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1. Introduction

The purpose of this research is the study of the stability of estimating the diffusion
coefficient in a two-point boundary-value problem from possibly error-corrupted
data of the state-variable of the equation. The estimation problem is stated as a
nonlinear least-squares problem in Hilbert space. A geometrically motivated
abstract stability theory developed by the first author is used.
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The following notations and definitions are needed:

E is a normed space with norm | - |.
C < E is a given convex set.

F is a Hilbert space with norm |- ;.
o: C—-F,

Definition 1. The problem
(P) Min J(x) = |p(x) — z[} over C

is said to be quadractically well-posed (Q-well-posed) in an open neighborhood
¥ of @(C) for the norm |- |, if:

(i) (P) has a unique solution % for any ze 7"
(ii} J has no local minimum for any ze#".
(iti) Any minimizing sequence converges to X in the norm of £.
(iv) The mapping z — £ is locally Lipschitz continuous from (¥7,{ |z} to
(€, 1" 1e)-

While Q-stability is a desirable property for nonlinear least-squares prob-
lems—it allows, for example, the data z to be outside of ¢(C)—it requires strong
hypotheses which imply this property. It is the purpose of this paper to give an
example in which Q-stability with an infinite-dimensional set C holds and to
provide precise estimates for the geometrical quantities required.

The problem under investigation is

_(aux)x ::f (11)
with ae C, where
C = {a: [0, 1] - R|a is measurable, 0 < a,, < a(x) < a,, a.c. on [0, 17}

and the data are assumed to correspond to u,. The theory in [4], [5], and [2]
requires us to connect all points of the parameter set C with a path. We shall see
that the simple path of a segment between a4, and a, given by t = (} — f)a, + ta,
for te[0, 1] is useless, since it leads to unbounded curvature in the image space.
The correct parametrization is described in Section 3. Sections 4 and 5 consider
the case of a rough source (fequal to a linear combination of delta functions) and
of a smooth source (f €L?), respectively. It is necessary to provide additional
mnformation in the neighborhood of the singular points of the output u,. Here we
refer to a point X as singular if u, does not exist at X (rough case) or if u (¥) =0
(smooth case). The extra information which is required is that the coefficient a is
constant in the neighborhood of singular points. An essential ingredient to obtain
the desired stability results is the availability of a lower bound of the linearization
of the parameter to output mapping. In this respect we rely on recent resuits
from [6].

For another application of the geometrical theory of [4], [5], and [2] we refer
to a paper by Symes [10] concerned with plane wave detection.

For related results on the identification of the diffusion coefficient in eily.‘ic
equations we refer to [1], and [7]-[9], for example. The main difference between
these contributions and ours is given by the fact that the observation z in this paper
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need not be obtainable, ie., z need not necessarily be an element of ¢(C). This
situation occurs due to modeling and measurement errors.

The assumption on the availability of u, as opposed to, e.g., u as data, together
with appropriate input functions f, guarantees the existence of a continuous inverse
to a — ua) from L? to L2, if a is restricted to lying in an appropriate subset of
L? (see Sections 5.2 and 5.3). The case of data z for u in L? can only be treated
using regularization techniques and will be studied elsewhere.

Extension of the results of this paper to the multidimensional case is not easy.
The motivation for examining the one-dimensional case independently in this
paper is that, due to an explicit formula for the solution of (1.1), we can derive
precise stability estimates.

2. An L*-Stability Estimate for H'-Observations

We begin by a stability estimate which is crucial for the subsequent proofs, and
which is a reformulation of Theorem 2.5 of [6].
Let us first remark that if u and a satisfy the 1 — D elliptic equation for some
given f,
——(aux)x =f7 0 <x< 15 (21)

then u will still satisfy the same equation with a replaced by a + k/u,, k small
enough (provided this makes sense). Hence the determination of a from u using
(2.1) only is underdetermined, the problem being caused by pairs of coefficients a
whose difference is proportional to 1/u,. This should be reflected in the stability
gstimate to come.

So let (a;, u))e L®(0, 1) x HY(0, 1), j = 0, 1, satisfy (2.1). Calculating the differ-
ence of the two equations and integrating once yields

{a, — aglug, = ay(ug, — u;,) + an unknown constant. (2.2)

Lemma 1. Let de L*(0, 1), we L™(0, 1), he L*(0, 1) satisfy

— = h + an unknown constant. (2.3)
w

Then
wi . d
——sin | —| < |hj, (2.4)
(Wl w

where

T
e [0, 2J is the angle between directions d and w,

sinzpz\/l—— <d, w)*

|d|?1w]*

Proof. If we denote by L*(0, 1)/R the space of class of functions defined up to a
constant, we know that

d

w

d
— + cst
w

= inf
LR csteR

< |
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and
d 2 d 2 1 d 2
WiLyr Clw <Jo W)
so that

d 2 1 d 2
d ‘(J —) < 29
wl, o W

Let us now define y as the projection of w onto the subspace of L(0, 1) orthogonal
to d. Of course,

{d, yy =0, (2.7)
[yl =sin y|wl|. (2.8)

For any ke R, (2.6) can be rewritten in, view of (2.7}, as

2 1 2
r_ (f d(l + ky)) <|hf* keR (2.9)
0 w

w
However,
1 1 2 d {2 1 1
(j d< + ky)) < |~ {1 — 2k J wy + k? f vzyz}
0o \W w 0 o

d 2 1
{1—2kf wy—i—kzlwlﬁojy@}.
4]

| w

=<

Choosing for k the value that minimizes the second-order polynomial on the

right-hand side yields
1 1 2 d 2 i 2
< d(-+ ky)) <|—|{1- ‘le sin?  b.
0 w w iW]oo

Plugging the last inequality in (2.9) yields the expected result (2.4). .|

We can now apply Lemma 1 to (2.2), provided we suppose that we know a priori
lower and upper bounds to u,:

0 < u, < U (X) <y, (2.10)

which yield the stability estimate

Uy .
— S8in l/jl(al - aO)“OxE < 1al(u0x - ulx}l’ {211)
Up
where
Y = angle between the directions of a; — a, and —. 2.12)
Uox

As expected, this estimate vanishes when a, — a, becomes proportional to {/u,, !
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Besides Lemma 1 which we apply later to a reparametrization of the same
problem, the useful findings of this section are that we can obtain an explicit
L?-Lipschitz stability estimate for a from an H!-observation of u provided that:

e 1, can be bounded to stay away from zero as in (2.10).
e The angle between two admissible parameters and 1/u, can also be bound to
stay away from zero.

3. A Size x Curvatare Condition for the Well-Posedness of
Nonlinear Least-Squares Problems

In this section we describe a sufficient condition for the Q-well-posedness of our
abstract nonlinear least-squares problem, based on the quasi-convexity and
size x curvature conditions approach developed by Chavent in [4], [5], and
[2].
Let
C = convex subset of some vector space (admissible set),
F = Hilbert space {observation space),

zeF (data), (3-1)
p:C—F {input — output mapping)
be given. We consider in this section the nonlinear least-squares problem
find £eC which minimizes J(x) = |¢(x) — z|2 over C. (3.2)

We only require from ¢ that it is regular along any segment of C, precisely:
Vxg, X, €C, P:te[0, 1] - P(t) = o{(1 — t)xq + tx,) is in W20, 1).

(3.3)

We call P a path in ¢(C), and throughout the paper we use the notation

V()= P(t)eF (velocity along the path), 34

Aty = P"(t)eF (acceleration along the path). (34)

Of course, V() and A(t) are implicitly related to the path P associated to
(xg, %) which will always be clear from the context.

Suppose now we have been able to find some Banach space E, with a norm
I"|g, such that

CcE, C closed set in E, (3.5)
thereexists 0 <, < oy,
suchthat Vx,,x,€C andforae 1€]0,1] (3.6)
Uyl xy — Xolg < IV(O)lp < aylxy — Xolg,
thereexists ® >0 and R>0
such that Vxq,x,€C andforae. t€]0,1[
4@ A0 1

voI=" o Sk
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We comment first on hypothesis (3.6). In the finite-dimensional case «,, and o,
are lower and upper bounds to the singular values of ¢/(x) for all x of C. Hence
(3.6) corresponds in some sense to the fact that the “linearized” least-squares
problem is well-posed for any linearization point x of C. It allows us to obtain
stability results on C for the ||z norm from stability results on ¢(C) for the arc
length v along a path P (remember that dv = |V(¢)} dr).

We now comment on hypothesis (3.7). The quantities ® and R have a
geometrical interpretation [5]: @ is an upper bound to the deflection (i.e., angle of
tangents) between any two points of any path P of the shape (3.3), and R is a
lower bound to the usual radius of curvature along any path P of the shape (3.3).

We may then define an upper bound A to the length of any path P by

A = a,, diam C. (3.8)

As the geometrical intuition shows us that the deflection along a path P is
necessarily smaller than A/R (see [5] for the proof), we suppose in what follows
that the upper bound © to the deflection of paths given in (3.7) is at least as good
as A/R, ie., that

TA
®=f’ 0<t<1i, (3.9)

where 7 is called the “shape coefficient” of the estimation (3.6), {3.7), see [3].

Remark 1. Hypotheses (3.7) and (3.9) are satisfied if the following majorization
holds for the acceleration A(f):

thereexists S >0 such that
Vxo,x,6C andforae te]0,1] 3.10)
UADIe < Bixo — i,

with ®, R, and 7 defined by

(o - (ﬁ) diam C,
am
2
o d
R="m 3.11)
{r-"
am
T=—,
N oy

If ¢ were twice differentiable on (C, E), then § would be an upper bound to
I ©"(x)} for x e C. Notice also from {3.11) that the upper bound © to the defiection
of ¢(C) can be made arbitrarily small by reducing the diameter of C (and hence
of ¢(C) because of (3.8)!).

The numbers ®, R, and z give information on the shape of the set ¢(C), which
is useful for the projection of z onto ¢(C), which is one of the steps involved in the
solution of the nonliner least-squares problem (3.2). However, the relevant quantity
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for the Q-well-posedness of this projection is neither ® nor R, but rather the
smallest global radius of curvature between any two points of any path P defined
i (3.3). We refer to [5] for the precise definition of this notion, and recall here
only how to obtain a a lower bound Ry to all these global radii of curvature:
) v
R if 0<@<—,
R = . (3.12)
Rin® + (7! —1)@cos®)  if Es®<n.

[\®]

Of course, formula (3.12) has to be taken here as a definition. We have illustrated
in Figure 3.1 the function ® — R; for given R, and 7, and define the maximum
deflection @y, by

®,, = unique solution in ] g, n] of the equation tan ©® + (7' — 1)@ =0,

which is an upper bound to deflection values which ensure
R; > 0. (3.13)

In Figure 3.2 we give numerical values of this maximum deflection ®,, for values of
the shape coefficient t ranging in [0, 1]. It can be seen that ®,, becomes
close to /2 very quickly when 1/t becomes larger than a few units. When Remark
1 applies, 1/t = a,,/a,, is an upper bound to the condition number of the linearized
problems, so that we can expect a value of ®,, (larger than but) close to 7/2 in
all applications whose condition number «,,/a,, is larger than, say, five.

We now state the size x curvature condition for the Q-well-posedness of the
nonlinear least-squares problem:

Rq /R ThetsMax /P
1.5 1.0
1.8 2.7 |
@95 ] T=1 8.3 |
-1 T= 2/3 -
I T= 1/3 -
T =0 A
2.9
LN AL N B L N B N -V B B e.e LN L I R L B L S B
] 1e 2.1 3.1 2@ a3 2.7 1.e
Teu

Figure 3.1. The lower bound Rg to the global Figure 3.2 The maximum deflection ®,, as a
radii of curvature as a function of the upper function of the shape coefficient .

bound © to deflection, for various values of the

shape coefficient 1.
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Theorem 3.1 Let C, F, and ¢ be given satisfying (3.1}, (3.3), (3.5), (3.6}, (3.7),
and (3.9) and let R; and @, be defined by (3.12) and (3.13).
If the deflection size x curvature condition

0<0, (3.14)

is satisfied, then the nonlinear least-squares problem (3.2) is Q-well-posedness on
the neighborhood

¥ = {zeFld(z, p(C)) < R} (3.15)

for the \xq — x|y distance on C, and the following stability estimate holds:
1

1
X, —Rolg < | VOpdt £ — |2y, — (3.16
Um| Xy — ZolE .}!o IV(O)|r 1 — y(Rg/R) lzy — zolp (3.16)
as soon as zq and z, satisfy
lzo — 2, |p + max d(z;, p(C)) < xRe  for some 0 <y <1 (3.17)

j=0,1

In (3.16), V() is the velocity along the path P associated to X, and %,.

Notice first (see Figure 3.1) that the size x curvature condition (3.14) wili hold
as soon as either 0 < ® < n/2 (and then R; = R) or 7/2 < @ < ®,, (and then
R; < R becomes close to zero when ® becomes close to ®,,). However, as we
have seen in Remark 1, ® is usually proportional to the size of C. So there i§ some
balancing between the size of the set C of admissible parameters and the upper
bound R; to the size of errors on the data which yield a Q-well-posed
least-squares problem (3.2).

Notice also that condition (3.17) for the stability estimate (3.16) to hold means
simply that z, and z, have to be close together and that they are sufficiently near
@(C). For ® < 1 it also requires that the observations are bounded away from the
boundary of ¥ Of course, the Lipschitz constant of the stability estimate
deteriorates when y — 1~ and it blows up if in addition R; = R (y = 1 allows that
z; approaches some center of curvature of ¢(C)).

To conclude this section, let us anticipate how Theorem 3.1 could be applied
to the estimation of the diffusion coefficient a in an elliptic equation: comparing
(2.11) and (3.6) shows that there is a chance of applying this theorem with
E = L*(C, 1), as (2.11) will easily give us the first inequality of (3.6) with «,, > 0.
It remains to check if the other inequalities in (3.6), (3.7), and (3.9) will hold with
E = L*(0, 1). We discuss these matters in the next sections.

4. The Boundary Source Case: How To Learn Something from
a Trivial Case

In this section we consider the one-dimensional elliptic equation
—(au,), =0, 0<x<1, 4.1
together with the boundary conditions

w0 =0, a(lul)=g, (4.2)
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where
geR 4.3)

is a given boundary injection rate.

We remark first that the boundary condition at x = 1 suppresses the under-
determination inherent to (4.1) itself which was pointed out in Section 2.1. Thus
the estimation of a from a measurement of u has a chance of being better behaved.

We also remark that the (unique) solution to (4.1), (4.2) can be given by a very
simple explicit formula:

*d
u(x)=gj D o<x<l (4.4)
o Ay)

We now consider the estimation of a in (4.1), (4.2) from an H'-observation
of u, i.e., from a a measurement z of u,: Given

O0<a,<ay (4.5)
we define

C = {a: [0, 1] > R|a measurable, a,, < a(x) < a, for a.e. xe[0, 1]}

(set of admissible parameters), {4.6)

F=1L12%0,1) (observation space), 4.7)
¢: C—F defined by qo(a)=ux=g, VaeC
a

{parameter — output mapping). 4.8)
Then to any observation
zeF 4.9)

we associate the error function

1

J@) = | pla) — z |3 = J lu, — 22 (4.10)

0

and estimate the corresponding a by solving the nonlinear least-squares problem
find d4eC which minimizes J(a) over C. 4.11)

Of course, this problem is trivial because the mapping ¢ has a very simple

analytical form, and we should be able to apply Theorem 3.1 without any difficulty.
So we estimate the coefficients «,,, o, and f defined in (3.6) and (3.9):
Given gy, a, € L® and te[0, 1], we have

B 1 (al _ ao)z 1/2
V(@O)r = |Q|{L (0 = Oy + 12, dx} , (4.12)

_ 1 (01 _ a0)4 1/2
Al = lg!{fo (= Dag + ta))° dx} . (4.13)
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As we expected at the end of Section 3, cheosing £ = L0, 1) yields the first
estimate of (3.6) with a,, = |g|/a%,. However, estimate (3.9} on | A(t)|; has no chance
to hold, as (a, — a,)* will never be in L*0, 1) when ag, a, are only in L*0, 1)!
(Basically, the problem comes from the fact that a — 1/a is not twice differentiable
on L0, 1))

So Theorem 3.1 does not apply to problem (4.6)+(4.10), but, obviously, it was
silly to take a as an unknown parameter when u is proportional to l/a! So we
make the one-to-one change of the unknown parameter

h=> (4.14)

and define our set of admissible parameters
D = {b: [0, 1] - R|b measurable, b, < b(x) < by, for ae. xe[0,1]}, (4.15)
where, of course,
1 i
b,=—>0, by=—< +o0. (4.16)
ay G
Then the analytical form of ¢ simplifies further to
@(b) = gb, (4.17)

so that ¢ is perfectly linear, and hence (D) is convex {which shows that ¢{C) is
convex too!). Then Theorem 3.1 immediately applies with

o, = |g| = oy, =0 {4.18)
Hence we have proved:
Theorem 4.1. Let b,,, by, and g be given by (4.16), {4.15), and (4.13) and let D
and @ be defined by (4.15) and (4.17). Then the least-squares problem

find beD which minimizes J(b) =|p(b) — z|* over D {4.19)
for the estimation of b from the measurement of u, in L* is Q-well-posedness on

¥ = F = L*0, 1) for the |b, — byl distance on D.

The interest of this result for what follows is that we cannot use a as a
parameter if we want to use the technique of Section 3 to obtain an L?
well-posedness result, and that b = 1/a is a better candidate for that purpose.

5. The Dirac Source Case

5.1, Setting the Problem

Following the suggestion made at the end of Section 4, we take as the unknown
parameter b = 1/a throughout the remainder of this paper. We consider in this
section the one-dimensional elliptic equation (2.1), but with a source term f made
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of a combination of Dirac functions:
—b u), =Y fidx—x), O0<x<l, (5.1
ieJ
which we complement this time with Dirichlet boundary conditions
u(0) = u(1) =0, (5.2)
where, of course,

J 1s a finite set of indices,
x; € ]0, 1] denotes the location of the jth source, (5.3)
[ € R denotes the amplitude of the jth source.

Different {from the boundary source case of Section 4, the boundary conditions
(5.2) do not allow any explicit information on the unknown parameter b. Hence
we expect some underdetermination for the determination of b if 1/u, happens to
be bounded as seen in Section 2. We take advantage of the existence of an explicit
solution to (5.1), (5.2):

ux) = —j b(y){H(y) — H,} dy, (54)
0
where

H(x)= f Z fidy —x;) dy (primitive of the right-hand side), (5.5)
0 jed

~ Lh(WH(y) d

H, = fi—fm—@—y (b-weighted mean value of H). (5.6)
f o b(y)dy

We first consider the same set of admissible parameters as’in (4.15):

D = {b:[0,1] - R|b measurable, b,, < b(x) < by, for a.e. xe[0, 1]}, (5.7
where
0<b, < by (5.8)

are known lower and upper bounds to b, and suppose we are able to find some
measure of the solution u in H (0, 1), or, equivalently, as (ju] + Ju.|*)'/? and |u,]
are equivalent norms on H (0, 1), of its derivative u, in L0, 1). Hence we take as
data space

F=LY0,1) (5.9)
and define the parameter — output mapping ¢ by

p:beD - @b)=u,= —b{H — H,} eF. (5.10)
Now given

zeF = LY0, 1) (5.11)
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we consider the problem of estimating b in D from the data z. As we have seen in
Section 2, we need a lower bound to lu | in order to apply the stability lemma
(Lemma 1). This can be easily achieved in our case by supposing that the
experimental device (i.e., the sources) satisfies, for some H,,, Hy,eR

0<H,<|Hx—H,|<Hy, Vxe[0,1], VbeD. (5.12)

(Notice that (5.12) will be automatically satisfied if, for example, a finite number
of sources and sinks of the same amplitude are located in an alternate way from
the left to the right.) We define

H, b
o= (5.13)

and note that # converges to a constant if b,/b,, — 1 (*homogenecous case”) and
H# — 0 when by /b,, — + oo (“heterogeneous case”). In order to obtain a stability
result for b in a weighted L?-norm, we also define

h(x) = inf|H(x) — Hy|,  ¥xe[0, 1], 5-14
beD .
which satisfies
{h(x) >H,>0, Vxe[0,1], (5.15)
lhlp2 > H,, > 0.

Hypothesis (5.12) immediately yields, using (5.4) and (5.7), the sought for lower
bound to {u,|,

lu(x)| = b, H, for ae. xe[0,1], VbeD, {5.16)

which is required to apply Lemma 1, but at the same time (5.16) shows that 1/u,
is bounded, which leads to difficulties as it makes it possible for two different
elements b of D to yield exactly the same solution u of {5.1), (5.2)!

5.2.  Using the Stability Estimate

We now obtain, for b = 1/q, a stability estimate similar to the one we had in (2.11)
for a. For any two by, b; € D we obtain (compare with (2.2))
by — b _ —
—()7’—{ {H—H,}= _'{gx_bm“_uf + an unknown constant. (5.17)
1 1

Then we have

Lemma 2. Let by, by € D and uy, u,; be the corresponding solutions to the Dirichlet
problem (5.1), (5.2), and suppose that hypotheses (5.8) and (5.12) hold. Then

H sin Y|(by — bol(H — gbo)| < Uy — toxl (5.18)
where H is defined in (5.13), and

by—b -
al/e[(), g} is the angle between the directions — b Loand {(H — A ot -
1
5.19)
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Proof. Applying Lemma 1 to (5.17) with d = (b, — b,)/b, and w = {H — H,,} ~*,
noticing that

ldl = Hy', |wl, <H,",
and defining ¥ as in (5.19) yields
H bo—b _ —
Zmsin |0 (H ~ A, )| < Yox 7 ix)
HM bl 1
which in turn yieids (5.18) using (5.8) and (5.13). O

As we noticed in Section 4.1, estimate (5.18) vanishes if (b, — b,)/b; happens
to be proportional to the piecewise constant function {H — H,}~': the problem of
estimating b in D from a measurement of u, is underdetermined, or in other terms
the parameter — output mapping ¢ is not injective. We take care of this in the
next section.

5.3.  Eliminating the Underdetermination
There are two ways for handling the noninjectivity of ¢:

e cither it is decided to live with it, so that the search for b is replaced by the
search for (connected components of) equivalence classes of b’s [5]

e or some additional information is added in order to suppress the under-
determination as, for example, in the regularization technique.

We follow the second approach here, but rather than adding a general-purpose
regularizing term, we add the minimum amount of information that it is needed
to suppress the underdetermination. The idea is to prevent (b, — b,)/b, and
{H — H, } " becoming proportional, or better, in view of Lemma 2, to prevent
the angle between the corresponding directions becoming smaller than some
Y, > 0. This is done by noticing that {H — H, } ! necessarily has a discontinuity
at each point source x;, je J, and by requiring that (b, — b,)/b, is constant around
some (at least one!) of the source points x;. So we define

J = J nonempty subset of indexes of source points at which additional
information on b is known, (5.20

n = (n; > 0,jeJ) vector of radii of balls on which information

on b is known, (5.21)
which of course are supposed to satisfy
I;=1x;—n; x; + [ =70, 11, Yield, {5.22)
Linl,=@, Vi€, ji#js (5.23)
We may then define our new admissible parameter set by
D, = {beD|¥jeJ, b(x) = b; = an unknown constant on I} (5.24)

for which we have
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Lemma 3. Let hypotheses (5.8) and (5.12) of Section 5.1 hold, and let D, be
defined by (5.20)5.24). First we have

1
0<1—-~ 2 njAf <1, (5.25)
4je.7
where
AH .
Ay= "f"z iy vied, {5.26)
Hy

which allows us to define the underdetermination angle y,, by

T
0 —
<Y, < >
{5.27)

Lcos V=1 -—%ZniAf.

jeJ
Moreover, for any by, by € D,, the angle ys between the directions of (bg — by)/by and
{H— H,}™ " satisfies

¥ >y, > 0. (5.28)

Proof. Let by, b, €D, be given. The angle Y between the direction of (b, — b,)/b,
and {H — H,} " is the angle between the unit vectors ¢ and v defined by

(bo — by, (H—H,)!
T e s.
iy T 629

S THH=-B)Y
where the + sign has been chosen such that

{c, vy =0 (5.30)
So we have, by definition of ¢ and v,

el =1lvl=1, (5.31)

cos f =<{c,v) = 0. {5.32)
The latter equation rewrites, using the median theorem, as

cosyy =1—3%lc—v|*=0. {5.33)

In order to find a lower bound to y, we have to find a lower bound to je — |2
However, ¢ and v have a very simple shape over each I; interval surrounding a
source point x; where je J (see Figure 5.1):

¢(x) = c; = constant, Vxel; {5.34)

(by definition of D,),

T = constant, Yxel,, < Xj,
v(x):{v’ cons xel;, x<x; (535)

v; = constant, ¥xel;, x>x;
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Figure 5.1. Behavior of ¢ and » on the {; interval for j J.

{by definition of the H function),
and a simple calculation shows that

o —vi 1= A, Ve, (5.36)
where A; is defined in (5.26). Hence, from hypotheses (5.22) and (5.23) we obtain
le—vP2 =Y f le(x) — o) dx
jel JI;

= Z "‘?[(C,- - Uj_)z + (Cj - ”;)2]-

jef
The second-order polynomial in ¢; inside the bracket is minimum for
¢;=(v] +vi)/2.
Hence, using (5.36), we obtain

lc— ol = Y, ;A (537)

jeJ
However, because of (5.30) and (5.31) we have
le— v =]cl +v]> - 24e, ) <2

which, together with (5.37) proves (5.25), and allows us to define y,, by (5.27).
From (5.33) and (5.37) we obtain

cos Yy <1—3 ) nA}

jeJ
ie., using (5.27)
cos ¥ < cos ¥,

which proves (5.28). ]
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At this point we already have a precise stability estimate for the estimation of b in
D, in the zero-residual case by combining Lemmas 2 and 3:

H sin Y| (b1 — bo)(H — Hy)l < lo(by) — @(bo)l, Vb, by €D, (5.38)

We combine in the two next sections this estimate with the geometrical
approach of Section 3 in order to obtain a stability result for the nonzero resid-
ual case.

5.4. Estimation of the Geometrical Quantities Associated to D, and ¢

In this section we check the prerequisites for application of the geometric theory
of Section 3 to the problem
find l;eDn which minimizes J(b) = |@(b) — z|§ over D,, {5.39)
where D, is defined in (5.24), ¢ in (5.10), and z in (5.11). Given by, by in D, by # by,
we define a path P in ¢(D,) by
(P() = @(b),  Vte[0,1],
b, =(1—1t)by + thy, Vee[O, 1].
We notice first that P is infintely differentiable from [0, 1] to F, as ¢ is well

known to be infintely differentiable from D equipped with the L*(0, 1) norm to
F = L?(0, 1). Hence,

(5.40)

V()= P,  Alt) =P (5.41)

exist for any t€[0, 1]. We choose a norm || on D, such that E is a Banach space,
D, is a closed (convex) subset of E, and estimations (3.6)-(3.8) on ¥(t) and A(t)
hold. In view of the L2-stability estimate (5.38) obtained in Section 5.3, a proper
choice for E is

for which D, is clearly a closed (convex) subset. We are left with the estimation
of the constants a,,, &, of (3.6) and ® and R of (3.7) which have to satisfy (3.9):

Estimation of «,,. We approximate V(t) by the finite difference
(P(t + dt) — P(t))/dt.
For any te[0, 1] and dte R such that ¢ + dre[0, 1] we have
Pt + dt) — P(t) = ¢(b, .4) — (b))
and, using {5.38)
[P(t + dt) — P(t)] = A sin ¥,,|(b, 14 — b)H — H,)|
= # sin y,, dt|(b, — boH — H,)l.
Dividing by dt and passing to the limit yields
|V(t)] = o sin ¥,,|(by — bo)(H — H,)| (5.43)
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and, using (5.15)
0y = H,, # sin yr,,. (5.44)
Estimation of u,,. In order to calculate V(t) from the closed formula (5.10) for

P(t) = ¢(b,), we begin by calculating the Gateaux derivative of H, at beD in
the direction ce L®(0, 1). For k sufficiently small we have

. fob+kaH [5(b+ ke)uy/b+ Hy)  [ou, +kfscu/b v H

H ke = - = .
P8 (b + ko) {3(b + ke) {L(b + ko) b
However, {§u, = 0 and u, = b(H — H,). Hence,
7 o o JocH —A))
Hyopo= Hy + k2900 78
b+k b j*(l) (b + kC)
which shows that
d oH — H)
dk Hyspeli=o = fo 50 z (5.45)

This implies that
dH,, _ 5 (by — bolH — Hb,)
dt {6b
Using the closed form formula (5.10) yields

(5.46)

1

V(t)= —(by — bol(H — Hp) + 7 [ f (by — bo)(H — H,), (5:47)
0

0

which we rewrite as
1

V(t) = —(by — bo((H — H,) + J (by — bo)(H — H,)

0

b, !
*(1 - m) L (by — bo)(H — H,).

For ve L*(0, 1) we define |v| p = |v — [ v|.» and we remember that
bl < vl forall veL?(, 1), (5.48)
Using [v]p10,1) < 19]120,1) We find

VOl < [(by — bl H — H,y)lp2 + |(by — bo)(H — H,)I.

L2

b,
Jib,
A simple calculation shows that

] 1 — b{x)
§3 b,

——1 v 0, 11,
“b xe[0, 1]

m




248 G. Chavent and K. Kunisch

so that finally

b _ b
Vo)l < ;f‘— I(by — bo)H — H,)| < f‘— Hylby — bo) (5.49)
and hence
b
%szMEE. (5.50)

Estimation of ® and R. We differentiate formula {5.47) with respect to ¢ in
order to obtain A(t). Letting ¢ = b, — b, we easily obtain, using (5.46),

féC(H~I7b){ b, j‘ }
Aty =2 —— Jc — cp. 5.51
ji, b Jo o3y
Estimating the LZ-norm of the term in the parentheses by the same technique
we have just used for V(1) yields
|c(H - H b
) < 2 = Hol B
by, b,
which, together with the lower bound (5.43) on |V (t)}, vields, as [c¢| < by, — b,
A@) _ 2
' V(t)lz B bmHM‘%s SiIl2 wm,

[AO] _ 2ba/bp — D(bas/by)

|l

)

ol — H# sin iy,
so that we can choose, using (3.7),
R =1b, Hy#3 sin® y,, (5.52)
2(byg/b,, — D(bp/b
0, = (bps/br, ' b/ m)' (5.5)
H sin,,

Refining the estimation. The output set ¢(C) tends to become convex when
Inl, =1, ie, when the largest interval on which b is known to be constant tends
to fill the whole space domain [0, 1]. Let us first see whether this fact is reflected
in our estimations of R and ®: when 5|, ~ 4, R given by (5.52) remains bounded,
and we have not been able to improve upon that using the above technique (i.e.,
to find a better estimation such that R — oo when |3|, — 3). Also ©, given by
(5.33), does not vanish when ||, — 3. We next give an alternative estimate of the
deflection which has this property. From (5.51) we find, using (5.48),

H—Hy)l § by
At < 2 IoH — H,)] iicle + (bl IciLl}. (5.54)

b b

Let us denote by j the index of the source with the largest interval f;, so that

m m

Inl, = max n; = n;. (5.55)

jeJ
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But ¢ takes a constant value ¢; on the interval I}, so that ¢ —¢;=0 on I;, and
ic — ¢;| < 2(by — b,,) outsite of I;. Hence,

lelm < le — ¢l < 21 — 2|n[) " (bar — by,
Similarly,
b lrar < 1b, — byl < (1 — 2111) P(bar — by)

which yields, as jciy < by — by,

_ b b
lA@®)] < Z{e(H — Hp)l(1 - 2|filoo)”2(b—M - 1)(% + 1>,
so that
— 112 — )b
AL _ 201 = 21712) (1 + byfbukbu/by — Dbis/b) 556
V) H siny,,
which, in view of (3.7), gives the following upper bound for the deflection:
- 121 by/b,, — 1
0, _ 2= 20111+ bu/b)bubn = Wbwlbw) 557

Hsinfr,,

When |z]|,, is small, estimation (5.57) is less precise than (5.53), so we take, as a
final estimate for the defiection,

. b \| 2bst/bwy — Dibar/by)
® = Min 1, (1 - 2|p{ )1 +-=2 - =, 5.58
“’{ (=2l ( +bM>} #siny, 3%
The corresponding shape coefficient 7 is then given by (see (3.8) and (3.9))
=@ OxR (5.59)
A/R oy diamc
1€.,
: b\ :
7= Min1, (1 — 2|x| )4 1 +-2 fﬂfz Sin . (5.60)
by

Knowledge of the shape coefficient t allows the determination of the maximum
deflection ®@,, by (3.13) and of the lower bound R to giobal radii of curvature
by (3.12).

5.5, The Final Stability Result

Having estimated in the previous section all geometrical quantities associated in
(3.6), (3.7), and (3.9) to @(D,) we can now apply Theorem 3.1 to obtain the
well-posedness of the least-squares problem (5.39).

Theorem 5.1.  Suppose that the lower and upper bounds b,, and by, on b, the source
locations and amplitudes x;, f;, jeJ, and the radii n;, jelJ, of the balls surrounding
the sources over which b is known to take constant values satisfy the following
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conditions :
0<b, <by,
Iy =Tx; — ;% + 0,0 < 10, 11, Vjiel, - (5.61)
Iinl, =, Vi,jed, j#J,
H,>0 (proper arrangement of sources), {5.62)
where H,, is defined by (5.5) and (5.12),
0O <0y (deflection size x curvature condition), {5.63)

where © is defined by (5.58) and @ by (3.13) and (5.60). Then, if R is defined
by (3.12), (5.52), and (5.60), for any data z satisfying '

ze¥ = {ze LX0, 1)|d(z, ¢(D,)) < Rg}, (5.64)

the least-squares problem (5.39) for the estimation of b in D, from the measurement
of z of u, is Q-well-posedness for the h-weighted L2-norm on b, and the following
stability estimate holds:

. A A 1
H sin | h(by — by)l < T 7R.R 1Zo — 24112 (5.65)
as Soon as
|20 — 2112 + Max d(z;, o(D,)) < xR, O<y<l {5.66)
j=0,1

Notice first from (5.58) that the size x curvature condition (5.63) will be
satisfied as soon as by/b,, is close enough to 1 or 5|, is close enough to 3!
Hence, for each value of ||, there exists an upper bound to the ratio by/b,, for
which the inverse problem is well-posed, this upper bound being less and less
restrictive when |#|,, approaches 3, i.e., when one of the balls over which the
parameter is known to be constant tends to fill up the space domain.

Notice also that we obtain stability of b for a weighted L*-norm: the stability
of b is better at locations x where h(x) is large, ie., where |u,(x)| is large, which
corresponds to the physical intuition.

Notice also from formula (3.12) defining R that the size of the neighborhood
" on which stability holds will be R independent of the size D,, provided that
by/b,, is small enough so that @ given by (5.58) is smaller than n/2. Allowing the
size of D, to grow beyond this limit will be paid for by a reduction in the size of
¥ to R < R, with Ry approaching zero when b,,/b, approaches its upper limit
corresponding to ® = ©,, given by (3.13).

To conclude this section we give the numerical values of all constants
appearing in the stability theorem (Theorem 5.1) in the simple case where the
right-hand side of the elliptic equations contains only one Dirac source of
amplitude one located at the center of the interval. Hence we estimate the
coefficient b in

—(b tu), =dx—3), 0<x<l, (5.67)
u(0) = u(l) =90, {(5.68)
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from
ze L0, 1) = measurement of u,

using the additional information that

beD, = {b|0 < b, < b(x) < by, b = constant over 13 —n, 1 + #[ }.

The problem is hence completely specified as soon as we have chosen
€70, 3] (radius of the ball over which the parameter b
is known to be constant),

b
{ =b—Me L1, +oof (upper to lower bound ratio for b),

b,>0 (lower bound to b).

m

We then immediately find that
h(x) = constant = H,(1 + {)™*,
Hy={1+07",

H=("2,
so that the stability estimate (5.65) rewrites as
L P+ 1
lbo — byle < X 120 = 21112

sing,, 1—y(Rg/R)

251

(5.69)

(5.70)

(5.71)
(5.72)

(5.73)

(5.74)

(5.75)

For each value of the “regularization” parameter 4, the size x curvature condition
{(5.63) imposes an upper limit {,, to the b,,/b,, ratio to ensure the well-posedness
of the inverse problem. This upper limit {,, is shown in Figure 5.2. It becomes
unbounded when # approaches 0.5 (for n = 0.5 the output set ¢(D),) is convex!).

2.9
1.7
1.3 4
ie
T T T 1 l T 1 T T I T T T T
2.@ a.2 2.3 2.5

Eto

Figure 5.2, Upper limit { to by/b,, ensuring well-posedness of the inverse problem following

Theorem 5.1 for example (5.67)-(5.70).
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8.2 e 2
-{  From top 1o battom ; - From top 1o bottom -
_ n=.49 / i n= 49
n=.375 / n=.3758
b n=.25 / B =35
- 7 =.128 /o4 - n=.125
21 | n =0t /i 6.1 . n=.01

Figure 5.3. Values of R/b,, and Ry/b,, as functions of 1/{ = b,,/by and %

In Figure 5.3 we show the radius of curvature R and the global radius of
curvature R as functions of 7 and { . Note that the interval over which Ry is
strictly smaller than R but still positive is quite small (compare (3.12}, (3.13), and
Figure 3.1). Recall that positive values of R, give the size of the cylindrical
neighborhood of ¢(D,) with respect to which the inverse problem is Q-well-posed,
provided that { < {,,. Figure 5.4 gives the graphs for the deflection @ in multiples
of = and the shape coefficient 7. Notice that t has very roughly the value 0.2 for
values # and { which give a deflection ® close to 7/2. As it can be seen in Figure
3.2, this value of t corresponds to a maximum deflection ®,, only a little larger
than n/2. Hence, for such values of 7 the set {(n, {)|(n/2) < Ofn, {) < O} is small,

Tata/P ‘ Tay
1.8 % B 2.B
. Voo From left to right : -1 From top o bottom : ji
n=.49 n=.49 ,’
b n=.375 T n=.375
= n=.25 = n=.25
_ n= 125 . n=.125
0.7 _| n=.01 2.5 _| n=.01
2.3 _| 8.3 _|
2.9 T e.e T

,.._.
S
=
w

2.7 Q.6 2.9 L

[ irZets

Figure 54. The upper bound ® to the deflection of paths of ¢(D,} and the shape. of coefficient ¢ of
the estimation R, © and A as functions of 1/ = b,/b), and ».
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| Csle,Llés:hllx
75. @ 1.0
- -{  From top o bottom :
- x=.5 i n=.375
n=.25
_ -1 n= .49
_ 4 n=.125%
56.86 | 2 Q.7 n=.01

oF
)

L/Zala

Figure 5.5. (a) The Lipschitz constant of the inverse problem for data in the first half of the security
strip around ¢(D,) (i.e., x = 0.5) as functions of 1/ = b,,/b,, and #. (b) The lower bound sin ,, associated
to the set D, as functions of 1/{ = b,,/by, and #.

and there is only little gain in allowing ® to pass beyond 7/2. We show in Figure
5.5(a) the Lipschitz constant of (5.75). This figure corresonds to the choice y = 0.5,
so that the data z, and z, are located no further from ¢(D,) than “in the middle”
of the security strip around ¢(D,) defined by R;. For y = 0.1 the graphs look
similar to those of Figure 5.5 but are scaled with the factor 3. Finally, in Figure
5.5(b) we give the graph for sin y,, associated with the set D, for various values
of pand (L.

6. The Distributed Source Case

In this section we consider the estimation of b in
{_(b_lux)x =/,
w0)=u(l)=0

from observation of Uy, and with feL?*0,1). We put H(x) = j""é f(s)ds and

recall the notation of H,, D, b,, and b,, of the previous section. Due to the

increased assumption in the regularity of f in this section there always exists
at least one zero of

b_lux—_——H'i‘ﬁb, bED.

(6.1)

If the coefficients b are restricted to be constant in the neighborhood of zeros
of H — H,, then it will be possible to establish stability in the sense of Section3.
For H,, > 0 we define
Q, = () {xel0, 11: |Hx) — A,| = H,} (62)

beD
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and for be D we put

Qf ={xeQ,: Hx)— H,>= H,,}
and

Q, ={xeQ, Hx)—H,< - H,}.

It is assumed that Q,, is not empty. Since D is a connected subset of L*® and
since b — H(x) — H, is continuous from D < L® to R for every xe[0, 1] it
follows that {H(x) — H;|be D} is a connected subset of R for every x&[0, 1].
Consequently, the definition of Q; and Q,, is independent of the representative
beD and Q) L Q, =Q,. Clearly, Q,, is a closed set and hence its complement
is open. It can therefore be represented as a countable union of nonintersecting
open intervals. For simplicity we assume that therc are only finitely many
such intervals {S;})-,, that they are indexed from left to right in the domain
(0, 1), and that S; and S, do not contain 0 or 1 in their closure. Between any
pair of the endpoints 0 and 1 and of the intervals {S}¥_, there are subsets of
Q) and Q,,. Henceforth we assume that these subsets belong alternately to
QF and Q. Furthermore, let #=(y,,...,ny) € RY, 5y, >0, be a vector char-
acterizing neighborhoods I; = 1l; — n, r; + n,[ of S;=1I;,r;[. These neighbor-
hoods are assumed to be pairwise disjoint. The notation is illustrated in Figure 6.1.
In analogy to the case of point sources in Section 5 we may refer to the
intervals S; as “sources.” We also note that the complement of Q,, consists of one
open interval in the case that f > 0, f # 0, and provided that H,, > 0 is small
enough. It may also be useful to consider the following specific example.

Remark 2. To illustrate further the set Q,, and its dependence on H,, let us
consider the specific case when f = ke R. In this case

1
_ 0 sb(s) ds
H(x)=kx and H=% j—l*————
fo b(s) ds
Moreover, define
. f[bsbds 4 s {& sbds
X = min and X = max .
jod 1 1
beD fo bds beD jo bds
b, u
A
v & = const;
o
b = const;
’jrﬂj A oty bev = Mper Lyy Tier Tper F e
0 4 5 + + S t ; X
1 Iisq
I~ : } i
o Q,

Figure 6.1. Notations for the distributed source case.
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Then, for H,, > 0 sufficiently small,

H H
Q,=0,0uQ; =|:O,_)g~7"']ul}c+7;, 1].

255

For the proof of Theorem 6.1 the following modification of Lemma 1 is required.
It can be verified with techniques analogous to those of Lemma 1. We use || to

denote the measure of a set Q < R.

Lemma 4. Let Q < R be a measurable set and let de L*Q), we L*(Q), and

he L*(Q) satisfy

— = h + an unknown constant.
w

Then we have

1 |W|L2(n)
igll/z |W|L°°(Q)

d

w LZ(Q)

sin lp < |h[LZ(Q)s

where W €[0, n/2] is the angle between the directions d and w and

sin y = \/ d, W>L2(ﬂ)

| dILZ(Q) |w |L2(g)

The class of admissible coefficients is given by
={beD|b(x)=b;eRonl;j=1,...,N},
and the parameter to output mapping
@: LAQ,) - L¥Q,)
is given by

o(b) = u,.

We note the following relationship between the L*(0, 1)- and the L*Q

for elements be D,

Iblraam < 1Bl < (

where

2nmax + (rjmax - ljmax) 1/2|b! ,
2r]min 1>

fimin = min{xy]i=1,..., N}, Nmax = Max{y;li=1,..., N},

)-11OTMNS

(6.3)

and j max is the index of the largest interval S;. We further define H,, such that

|H(x) - H| < Hy, VxeQ, and beD,,
and we put # = (H,,b,)(Hby) ™! and

N
= U QG —=n; LLodr, v+ D)

(6.4)
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The following stability estimate can be obtained in the zero residual case.

Theorem 6.1 Let the assumptions made on H,, Q,, and S; hold and assume
that

Hi N H%lifiiz(.l)nrznax )
n— T 5 ), (6.5)
H% j; 9H?2

Then r|Q,| '€10,%], which allows us to define i, as the unigue solution in
10, /2] of cos i, = 1 — r|Q,,1 /2. Moreover, the estimate

A sin yr,,|(by — bo)(H — Hbg)]LZ(Q,,,) < loby — o(b1)lrya, (6.6)

holds for every by and b, € D,, with sin ,, > 0. In view of (6.2) and (6.3), Theorem
6.1 implies

[bo — bilrxo,1) < Klolbo) — 0(by)I2a,
for some constant K which is independent of by and b, in D,.

Proof of Theorem 6.1. Let by be in D, and recall that

by, —b _ Ug, — Uyy
i})—l {H—-H,} = ig—i + an unknown constant.
1 1

Applying Lemma 4 with d = (b, — b,)/b;, w = 1/(H — H,), and Q = Q, gives

L H—~H) g, [ bg — b _
_ i _box—l L2 ! ° " (4 H,) sin ¥
19,11 |(H — Hp)) " Mo | by 1240,)

Upyx — Uy

b

<

, (6.7)
L)

where 1 is the angle between the directions given by d and w. From (6.7), (6.3),
and (6.4) we conclude that

H,
Hy by

— . 1
[(by — b )(H — Hy)laq, sin ¥ < b {thox — Uil

and consequently
H(bo — b)) (H — Hy)liaq, sin ¥ < Juox — Uixlraa,) {6.8)

Next define ¢ = d/|d|;yq,, and v = T w/|w|pq ,, With the sign chosen such
that {c, v)12q , = 0. As in the proof of Lemma 3 we have

cos ¥ = ¢, Vg, = 1 — 3lc — vlirg,, = 0. {6.9)

Below we establish that

Hy & M) I (6.10)

—pl? > — : .
o= vnay 2 ] <H§, PR 9H?, BN
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Combining (6.9) and (6.10) implies

O<cosy<1-— =cos ¥, <1,

r
21Q,|
and therefore

sin i > siny,, > 0.

This estimate together with (6.8) implies the desired result. It remains to verify
(6.10). Obviously we have
N

lc—vlpg,y = Z le - UiLZ(Uj), (6.11)
i=1

where U; =17 UIR =10, —n;, L © Irj, u,, v+, and

{.
[c——v{fzw.)zj le — v|? dx+J le — v]? dx. {6.12)

’ I ¥
Observe that ¢ equals an unknown constant on U; for j=1,..., N. A simple

calculation shows that the expression on the right-hand side of (6.12) is minimum
when ¢ is equal to the following constant:

Therefore we find

1 1 2
lc — vlZ AZJ —j vds-&-—j vds —ov(x); dx
B It 2n; 1r 2n; I3
1 1 2
+ — | vds+— 1| vds—u(x)| dx. (6.13)
IR 2n; i N JIF

For the first term on the right-hand side of (6.13) we have

j‘L
I]'

2%“ L.LU ds + ;;J p vds — v(x)|* dx
1 2
- J [o(8) — v(x)] d(§) + — J (&) —v(x) df| dx
2n; Iy 2n; 1

J‘Ij" ’l,

1 2 1 2
> - ( J lv(f)—v(x)ldé> dx——zf g lv(f)—u(x);d¢> (6.14)
8’7;‘ IFAJIR 4’71' \J

where we used the fact that (a + b)* > 1a® — b* for any a, beR. (In the case of

point sources the analogue to the last term is zero.) In the following estimates we
use

1o,

LYQm) H,

Q12 l 1
< —
H, ~—|H-H,

(6.15)
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— < (Hx)—H,)"',  VxeQ,. (6.16)

From (6.14) we find

1 1 12
4j udC—i—-—J‘ vdl — v(x)| dx
I 2n Jpr

JI{‘ 2’11 ! 4
o)
P e
81 1] J - \J 12
o L,
4n%|9| AJp

1 i
HQ) — H,, Hx) — H,

J i) #
H(c) — Hy,

dC)Z dx
dé)

1 —
S0 19, Hy) — (H() — ) d¢ ) d
> 87 Ile i, J (J (HE — Hy) — (HE) = By 5) .
2
dé ) d
4VIJ|Q,,,|H f(f J‘ |f(o)l do f) x
28W%IQmIH‘;4 " %mmmz o5 &

_n H4 H%wiﬂl%%zh%
TIQ,l L 2HY, 9H}, '

The last term in (6.13) is estimated in an analogous manner. We obtain

IC——UI AU, >*“‘"’1i ﬂ-W‘——L—H%“f‘iZ(UVﬂj =1 N
AT

Using this estimate in {6.11) we obtain

lc UILZQ ! i [H—4 - Hll\l|fii2(u-)'1j
@ =10, 5 LH, 9H,
-_ 1 I:H4 i 7, — letlif’iz(l)nrznax
TIQ LHY & 9H;, ’
which is the desired estimate (6.10). ]

With the estimates of Theorem 6.1 it is simple to argue Q-stability of the
least-squares problem

min|@(b) — zl{xq,)» (6.17)

beDy,

where zeL¥Q,) and o@(b) = ub), with u(b) the solution of (6.1). In fact,
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the estimates for the geometric quantities «,,, %, 0,, and R are obtained in
the same manner as in Section 5. The only change occurs in the estimate of
®,, where in formulas (5.56)-(5.60) the term (1 — 2|5|,)"/* can be replaced by
(15 jmax] =217 |man) . Thus, for problem (6.17) the deflection ® and the shape
coefficient t are given by

by,

0= Mln{l, (1Sjmaxl _2|nmax|)1/2<1 + “)}
by

2by /by, — 1)
H siny,,

and

M

b
T= Min{L (18 jmax| —2lf1mxl)”2(1 + b—"')}%ﬂ sin Y,

respectively, while @, R, and R, are as given in Section 5. Furthermore, we put

h(x) = Inf|H(x) — H,| for xeQ,,

beDy

and we note that h(x) > H,, for xeQ,,. We obtain the following:

Theorem 6.2. Under the assumptions of Theorem 6.1 the least-squares problem
(6.17) with

¥ = {ze L*(Q,)|d(z, ¢(D,)) < R¢}

is Q-well-posed with the h-weighted L?-norm on b, and the following stability
estimate holds:

1

A sin Y, | by — by)lr2a,, < 1= R.R 120 — 21120,

as soon as

Zo — Z1liyq,y + Max d(z;, ¢(D,)) < xRg, where 0 <y< 1l
i=0.1
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