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Renormalization group arguments are applied to ~ an ensemble of disordered electronic 
systems (without electron-electron interaction). The renormalization group procedure 
consists of a sequence of transformations of the length and the energy scales, and of ortho- 
gonal transformations of the electronic states. Homogeneity and power laws are obtained 
for various one and two-particle correlations and for the low-temperature conductivity in 
the vicinity of the mobility edge. Two types of fixed point ensembles are proposed, a homo- 
geneous ensemble which is roughly approximated by a cell model, and an inhomogeneous 
ensemble. 

1. Introduction and Results 

In this paper we consider the correlations of wave- 
functions in an ensemble of disordered electronic 
systems. The system is described by the tight-binding 
hamiltonian 

H =  ~ er Ir) ( r[+ ~ f~r' Ir) (r'l (1.1) 
r r ~ - r "  

with the electronic wave-functions I r) localized at 
sites r. The one-particle energies e and/or the transfer 
matrix elements f are distributed at random with a 
given probability. It is assumed that the transfer 
matrix elements f decay rapidly with distance l r - r ' ]  
and that the ensemble does not exhibit long-range 
correlations of the e's and f 's.  
Systems of this type have received much attendance. 
We refer to the book by Mott and Davis [1] and the 
review articles by Elliott et al. [2], Thouless [3] and 
Economou et al. [4]. Anderson gave an argument in 
his fundamental paper [5] that within a certain energy 
region the eigenstates of the hamiltonian (1.1) are 
extended, whereas outside this regime the states are 
localized. Here we are concerned with the behaviour 
of the wave functions close to the mobility edge which 
separates localized from extended states. 
To derive the correlation functions we will follow the 
renormalization group (RG) ideas as outlined by Lic- 
ciardello and Thouless [6], compare Edwards and 

Thouless [7]. The basic idea is to perform successive 
orthogonal transformations which mix nearby states 
so that the transfer energies f decrease. It is expected 
that such a procedure converges for localized eigen- 
states. The limit of convergency will be the mobility 
edge. We add to this elimination process a transfor- 
mation which rescales all distances and energies. We 
expect this procedure to converge to a fixed point 
distribution of the ensemble at the mobility edge. 
Two different types of fixed point distributions are 
proposed, a homogeneous and an inhomogeneous 
fixed point ensemble. We are not able to decide whether 
both or one or neither of these ensembles are ap- 
proached starting from the ensemble of hamiltonians 
(1.1) described above. Both ensembles exhibit features 
expected in disordered systems near the mobility edge. 

Homogeneous Fixed Point Ensemble. This ensemble is 
homogeneous in energy e. It transforms into itself 
under the transformation e--+e+ constans. Since the 
density of states has to be constant during the RG 
procedure the scale change 

r--+ r/b 

implies 

~ ~b d. 

(1.2a) 

(1.2b) 
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We assume one relevant perturbation to this ensemble 
which grows like 

z ~ r b y. (1.2 c) 

Depending on the sign of z the perturbation produces 
localized and extended states, resp. This perturbation 
is added to the homogeneous fixed point ensemble 
in a strength increasing linearly in energy 

z= c ( E-Ec )  (1.3) 

thus yielding extended states for z>0  and localized 
s ta tes  for z<0.  The theory yields scaling behaviour 
for 0 < y < d  whereas for y > d  there would be a dis- 
continuous change from localized to extended states. 

Inhomogeneous Fixed Point Ensemble. In this ensemble 
the scale factors for lengths and energies are indepen- 
dent from each other, the ensemble is inhomogeneous 
in the energy, 

r --+ r/b (1.4 a) 

e ~ ~b y. (1.4b) 

It is assumed that there is no relevant perturbation to 
such an ensemble. The inhomogeneity allows for ex- 
tended states in the region E > 0  and for localized 
states in the region E<0.  We choose E¢=0. 
Both ensembles yield power and homogeneity laws. 
The density of states p near the mobility edge obeys 
for the two ensembles 

P h o m  = const. P i n h  ~ [El (a-y)/y. (1.5) 

The amplitudes O(r) of the normalized real eigenfunc- 
tions 

~ Ip(r)+ ~£~,  O(r')= Etp(r), ~ 02(r)= 1 (1.6) 
r 

transform under the RG transformation according to 

I ~(r)l ~ ~ b -K/2 I~P(r/b) l 

g l / / 2 ( r )  ~ V {1) O2(r/b) 

V 2 O4(r ) ~ VO)2 b"' O4(r/b) 

(1.7 a) 

(1.7b) 

(1.7c) 

provided any other factors ~O(r') are sufficiently far 
separated in distance. The volumes of the original 
system and the system after the RG procedure are 
denoted by V and V °), respectively. 
The scaling properties (1.2), (1.4), and (1.7) imply 
various homogeneity and power laws for correlation 
functions. At the mobility edge the correlations of the 
amplitudes ]~91 decay as 

v I g,(o) O(r)l ~ r  -~ (1.8) 

V 2 ~'/d ff/2(0 ) ff/a(r)~ r-~c' (1.9) 

where the bar indicates the ensemble average. As a 
function of z (for the inhomogeneous system take 
z=E) the correlation length and the mean fourth 
power follow the power laws 

~~l~1-1/y (1.10) 

VO4(r)~lzl(a K')/y, r<0 .  (1.11) 

Exponents for the power laws (1.8), (1.10) and (1.11) 
have been proposed by Abram and Edwards [8], 
Anderson [9], Freed [10], Last and Thouless [11], 
and on the basis of percolation theory (compare 
Ref. 3). 
The low-temperature a.c. conductivity obtained from 
the Kubo-Greenwood formula obeys the homoge- 
neity-relation 

f b 2 -a a(cob a, .cbY ) hom. ens. 
ff((~°"c)=[b2 a ¢(cobY, zbY) inh. ens. 

(1.12) 

in the limit of small co and z. It implies at the mobility 
edge the power law 

0 ~fcO(a- 2)/a hom. ens. (1.13) ff((D~ 
) ~ ( ~  ~a-E)/y inh. ens. 

and yields the d.c. conductivity in the region of the 
extended states 

~r(O, Z )~Z  (a-2)/y, Z > 0  (1.14) 

which agrees with the prediction of a finite conducti- 
vity in two-dimensional systems (Licciardello and 
Thouless [-6]). 
In Section 2 the RG approach for the homogeneous 
ensemble is considered. A simplified version of this 
model is the cell model introduced in Section 3. The 
correlation functions of this cell model are evaluated 
in Sections 4 and 5. In Section 6 the approximations 
of the cell model are abandoned and arguments of 
the scaling properties are given on a more general 
basis. A few modifications of the theory for the homo- 
geneous ensemble allow the derivation of the scaling 
laws for the inhomogeneous system in Section 7. 

2. Renormalization Group 
of the Homogeneous Ensemble 

The renormalization group procedure consists of two 
parts, an elimination process and a scale transfor- 
mation. We begin with the elimination process. To 
obtain the eigenstates of the hamiltonian (1.1) we 
apply repeated orthogonal transformations 

I¢%, = Y~ ~'t,~,, ~, Irc'-~),_~ (2.1) 

with 

[rm))o = Ir), (2.2) 
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so that the transfer matrix elements f(~) of the hamil- 
tonian in terms of the new states [r(~))~ are smaller 
than the elements f(z-1). We require that the matrices 
U are localized, that is U~t[~)r(,_~ decays as a function 
o f  r (/-1) for fixed r (z) more rapidly than any power in 
r (z -a), and similarly as a function of r (z) for fixed r (L -~) 
The iterative application of such transformations U 
leads to a total localized transformation from Jr) to 
[r(~))t. An appropriate choice of the matrices U yields 
finally the localized eigenstates as limit of [r(l))l for 
l ~ o e ,  but we cannot expect convergency for the 
extended states. We define the limit energy E~ of the 
convergency as the mobility edge. 

Homogeneous Ensemble. Until now the states of the 
system are labelled only by the d components of the 
vector r CZ) in the local space. It is essential to add (as 
in Ref. 6) the energy e (~) as (d+ 1)th variable and to 
consider the states I}l in this (d+ 1) dimensional 
space. Assume that the one-particle energies e are 
not restricted to some finite interval but allow for 
states with uniform probability density p spread over 
the unbounded (d+ 1) dimensional space. The transfer 
energies f shall decay faster than any power of the 
distance or of the energy difference between both 
levels for large separations. The probability distribu- 
tion of the transfer energies must not have any long- 
range correlations in the (d+ 1) dimensional space, 
nor change under a uniform transfer of the r (~) or ~(0. 
We call such an ensemble shortly a homogeneous 
ensemble. 

Scale Transformation. The elimination process will 
easily diminish those matrix elements to a negligible 
amount  which connect states differing in e by an 
amount large in comparison to characteristic values 
of f as is well-known from perturbation theory. Thus 
the matrix elements f will connect states of smaller 
and smaller energy difference. On the other hand one 
can hardly avoid that the orthogonal transformation 
increases matrix elements f connecting nearly de- 
generate states further and further apart in local space. 
This observation invites to a scale transformation 

r(Z)=b -1 r (/-1) (2.3 a) 

e(o = b a e ( l -1 )  (2.3 b) 
so that the range of appreciable transfer energies f in 
local and energy space stays constant. The scale 
factors in the transformation (2.3) are chosen so that 
the density of states in (r, e) space is conserved. (Be- 
sides the transformation (2.3 b) the elimination trans- 
formation will shift the energies e.,) The transfer 
energies f will become smaller due to the elimination 
process, on the other hand the terms f are energies 
and have to be multiplied by the factor b e . 

Fixed Point. In the homogeneous ensemble one ex- 
pects either all states or no states to be localized. 
Suppose there is a sufficient amount of disorder to 
produce localized states. In this case the RG  procedure 
converges so that finally a diagonalized hamiltonian 
is reached. If, however, the disorder decreases we will 
reach a situation where the increase of f due to the 
scale transformation balances the decrease of the 
elements f due to the elimination process. Then the 
ensemble remains invariant under the RG procedure. 
We call such an ensemble fixed point ensemble. It will 
be characterized by some dimensionless quantity like 

K=p ~ I f . , I  I r - r ' l  d (2.4) 
r '  

which assumes its fixed point value 

K = K*. (2.5) 

If the matrix elements f are slightly different from 
those of the fixed point ensemble, then we expect that 
the difference 

"c= K -  K*  (2.6) 

grows by some factor we call b y during one RG step 

rl = bY zt-1. (2.7) 

We assume that there is only one relevant perturba- 
tion to the fixed point ensemble, that is, only one 
eigenperturbation yields y > 0. We neglect all irrelevant 
perturbations. 
In the original disordered system the one-particle levels 
are restricted to some finite region. We apply the RG 
procedure as described above. Due to the scale trans- 
formation (2.3 b) the available energy region increases 
exponentially. After a few steps it becomes reasonable 
to introduce the slowly varying function K(e). Close 
to the mobility edge one has in linear approximation 

zl = cl (eta) - E~)). (2.8) 

After one RG  step one has 

zt=bY z t _ l = b Y  cl_l(8 ( l - 1 ) -  E c (Z-1) --Cl(e(l)--E~l)))- (2.9) 

with 

Cl = b y  d C l _ l  " (2.10) 

Thus if y < d then the gradient 

d'q/d z I = c l (2.11) 

vanishes in the limit 1-0 oo which implies that repeated 
application of the RG leads to an ensemble more and 
more similar to the homogeneous ensemble if con- 
sidered in the vicinity of E c. 
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In the following 

0 < y < d  (2.12) 

is assumed so that these ideas apply. If y would exceed 
the dimensionality d then ct would diverge for l ~  oQ. 
There would be an abrupt transition from localized 
to extended states. 
If we start from a system with extended states between 
two tails of localized states and increase the disorder 
until the energy interval of the extended states has 
reached zero, then we have the limit case 

"C t = Cl(g ( t ) -  E~/)) 2 (2.13) 

which yields 

c l = b  y Zd Cl_s " (2.14) 

In this case it is sufficient to have 

0 < y < 2 d  (2.15) 

for convergency to the homogeneous fixed point en- 
semble. We restrict ourselves to the discussion of the 
case (2.8). 

3. Cell Model 

To make the RG procedure transparent we introduce 
in this section a cell model and discuss its implications 
in Sections 4-5. Divide a simple lattice into cells each 
of which contains n states I r). Then form larger cells 
out of n original cells etc. If this division into the hier- 
archy of cells is performed appropriately and 

n = b  a (3.1) 

with integer b then each site can be numbered by a 
set of labels is, iz, i 3 . . . .  

[r) = 1il,  i2 ,  i 3 . . . .  ) (3 .2)  

with 

r = %  + b %  + b  2 % + . . .  (3.3) 

where any i runs from 1 to n. 
Diagonalization within the n states of a cell yields 

IJs; i2, i3 . - . )=  ~ Uj, i~ 1il, i2, i3 . . .)  (3.4) 

with an orthogonal matrix U. We choose Js =1 for 
the lowest lying state, Js = 2 for the next lowest state 
etc. The crucial assumption of our model is that all 
transfer matrix elements between states of different 
energy label Js will be neglected. Thus it is assumed 
that only the lowest lying states of the cells interact 
with each other, the second lowest states etc. Although 
this is a crude approximation we note that states which 
are separated by a large energy difference mix only 
weakly upon diagonalization whereas the interaction 
between nearly degenerate states is essential. Thus we 

keep an important part of the interaction. With this 
approximation the diagonalization within the cells of 
n; states is performed and so on. The /-th step of 
diagonalization yields 

[...Jr t ,Jl;  i t + l - . - ) = ~  Uj, i, ]...Jl-s; il, it+l . . . )  (3.5) 
iz 

The matrices U depend on l and -..Jl-2,Jz-s, iz+s ... 
which will not be denoted explicitly in most cases. It 
is assumed that different matrices U are independent 
of each other, that is, the probability distribution of 
several matrices U factorizes in the probability distri- 
bution of the single matrices U. Further it is assumed 
that the probability distribution is invariant with re- 
spect to any permutation of the labels j~ and any per- 
mutation of the labels iz. 
The states, Equation (3.5) are characterized by energy 
labels Ja-..Jz and site labels il+l, iz+2 .. . .  Since the 
length scale changes by a factor b z within l RG steps 
the state l...Jt; i l+l  . . . )  is localized around 

r¢l) = ei, +1 + b % + 2 + b2 % + 3 + " "  • (3.6) 

Thus the original lattice (3.3) is reproduced. The energy 
labels yield an approximate value of the energy. If the 
first diagonalization yields a splitting e o of the energy 
labels then apart from an additive constant one has 
~(s)=eoj s. Application of the scale transformation 
(2.3b) and consideration of the level spacing occurring 
at each step leads to the approximate energy level 

8(1) = e0 (n l- s Jl + nl- 2 J2 + " "  +Jl). (3.7) 

We introduce the notation 

@Jl)(r(l)) = ( J l  J2 "'" Jl ; il + 1 ' "  [Jl J2... ) (3.8) 

for the wave-functions of the eigenstates [JsJ2. . . ) .  In 
particular one has 

Oj(r) = O}°)(r) = (is ia... [Jl J2--.). (3.9) 

Equation (3.5) yields the recurrence relation 

0) l -S)(r('-s))-- Uj, ,, tpJll(r a)) (3.10) 

which will be useful in the following sections. 
The model can be generalized to noninteger b with 

r = e } S ) + b _ ( 2 )  2 (3) ei~ + b  el3 + " "  (3.11) 

and e}°= el l+d) to allow for arbitrary integer n > 2. 

4. One-Particle Correlation 

Three types of one-particle correlation functions are 
discussed in this section, 

Gl (r , r', r )=  (r'l 6 ( H -  E(z)) Ir) 

= ~ tpj(r') Oj(r) b ( E j -  E(z)), (4.1 a) 
J 

C(r, r', z ) = ~  [~pj(r')Oj(r)l c3(Ej-E(z) ) ,  (4.1 b) 
J 
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and 

D(r, r', z)= ~ O2(r) O~(r') 6(E~ - E(z)). (4.1 c) 
J 

where E and "c are related according to Equation (2.8) 
by 

= c ( E -  E~) (4.2) 

for energies close to the mobility edge. If we call A* 
the average of some function A over all eigenstates of 
the ensemble in the infinitesimal energy interval 
E ( z - 0 ) . . .  E(z + 0) then the correlation functions read 

G~(r, r', Q=pV~t(r) t)(r') 

C(r, r', I¢(r) g'(r')l 

and 

D(r, r', Q = p  VO2(r) O2(r') ~ 

(4.3 a) 

(4.3 b) 

(4.3 c) 

where we use that p V is the density of states per 
energy. 
To evaluate (4.3) one applies the recurrence relation 
(3.10) and obtains for G 1 (with EJl)=nE(Q) 

Gj(r,r', " c ) = p v g j l i l  UAi ~ ~/}I)('C'(1)) ff/)l)(r(1))q. (4.4) 

According to our assumption the matrices U which 
relate g,J~) to ~,}z), Ojz) etc. are independent of the 
matrices U in Equation (4.4). Therefore the expression 
(4.4) factorizes 

Gl(r, r', Q=pVUj~ h Ujlitl @}l)(r'([)) @Jl)(r(1)) "¢1. (4.5) 

We note the relations z l = b r z  and V=V°)n ,  and 
obtain the recurrence relation for G~ 

Gl(r, r', z)= nUj, h U~ q Gl(r ~1~, r '~1~, bYz). (4.6) 

For general l one obtains the recurrence relation 

G1 (r(t - 1) ,  r '  (l - 1 ) ,  ,.el _ 1 ) = ~o G G1 (r (t), r' (o, "h) (4.7) 

with 

(aG=nUa,,, Uj,,;. (4.8a) 

Similar recurrence relations are obtained for C and D 
with the renormalization factors 

~)c=n lUj, i, Ujti~ I (4.8b) 

and 

~br, = n U~21, Uj2ii. (4.8 c) 

For the evaluation of the factors ~b, which are given 
in Table 1, three cases have to be distinguished: 
e) the sites r (~-~ and r 'a-*} are in different cells: 
rm#=/% Then the matrix elements U in Equations 

Table 1. Renormalization factors ~b for the recurrence relations of 
the one-particle correlation functions 

r(I)=#rt(I) r(l)=r,(l) r( I 1)=rt(l-1) 
r(l 1) =1= r,(/-1) 

¢o x 0 1 
Oc c c' 1 
(o v 1/n (n - g)/(n 2 -- n) c~/n 

(4.8) come from different matrices. Therefore the ex- 
pectation values factorize. We obtain the values q5 in 
Table 1, with the notation 

- - 2  - - 2  ~2r2 2 
nUj i  =-X, nlUjll =C, nUj i  = l / n .  (4.9) 

The last relation is obtained from the orthonormality 
relation 

U~i U~e = 6,,. (4.10) 
j = l  

fi) the sites r (t-l) and r '~-1) are different, but in the 
same cell: r m = r  '(~), r(t-1)=l=r 'q-l). Then the matrix 
elements U~, and U~i, are from the same matrix but 
i #  i'. The factors q5 are 

', 
2 n U;~ Uiv-  (n - ~)/(n 2 - n). (4.11) 

The first relation is obtained from Equation (4.10), the 
third relation from 

Uji Uj, i=(~jj,  (4.12) 
i=1 

with the definition 

c~-n 2 Uj4/. (4.13) 

7) the sites r (~-1) and r '(~-~) are identical. Then we 
obtain immediately from Equations (4.10) and (4.13) 
the values quoted in Table 1. 
The quantities x, c, c', and ~ depend on z. Particular 
for the mobility edge we introduce two critical ex- 
ponents s: and ~c' by 

c(0)=b -~ (4.14a) 

e(0)=b ~' (4.14b) 

By means of Schwarz's inequality one shows (Ap- 
pendix A) 

0_<x_<~c'_<d. (4.14c) 

We discuss the correlation functions: Application of 
the recurrence relation (4.7) for r4=r' yields factors 
Oa=x until r m and r 'm are in the same cell. Then the 
factor q~G=0 leads to a zero correlation. Only for 
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r = r' the function G 1 differs from zero 

Gt(r, r', z)=eo I 6~, (4.15) 

where the normalization factor can be easily derived 
from Equation (4.3 a) and the normalization (1,5). This 
surprising result deserves an interpretation. We expect 
wave-functions with more nodes to have a higher 
energy, a property which leads at least to short-range 
correlations. In such a case Uji Uji,,will depend on the 
energy levels whereas q~G=0 has been obtained by 
averaging over all energy levels j. If we apply the RG 
procedure so often that within an energy interval 
large in comparison to characteristic transfer energies 
f the variation of z is negligible then the ensemble 
may be approximated by the homogeneous ensemble 
of Section 2. In this case Equation (4.15) holds exactly 
since no eigenvalue E of the eigenfunctions is distin- 
guished and O(r)~(r') is obtained by averaging over 
all eigenfunctions. Since the statistical operator of all 
eigenfunctions is identical to that of all local states 
one obtains immediately Equation (4.15). 
For r=r'  the correlation function C coincides with 
G 1 . For r # r' we define a number k by 

r(k)=r '(k), r(k-1)4=r '(k-l) (4.16) 

from which we obtain the correlation function at the 
mobility edge 

r' -(e o r=r '  C(r, , 0 ) -  e-1 (4.17) 
c' eol b -~(a-x) r #  r' 

since ( k - l )  factors c=b  -~ and one factor c' enter 
during the k RG steps which lead to C(r (k), r '(k), 0) = eo 1. 
If we approximate the distance by 

]r - r'] ~ a o b k (4.18) 

where a~ is the volume per site then the correlation 
function decays according to the power law 

C(r, r', 0)~ [r-r ' ] -~ (4.19) 

As long as lr-r'] >>% one obtains for general r within 
the approximation (4.18) the homogeneity law 

C(r , r ' , r )=b-~C(rb  1, r'b 1,zbY) (4.20) 

and 

C(r, r', z)= ]r-r'] -~ C(0, 1, z [ r -  r'l y) 

= [r - r'l-~ (2(Ir- r'[/~(~)) (4.21) 

where the correlation length ~ diverges like 

~ ( ~ ) ~  I~1 1/, (4.22) 

at the mobility edge. 
For r=r'  the correlation function D transforms like 

D(0, 0, z)= n-1 c~(z)D(0, 0, z bY). (4.23) 

This factor n-1 c~(z) is in contrast to the factor 1 for the 
functions G1 and C. Far in the region of localized 
states the diagonalization will have nearly converged. 
Therefore one of the matrix elements Uji, i=  1,... n 
will be very close to unity whereas all other matrix 
elements vanish. Thus ~, Equation (4.13) approaches 
n in the limit of large negative r and we may expect 
that repeated iteration of Equation (4.23) leads to a 
finite value for r<0 .  Close to the mobility edge c~(r) 
may be replaced by b ~' which yields 

D(0, 0, r )= b ~'-a D(0, 0, z bY). (4.24) 

Thus the average VO4(0) vanishes with the power law 

V q/4(0) ~ D ~ l if  e-~')/y (4.25) 

on approaching the mobility edge from below. Bell 
and Dean ]-12] introduced this quantity as a measure 
for localization. For ]r-r ']>ao one obtains for D a 
homogeneity law similar to that for C 

D(r , r ' , z )=b-aD(rb  1, r'b 1, rbr) 

= I'cl <d - ~')/Y r ~' b (  Ir - r ' l / ¢  (r))  • (4 .26)  

Since VO4(0) vanishes at the mobility edge V02(0)02(r) 
vanishes, too. We note, however, that VZ-~'/eO4(O) 
remains invariant at the mobility edge since the extra 
factor V 1 -~,/a introduces an extra factor b a-~' in the 
recursion relation. One deduces the power law 

V 2 --K'/d i//2 (0) i//2 (r) ~ r-~' (4.27) 

at the mobility edge. 

5. Two-Particle Correlation Functions; 
Electric Conductivity 

We discuss two special cases of the two-particle 
correlation function 

G2(rl, rj~, E l ,  r2, rl ,  E2) 

= < r ; l a ( H -  E l ) I r l  > <61 a (H-  E2)It2> 
= Y~ ~,~(rl) O~(r;) ~'~,(r2) 4'z(r;) a(~j-  ~1) a(Ej, - G)- (5.1) 

j j '  

These special cases are 

G(r,  r', co, ~) 

( o 2) = 6  2 r, r ' , E ( z ) + ~ ,  r, r ' ,E ( z ) -  (5.2a) 

and 

G , ( r ,  r ' ,  co, ~) 

=62  r , r , E ( z ) + ~ - , r ' , r ' , E ( z ) -  . (5.2b) 

The correlation G~ serves to calculate the electric 
conductivity at low temperatures by means of the 
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K u b o - G r e e n w o o d - f o r m u l a ,  whereas  the correlat ion 
G, describes the density corre la t ion of two electrons 
at different energies. 
Similarly to Section 4 we express G in terms of the 
eigenfunctions 

G~(r, r', co, z) = p2 V 2 Oj(r) @j(r') @j,(r) Oj,(r'). (5.3) 

Using the recurrence relation (3.10) one obtains in 
analogy to Section 4 

G~(r(Z 1), r,(l 1), cot_i, z t _ l  ) 

= O~ Go( r(O, r'(°, col, h )  (5.4) 

with 

cot = bd col-1 (5.5) 

and 

Oa = rt2 Uj(z'i; j' ,; i . . . . . .  ) U),ii J'- '; i~ . . . . .  ) 

• Uj~.i;j~ ~;i . . . . . .  /U)iifj~_~;i~ ..... ). (5.6) 

Similar expressions are obta ined  for G,. To  determine 
the renormal iza t ion  factors q5 one has not only to 
distinguish the three cases e,/3, 7 of Section 4 but  also 
the associated energies 

e') 8(o= d (°, the app rox ima te  energies (3.7) are degen- 
erate, 

f l ' )  8 ( / - 1 ) = 8  ' ( l - i ) ,  8(l)=Ji=8 '(l),  this R G  step removes  the 
degeneracy of the energies, 

7') e(z 1)+8,(~-1) the energies are not  degenerate.  

Depending  on these 3 x 3 cases the matr ix  elements  
Uj~ come from the same or f rom different matrices. The  
values of the renormal iza t ion  factors qS~ and qS, are 
listed in Tables  2 and 3, respectively• The first line 
coincides apar t  f rom a factor n (due to the different 
power  in V) with those of q~D. The de te rmina t ion  of ~b 
in the first row and the third line is simple since the 
expectat ion values factorize and reduce to expressions 
evaluated in determining q5 a. For  the case fi[Y one 
obtains  

~ = n 2 Uj~ Uj,, Uj, , Cj, v (5.7) 

and  

¢° u/,, (5.8) 

with i 4 i ' ,  j 4 j '  which in view of the o r thonormal i ty  
relation (4.12) can be expressed by c(. The case 7f f  
gives 

~b~ = 4,, = n 2 52 Uj~, (5.9) 

which yields the same result as fie'. 
The corre la t ion function G~ is evaluated by repeated 
appl icat ion of Equa t ion  (5.4). If initially ] r - r ' [ > a  o 
and 0 < Ico[ ~80 the first factor  q~ is in the upper  left 
corner  of Table  2. As during the R G  procedure  

333 

Table 2. Renormalization factors 4~ for the recurrence relation of 
the two-particle function G~ 

r ( t ) , r , ( l )  r(1)=r,(1) r(l 1)=rP( l  1) 
r ( l -1 )=#r , ( l -1 )  

6c l )=e  '(1) 1 ( n - - c Q / ( n - -  1) c~ 
6 (I) ::1= 6' (l) 
g t l - 1 ) = e , ( l  1 ) J  0 - - ( n - - c Q / ( n - -  1) 2 ( n - - o : ) / ( n - -  1) 

6(i 1)=~=6,(l 1) X 2 0 1 

Table 3. Renormalization factors q~, for the recurrence relation of 
the two-particle function G, 

r (1) ~i- r' (l) r(I) ~ r r (I) r ( / -1  ) ~ rt (I --1 ) 
r(t 1)=[=r,(l i) 

e ~° = 6' ") 1 (n - ~)/(n - 1) c~ 
6 (0 4- 6' q) 1 
e ( I - i )  = ~ ,  (l-i) ) 1 1 +(c t  - 1)/(n - 1) 2 (n - ct)/(n - i )  

6(~-i) =F 6'(~ ~) 1 1 1 

r(/) :# r, (1) r(1)=rr(1) r ( l -1)  = r l (1-1 ) 
r (1 1) ::# rt ( l - l )  

6 (l) = 6' (l) ~ 

g(t) 4: 6' (t) 
6(1 1 ) = 6 , ( l  1) 

6tt-i)~ g,(l i) 

Fig. 1. The paths of this scheme indicate locations of factors qS~ 
and ~b, in Tables 2 and 3 as they appear in successive steps of the 
recurrence relations for Go and G., respectively. The dots denote 
that the corresponding factors ~b~ and q~, appear only once 

[ r - r ' [  decreases and co increases one approaches  
the factor q~ in the lower right corner  along one of the 
paths shown in Figure 1. Let us determine k according 
to Equat ion  (4.16) and m according to 

8 ( m ) = # g t ( m )  g ( m - 1 )  = 8t(rn i ) .  ( 5 . 1 0 )  

For  m > k one follows one of the two upper  paths,  for 
m = k along the diagonal  pa th  and for m < k along one 
of the two lower paths in Figure 1. Cor respondingly  
one obtains close to the mobil i ty  edge (for k > 1, m=> 1) 

[(n - e) 2 £~-k-1  (n -- 1) -28o  2 

G ~ = ] o ( n - - e ) ( n - 1 ) - 2 8 0 2  

and similarly 

[ ( n  - e )  2 a m -  k - 1 ( n  - 1 ) -  2 8 o  2 

G, = ~(n z - 2 n +  e ) ( n -  1)-28o 2 
Ls~ ~ 

m > k  

m = k  (5.11) 

m < k  

m > k  

m = k  (5.12) 

rn < k .  
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The normalization has been determined by considering 
G, in the limit Ir-r'] ~ 0% co ~ oo. In this limit the 
correlation function factorizes G n = G f = e o  2. The 
functions G~ and G, should agree in the limit co ~ 0 ,  
that is for m >> k, which yields the normalization of G~. 
The numbers k and m are roughly determined by the 
distance, Equation (4.18) and the energy difference 

(O "~ e O b - m e t .  (5.13) 

Thus the correlations depend on the dimensionless 
quantity 

A = p colr-  r ' f  = b (k-m) d (5.14) 

where a~ e 0 p = 1 has been used. For  small A the func- 
tions G obe3~ the power law 

G ~ G , ~ A ~ ' / d ~ c o  ~'/dr ~'. (5.15) 

For A ~ 1 the function G~ becomes negative. This is 
expected since 

~, G,(r, r', co, z )=0  for co4:0 (5.16) 
r 

follows "'from the orthogonality of eigenstates at 
different energies. Thus the positive correlation (5.15) 
has to be compensated by a negative contribution. 
For A >> 1 there is no correlation between the eigen- 
states. The function G, approaches for A >> 1 the value 
of uncorrelated states. For A ~ I  this correlation is 
enhanced by a factor 1 + ( ~ - 1 ) / ( n - 1 )  2. One expects 
this since two electrons repel each other due to the 
Fermi principle. Since on the other hand 

(G,(r, r', co, z)--CO 2) =0  (5.17) 
r '  

there has to be some region Where G, exceeds its average 
value. Surprisingly, however, for large m - k ,  that is, for 
small distances G n exceeds again eo 2. There is some 
probability that two electrons share a part of one 
wave-function. In general ~ depends on z. Therefore 
Equations (5.11) and (5.12) hold only if C~(Vk) and 
e(Zm) are close to the fixed point value e*=c~(0). We 
observe, however, that for e(z)~c~* and 

{r-r'[>>ao, [co[~eo (5.18) 

the homogeneity law 

G,,~(r,r',co, z ) = G , , ~ ( r b - l , r ' b - l , c o b a , ~ b  r) (5.19) 

holds since in this case ~b, = qS~ = 1. 
At low temperatures thermal assisted hopping can be 
neglected and if the electron-electron interaction can 
be ignored then the Kubo-Greenwood formula (h = 1) 

e27~ 
a(co, z ) = ~ -  Z ~ dE G2( r, r ,  E, r, r', E+co) 

r, r" 

• x x' co(f (E) - f ( E  + co)) (5.20) 

yields the real part of the electric conductivity a 
(where f is the Fermi function). Due to Equation 
(5.16) we may add - - (X2+X'2 ) /2  to xx '  which yields 
- ( x - x ' ) 2 / 2  instead of x x'. Now integrate over E 
and regard G 2 to be practically constant in the interval 
E i - c o . . .  E I and consider G 2 to be approximately 
translational and rotational invariant then 

e 2 

a(co, ~)= - 2 d a ~  co2 ~r rE G~(0, r, co, ~) (5.21) 

is obtained with z given by E I = E ( z  ). For small co 
the function G~ is different from zero in a large region 
r~(pco) -aId. The main contribution to the sum in 
Equation (5.21) comes from the negative correlation 
for k = m  in Equation (5.11). There are n " - n " - l ~  
(1-n-1)eo/co such terms. The other n "-1 terms yield 
a small contribution since r 2 is smaller by a factor 
b-2. Thus at the mobility edge the power law 

a(co, O)~ o) 2 r 2 n m ~ o91-2/d (5.22) 

emerges. For general but small z we use Equation 
(5.19) 

e 2 7[ 
o'(co, z)= ~ co2Zr2G~(O'rb-l'cobd"cbr)r 

e27~ 
- 2da~ c°2b2+d~r(1)~G~(O'r(a)'c°bd'zbY)r(,, (5.23) 

which yields the homogeneity law 

a(co, z) = b 2 -d a(co b d, z br). (5.24) 

The factor b 2 + ' / in  Equation (5.23) comes from r ~ b r (1) 
and from the fact that the sum over r contains b e 
times the number of terms of the sum over r (~). Assum- 
ing a finite d.c. conductivity above the mobility edge 
one obtains from Equation (5.24) 

cr(0, 0 ~ z  ~d 2)/L (5.25) 

From the co2(lno)) d+~ law [13] for the dependence 
of a on ~o below the mobility edge one obtains 

o'(co, z)~ ]z]-(d+ 2)/yco2 (ln (c ]zld/Y co-l)) ~+1 (5.26) 

with some constant c. 
This method to calculate the correlation functions 
can also be used for the determination of the complete 
correlation function G z and other correlations. In 
general new constants besides x, c, c' and c~ will be 
necessary. A particular simple situation arises for 
n = 2. In this special case all correlations 

G = [ I  (r~l 6(Z-/- E~)Ir;) (5.27) 
$ 

vanish unless all arguments r and r' occur pairwise. 
Thus for n =2  G 2 vanishes except for the correlations 
G~ and G,. This special case exhibits gauge invariance 
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since the correlations are invariant against any trans- 
formation 

It) ~ flair), t/~ = -I- 1. (5•28) 

The proof is given in Appendix B. This property 
raises the question whether the fixed point distribution 
is gauge-invariant which would imply that the prob- 
ability distribution is invariant against any transforma- 
tion 

)err ,  "-'> t l r t l r ,  f r  # . ( 5 . 2 9 )  

Besides the homogeneity laws derived from the cell 
model one is interested in the critical exponents y, tc 
and to' and the scaling functions C, b and similar ones 
for the two-point correlations and the electric conduc- 
tivity• Although the described RG procedure is ex- 
pected to converge below the mobility edge the scaling 
functions from the cell model will hardly yield a good 
approximation. As soon as the extension of the cells 
is large in comparison to the correlation length 
the probability distribution of U will not be invariant 
against all permutations of i in general, nor will 
succeeding transformations U be statistically inde- 
pendent as presupposed in Section 3. It will become 
important for the /-th RG step whether the distance 
between two wave-functions ~(t-~) is small or large 
in comparison to the correlation length. The homo- 
geneity laws, however, are still valid if the assumptions 
of the cell model are abandoned as will be argued in 
the next section. 

6. General  Arguments  for Seal ing 

In this section general arguments for the scaling laws 
(1.7) are given on the basis of the RG ideas introduced 
in Section 2. We will not consider deviations from the 
fixed point distribution. (If z =~ 0, then during the first 
l steps the arguments will be still applicable provided 
r t is sufficiently small.) Performing l RG steps one 
obtains the recurrence relation 

0j(R) = ~ U (t' o)(RI0, R) 0} 0 (R} t)) (6.1) 
t 

where R = (r, e) and R (t) = (r q), e (t)) indicate position and 
energy initially and after l RG steps. U a' o) is the ortho- 
gonal matrix produced during the RG procedures. 
Consider (as an example) the correlation function 

G~ = ~, t)j (R) Ok (R) tpj (R') Ok (R') 6 (Ej - E~) 6 (E k - E2). 
~k (6.2) 

Application of the RG makes r shrink to r b t. Since 
the single transformations U are short range and since 
the local space variable shrinks during the RG steps 
the matrix elements of U ~t' o) will differ appreciably 

from zero only within some finite distance 

Ir ¢° - r b-tl < r~. (6.3 a) 

Since on the other hand the single particle energies e 
increase by a factor b a during each RG step apart 
from some finite shifting only those levels /~ will 
contribute appreciably which differ from E by less 
than some energy 

]e} t) - E ball < e l . (6.3 b) 

The matrix elements U ~t' o) will be correlated to the 
energies d t) and f(t) of sites in the region (6.3 a) but not 
outside. The wave-function ~(t) will be determined by 
the energies e ~t) and f¢0 of levels falling in the energy 
interval (6.3 b). Therefore the only quantities correlated 
both with U tt'°) and ¢~t) are the positions #), the 
energies e Ct), and the transfer energies fct) of the levels 
IR}t))t which fall in the region (6.3). We denote the set 
of all these quantities and the matrix elements U (z' 0) 
of this region by F. Similarly we introduce the notation 
F' for the corresponding quantities around r'b -t and 
Eb dr. We assume lEa-E21bdt'~ec so that the regions 
(6.3b) practically coincide for the energies E~ b at and 
E2 bat. If Ir-r'lb-t>>r~ then the configurations of F 
and F' are statistically independent. With the probabi- 
lity density Pz(F)dF one obtains 

o, =~ drdr'P~(r)P~(r') F U_r(R} t), R)Ur(R(, t), R) 
t, U, T', It' 

,/,(') ro0)~ ,/,(t)to(t)~ a ¢~(1)t, -at _ E1 ) c5 (E~ l) b - a  z_ E2 ) (6.4) • ~ , j  t J x  t ,  l t l . , k  ~ .Xu ,  l t . ~ a - , j  c,  

where the average has to be taken over all systems of 
given configurations F and U. 
Let us introduce the normalization 

a 2 = ~  UrZ(Rl *~, R) (6.5) 
t 

where the sum is restricted to the region (6.3). 
Denote all configurations by 1' which differ only in the 
norm a 

Ur=aU,  (6.6a) 

R~t)_ o(t) el!)= e~l), f(r l) _ f(o (6.6 b) F -- ' txy , - -  . 

The average in Equation (6.4) depends only on 1' and 
~' since only the quantities of Equation (6.6b) are 
involved but not those of (6.6a). Introducing the new 
probability density 

Pz (F) d C = ~(:,, a) d t' d a (6.7) 

one obtains 

G=b2a' I d)~ d 3/~(2)(7) ]3t(2)()/) 
• F,(7, y', rb -t, r'b -t, E~ b at, E2 bat ) (6.8) 

with 

~)(~,) = ~ da Pt (Y, a)]al ~ (6.9) 



336 F.J. Wegner: Electrons in Disordered Systems 

and 

U,(r, t , R) U,(R~ O, "-~o R) U,,(at,, R') U¢(R~9, R') 
,/.(t) g i~(l)i ,t,(t) t D ( t ) ~  .L(t) ID(t)] ,/.(t) ID(t) ] 

" tlJj \ a .  t 17~k klXu, JtJJj [~ ' t '  ] t F k  l .*~u' /  

" (~ (EJ l ) -  E 1 b e') 6(El ) - E 2 bat). (6.10) 

The structure of Equation (6.8) is characteristic for all 
correlation functions G. They consist of integrals 
which contain factors ~(*)(7) multiplied by some func- 
tion F depending on the various arguments 7, rb t 
and Eb at. A function ~(*)(7) is associated to each power 
O*(r) in the correlation function. 
The behaviour of Pt{*)(7) as a function of l determines 
the scaling behaviour. Denote the probability for the 
transition from a configuration (7', a') during a RG 
step to (7, a) in the interval d7 and a ' q < a < a ' ( q + d q )  
by T(7, 3/, q) then one obtains 

~(7, a)dad7 

= ~ T(7, 3/, q) Pt-~ (7', a ' )dT 'da 'dqd7.  (6.11) 

With the definition 

~(7, 7 ) =  S T(7, 7', q)Iql~dq (6.12) 

one has 

~(~)(7) = j" dT' L(7, ~,") Pt~'~ (7). (6.13) 

The largest eigenvalue 2~ of the kernel ~ dominates 
the behaviour of P~(~)(7) for large 1 

P~(~)(7) ~ 2t~. (6.14) 

This power law yields Equations (1.7) with 

b ~=bd22 (6.15a) 

1 =b~22 (6.15b) 

b ~' =b2d24. (6.15c) 

The lower eigenvalues yield corrections to the leading 
scaling behaviour. Whereas Equations (6.15a) and 
(6.15c) define the exponents ~: and to', Equation (6.15b) 
is an equality for 2 2 . This can be seen as follows: 
Similarly to Equation (6.8) one obtains 

G~(r, r, E )=b  dt ~ d7 P~(2) (7) F~ (7, rb-t ,  EMt) . (6.16) 

Since the system is homogeneous in space and energy 
F 1 does not depend on r and E which yields G ~ b at Z~. 
On the other hand from Equation (4.15) which is 
valid independent of the cell model one obtains 
G1 = 1/eo. Thus Ga is independent of l which gives 
Equation (6.15 b). 

only one scale of energies (in contrast to the homo- 
geneous model where co scales like b e, and -c like bY), 
and (b) there is no relevant perturbation. The mobility 
edge is located at E = 0. 
The scaling arguments of the last section still apply in 
the vicinity of the mobility edge provided the factors 
b dt associated with the energies are replaced by b yr. 
Thus for 

IEI b 't < ec (7.1) 

Equations (6.4) and (6.16) hold if d is replaced by y. 
Replacing l by l+ 1 in this modified Equation (6.16) 
one has 

Q(rb ,  rb, zb Y) 
=by(t+~) ~(21 S d7 8+1 (7)F~ (7, rb z, z b 'l) (7.2) 

which yields 

Gl(rb, rb, zb-Y)=Z2bYGl(r ,  r, z) (7.3) 

by means of the asymptotic behaviour (6.14). Summa- 
tion over r of Equation (7.3) gives for the density of 
states 

p(zb ')=22bYp(z). (7.4) 

We determine 2 z. The eigenvalues E are multiplied 
by the factor b y during each RG step. Thus the number 
of eigenstates in the interval z . . .  r + d r  obeys the 
homogeneity relation 

Vp(z )dz= V°) p(zl)dzl = Vb y d p(zbY)dz. (7.5) 

Comparison with Equation (7.4) shows b~)~2=1, 
Equation (6.15 b). Equation (7.5) implies the power law 

(7.6) 

Using the definitions (6.15a) and (6.15c) one obtains 
the homogeneity relations 

C(r ,r ' , z )=b -~+r aC(rb 1, r'b 1, rbY) (7.7a) 

O(0, 0, z )=b ~'+r 2dO(0, 0, zb r) (7.7b) 

O(r, r', r )=bY-ZaD(rb 1, r,b-1, zb y) (7.7c) 

G,~,,(r, r', z)=b  2(y-el G~,,(rb 1, r,b-~, zby). (7.7d) 

Recalling Equations (4.3) and (5.21) one easily verifies 
the power and homogeneity laws given in Section 1. 

Appendix A 

7. Inhomogeneous Ensemble 

The inhomogeneous ensemble differs from the homo- 
geneous ensemble in two important features, (a) the 
energy scale changes by a factor b y, (1.4b); there is 

By means of Schwarz's inequality ~7b-Z> ab 2 we 
derive the inequality (4.14c). We use the abbreviation 
w = l f n  IUji [. First we note b - ~ = ~  2, l = w  ~ ,  b~'=w ~ .  
Now b-K = v~2 < w ~ = 1, thus 0 < ~c. Next w -7 ~ > ~ 2  = 1 
and w ~ =  ~ w 2 > ~  2 which yields b ~ ~'=w~w2>l,__ 
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thus  ~ =  K. F i n a l l y  

n m 

i = 1  ii" 

which  yields ~c' < d. 
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one  easily verifies tha t  the s u m  of these four  t e rms  
van i shes  if bo th  b + c a n d  a + d are odd.  

I am indebted to Dr. Lothar Sch~ifer for useful discussions. 

Appendix B 

W e  prove  the gauge  i n v a r i a n c e  p r o p e r t y  for the cell 
m o d e l  wi th  n=2 stated in Sec t ion  5. The  states Its) 
a n d  I t ' )  are t r a n s f o r m e d  by the sequence  of R G  steps 
in to  states IJs) which  occur  pairwise.  If in to ta l  a n  
odd  n u m b e r  of  states ]r) a n d  Ir') equa l  some state  
If) t hen  there  will be at least  one  R G  step in which  
in one  cell Ul states iz = 1 a n d  u 2 states i~ = 2 t r a n s f o r m  
in to  vl states j ~ = l  an d  v2 states j~=2  with u 1 a n d  u 2 
odd,  vl and  v 2 even.  T h u s  the factor  

(B.1) 

occurs  with a + b = u~, c + d = u 2, a + c = v~, b + d = v2. 
It fol lows tha t  b + c = u ~ + v ~ - 2 a  a n d  a+d=u~+v2 
- 2 b  are b o t h  odd.  Since the expec t a t i on  va lue  (B.1) 
is i n v a r i a n t  aga ins t  the p e r m u t a t i o n  i*-->i' a n d  j*-->j' 
i n d e p e n d e n t l y  it equa ls  the average  of express ion  
(B.1) a n d  the three  express ions  o b t a i n e d  in r ep lac ing  
(a, b, c, d) by (b, a, d, c), (c, d, a, b), a n d  (d, c, b, a). Since 
all 2 x 2 o r t h o g o n a l  ma t r i ce s  are  of  the  fo rm 
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