1)] 
+ Z 

x=(2m+ 1 , n ) , t = 4 p +  2 

�9 S[s(x,  t), s(x + i, t), s(x, t+  1), s ( x +  i, t+  1)] 
+ Z 

x = ( m ,  2 n +  l ) , t = 4 p +  3 

�9 SIs(x, t), s(x +~2, t), s(x, t+ 1), s(x+2,  t+ 1)]. (8) 

The classical spins interact with each other via four-spin 
couplings S[s(x, t), s(x + ~, t), s(x, t+ 1), s(x + fz, t+ 1)1 
associated with time-like plaquettes. Up to a trivial addi- 

tive constant one has S [ 1 , 1 , 1 , 1 ] = S [ - 1 , - 1 , - 1 ,  
- lJ =0,  S [ 1 , - - 1 , 1 , -  lJ = S [ - 1 ,  1 , -  1, 1] = - l o g  
[�89 1)] and S[1, - 1 ,  - 1 ,  1] = S [ -  1, 
1, 1, - 1 ] = - l o g [ � 8 9  1)J. All other action 
values are infinite. This causes problems in numerical 
simulations because many spin configurations are forbid- 
den and the updating must respect several constraints. 
In a previous paper we have introduced blockspins [6] 
to resolve the constraints. For  the 1-d antiferromagnetic 
spin chain the blockspin model is not frustrated and 
the use of a blockspin cluster algorithm eliminates criti- 
cal slowing down. In two dimensions, however, frustra- 
tion causes severe problems. Recently, Evertz et al�9 [7] 
have developed loop cluster algorithms for vertex mod- 
els, which can also be applied to quantum spin systems. 
The algorithm constructs closed loops of spins and flips 
them simultaneously. The loop cluster algorithm does 
not suffer from frustration but it may suffer from socalled 
freezing. Freezing occurs when a loop branches out many 
times and fills a large fraction of the whole volume. We 
find that freezing does not arise for the Heisenberg anti- 
ferromagnet. This is essential for the sucess of our numer- 
ical study. 

The algorithm constructs loops by first selecting a 
starting point (x, t) at random. The spin s(x, t) partici- 
pates in two plaquette interactions, one at euclidean 
times before and one at euclidean times after t. When 
s(x, t )= 1 we consider the plaquette interaction at the 
later time, and for s(x, t )= - 1  we consider the interac- 
tion at the earlier time. The corresponding plaquette con- 
figuration is characterized by the spin orientations at 
the four corners. One of the corners will be the next 
point on the loop�9 For  configurations CI = [1, 1, 1, 13 or 
[ -  1, - 1, - 1, - lJ the next point is the time-like nearest 
neighbor of (x, t) on the plaquette. For  configurations 

Table 1. Numerical data for e, )/~ and Z 

13J L/a 4N ea2/J Z~ a2J Z a2J 

5 6 256 -0.678 (1) 9.67 (3) 0.0482 (3) 
5 8 256 -0.673 (1) 16.08 (5) 0.0514 (3) 
5 10 256 -0.672 (1) 23.73 (7) 0.0527 (3) 
5 12 256 -0.671 (1) 32.3 (1) 0.0530 (3) 
5 14 256 -0.671 (1) 41.7 (1) 0.0519 (3) 
5 16 256 -0.669 (1) 52.6 (2) 0.0531 (3) 
5 18 256 -0.672 (1) 64.3 (2) 0.0528 (3) 
5 20 256 - 0.670 (1) 76.3 (3) 0.0535 (3) 

10 6 512 -0.679 (1) 14.65 (5) 0.0268 (3) 
10 8 512 -0.675 (i) 27.5 (1) 0.0406 (3) 
10 10 512 --0.673 (1) 42.9 (2) 0.0442 (3) 
10 12 512 -0.673 (1) 60.6 (2) 0.0460 (3) 
10 14 512 -0.670 (1) 81.2 (3) 0.0469 (3) 
10 16 512 -0.673 (1) 103.1 (4) 0.0476 (3) 
10 18 512 -0.672 (1) 129.0 (4) 0.0480 (3) 
10 20 512 -0.671 (1) 156.2 (5) 0.0477 (3) 
15 6 768 -0.681 (1) 16.71 (6) 0.0111 (3) 
15 8 768 -0.675 (1) 34.8 (1) 0.0287 (3) 
15 10 768 - 0.674 (1) 57.9 (2) 0.0385 (3) 
15 12 768 -0.674 (1) 83.8 (3) 0.0420 (3) 
15 14 768 -0.672 (1) 113.6 (4) 0.0439 (3) 
15 16 768 -0.671 (1) 148.0 (5) 0.0451 (3) 
15 18 768 -0.670(1) 187 .0(6)  0.0457(3) 
15 20 768 - 0.671 (1) 227.6 (8) 0.0457 (3) 



C2 = [1, - 1, 1, - 1] or [ -  1, 1, - 1, 1] the next point on 
the loop is with probability p = 2/(exp(eflJ)+ 1) the time- 
like nearest neighbor, and with probability 1 - p  the 
space-like nearest neighbor of (x, t). Finally, for configu- 
rations Ca = [1, - 1, - 1, 1] or [ -  1, 1, 1, - 1] the next 
point on the loop is the space-like nearest neighbor of 
(x, t). Once the next point on the loop is determined 
the process is repeated until the loop closes. Then all 
spins on the loop are flipped simultaneously. The algo- 
rithm obeys detailed balance, p ( Ci) w (Ci --, C j) 
= p(Cj) w(Cj-+ C~), where  p(Ca) = 1, p(C2) 
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=�89 p(C3)= �89  and w(Ci 
C j) is the transition probability to go from a plaquette 

configuration Ci to Cj. Indeed one has 

1 
p(C,) w(Cx ~ C2) = 1 = - p = p ( C 2 )  w(C2 -+ C1), 

P 

=1(1 --p)= �89 (s f J ) -  1) p(C2) w ( C 2  C3) -.+ 

P 

=p(C3) w(C3 ~ C2). (9) 
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Fig. 1. The fit of the Monte-Carlo data for the internal energy 
ea2/J a, the staggered susceptibility Zs a4J/L ~ b, and the uniform 
susceptibility za2j e. The dots, squares and triangles are the 
Monte-Carlo data for /~J=5, 10 and 15 respectively. The corre- 
sponding fit functions are represented by the solid, dashed and 
dotted curves 
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In our construction a loop cannot branch out and hence 
freezing does not arise. Cluster algorithms offer the possi- 
bility to use improved estimators which reduce the vari- 
ance of different observables. For  example, the uniform 

susceptibility can be expressed as za2j=~N(M~/lCgl), 
/ - I T  

where 4N  is the number of points in the euclidean time 
direction, 141= ~ 1 is the size of the loop c~ and M e 

(x , t ) e~  
1 =~ ~ s(x, t) is the loop magnetization. It is interest- 

(x, t)e~r 

ing to note that clusters with nonzero magnetization 
must wrap around the lattice in the euclidean time direc- 
tion. Small clusters which do not wrap around the lattice 
have M~ = 0. Similarly, one can define improved estima- 
tors for the staggered susceptibility )G and for the internal 
energy density e. 

Some results of our numerical simulations are collect- 
ed in Table 1. We have performed measurements for 
three inverse temperatures fiJ = 5, 10, 15 and for different 
spatial sizes L/a=6, 8 . . . .  ,20. We have always per- 
formed 10000 loop updates for equilibration followed 
by 100000 measurements using the improved estimators. 
The autocorrelation times of the loop cluster algorithm 
are at most a few sweeps, and we see no indication of 
critical slowing down. With standard local algorithms 
it would be impossible to reach temperatures as low 
as the ones we use here, because of severe problems with 
slowing down. In Table 1 the lattice spacing has been 
fixed to ~fiJ=~. We have also performed runs on 
coarser lattices with e f i J=3~  and 4~. This allows us to 
extrapolate our data to the euclidean time continuum 
limit e ~ 0. After the extrapolation we fit the results to 
the above expressions from chiral perturbation theory. 
The data for e, )~s and Z are all fitted simultaneously. 
Our best fit with z Z / d o f :  1.4 is shown in Fig. 1. The 
finite size and finite temperature effects of the internal 
energy density depicted in Fig. 1 a are very small (of the 
order of our statistical errors), while the effects on the 
susceptibilities are much larger. For  low temperature and 
small volume some data have been excluded from the 
fit because for them l is not of order 1. The fit gives 
the following values for the low energy parameters 

eo = -0.6693(1) J/a 2, d{~ = 0.3074 (4)/a 2, 

f ie= 1.68(1) Ja, p~=0.186(4) J. (10) 

To our knowledge this is the most accurate determina- 
tion of these zero temperature and infinite volume prop- 
erties from a simulation of the partition function at finite 
temperature and finite volume. The result for the ground 
state energy density agrees with different zero tempera- 
ture Monte  Carlo calculations [-8] which yield Co= 
-0.6692(1) J/a z. Our results are consistent with an ana- 
lytic expansions around the Ising limit [-9] which gives 
e = - 0 . 6 6 9 3 ( 1 )  J/a 2 and JC4=0.307(1)/a 2, but not con- 
sistent with a recent large scale numerical study using 
a standard local algorithm [10] which obtained p~ 
= 0.199(2) J. Finally, we compare our results with exper- 

imental data. Using inelastic neutron scattering the spin 
wave velocity hc=0.85(3)eV]k has been measured [11], 
while an analysis of Raman scattering data [-12] yields 
J=0 .128(6)eV=1480(70  ) K. Using this together with 
a = 3 . 7 9 ~  the experiments on La2CuO4 obtain 
hc = 1.75(9) Ja. A comparison of experimental data for 
the correlation length [13J with theoretical predictions 
based on chiral perturbation theory combined with the 
exact mass gap of the 2-d 0(3) nonlinear sigma model 
[14J yields p , =  0.180(8) J. This is consistent with our 
result for the Heisenberg antiferromagnet. Using the ex- 
perimental values for the spinwave velocity and for the 
lattice spacing we obtain an independent estimate of the 
exchange coupling in La2CuO4 

J = 0.133 (5)eV = 1540(60)K. (11) 

New experimental data on related compounds yield Ps 
--0.186 J [15] in exellent agreement with our result. The 
agreement between our numerical results and the predic- 
tions of chiral perturbation theory confirms that the Hei- 
senberg model has long range antiferromagnetic order, 
and that its low energy dynamics is dominated by mag- 
nons. A precise determination of the low energy parame- 
ters that determine the magnon physics was possible 
only because the loop cluster algorithm is very efficient 
also at low temperatures. Recently, a loop cluster algo- 
rithm has been constructed for lattice fermion systems 
[-16]. This raises hopes that numerical investigations of 
similar accuracy become feasible for the Hubbard  model, 
and hence for high- T~ superconductors like 
La2_xBaxCuO4. 
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