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1. Introduction 

The purpose of this research is the study of the stability of estimating the diffusion 
coefficient in a two-point boundary-value problem from possibly error-corrupted 
data of the state-variable of the equation. The estimation problem is stated as a 
nonlinear least-squares problem in Hilbert space. A geometrically motivated 
abstract stability theory developed by the first author is used. 
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through the Steiermaerkische Landesregierung is gratefully acknowledged. 
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The following notations and definitions are needed: 

E is a normed space with norm F" [E- 
C c E is a given convex set. 
F is a Hilbert space with norm l' Iv. 
(p: C ~ F .  

Definition 1. The problem 

(P) Min J(x) = [q)(x) - z12 over C 

is said to be quadractically well-posed (Q-well-posed) in an open neighborhood 
of q)(C) for the norm l" ]E if: 

(i) (P) has a unique solution 92 for any z c ~ .  
(ii) J has no local minimum for any z ~ ~ .  

(iii) Any minimizing sequence converges to 92 in the norm of E. 
(iv) The mapping z ~ 92 is locally Lipschitz continuous from ( ' f ,  ~< iF) to 

(c, I" It). 
While Q-stability is a desirable property for nonlinear least-squares prob- 

lems it allows, for example, the data z to be outside of ~0(C)--it requires strong 
hypotheses which imply this property. It is the purpose of this paper to give an 
example in which Q-stability with an infinite-dimensional set C holds and to 
provide precise estimates for the geometrical quantities required. 

The problem under investigation is 

-(aux)x = f  (1.1) 

with a e C, where 

C = {a: [0, 1] ~ ~[a is measurable, 0 < am <- a(x) <_ aM, a.e. on [0, 1]} 

and the data are assumed to correspond to ux. The theory in [4], [5], and [2] 
requires us to connect all points of the parameter set C with a path. We shall see 
that the simple path of a segment between a o and a~ given by t --, (1 - t)ao + r~a~ 
for r~[0, 1] is useless, since it leads to unbounded curvature in the image space. 
The correct parametrization is described in Section 3. Sections 4 and 5 consider 
the case of a rough source ( fequal  to a linear combination of delta functions) and 
of a smooth source ( f  ~ LZ), respectively. It is necessary to provide additional 
information in the neighborhood of the singular points of the output ux. Here we 
refer to a point ~ as singular if Ux does not exist at 22 (rough case) or if ux(s = 0 
(smooth case). The extra information which is required is that the coefficient a is 
constant in the neighborhood of singular points. An essential ingredient to obtain 
the desired stability results is the availability of a lower bound of the linearization 
of the parameter to output mapping. In this respect we rely on reeem results 
from [6]. 

For  another application of the geometrical theory of [4], [5], and [2] we refer 
to a paper by Symes [10] concerned with plane wave detection. 

For  related results on the identification of the diffusion coefficient in eihl~fic 
equations we refer to Ell, and [7]-[9],  for example. The main difference between 
these contributions and ours is given by the fact that the observation z in this paper 
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need not be obtainable, i.e., z need not necessarily be an element of ~0(C). This 
situation occurs due to modeling and measurement errors. 

The assumption on the availability of ux as opposed to, e.g., u as data, together 
with appropriate  input functions f ,  guarantees the existence of a continuous inverse 
to a -~ ux(a) from L 2 to L 2, if a is restricted to lying in an appropriate subset of 
L 2 (see Sections 5.2 and 5.3). The case of data z for u in L 2 can only be treated 
using regularization techniques and will be studied elsewhere. 

Extension of the results of this paper to the multidimensional case is not easy. 
The motivation for examining the one-dimensional case independently in this 
paper is that, due to an explicit formula for the solution of (1.1), we can derive 
precise stability estimates. 

2. An L2-Stability Estimate for Hi-Observations 

We begin by a stability estimate which is crucial for the subsequent proofs, and 
which is a reformulation of Theorem 2.5 of [61. 

Let us first remark that if u and a satisfy the 1 - D elliptic equation for some 
given f ,  

-(aU~)x = f ,  0 < x _< 1, (2.1) 

then u will still satisfy the same equation with a replaced by a + k/ux, k small 
enough (provided this makes sense). Hence the determination of a from u using 
(2.1) only is underdetermined, the problem being caused by pairs of coefficients a 
whose difference is proport ional  to 1/ux. This should be reflected in the stability 
estimate to come. 

So let (aj, uj)~L~176 1) • Hi(0, 1),j = 0, 1, satisfy (2.1). Calculating the differ- 
ence of the two equations and integrating once yields 

(al - ao)Uox = al(Uo~ - Ux~) + an unknown constant. (2.2) 

Lemma 1. Let  d~LZ(O, 1), w~L~176 1), hEL2(0, 1) satisfy 

d 
- = h + an unknown constant. (2.3) 
W 

Then 

where 

I I~ 4/e is the angle between directions d and w, 

sin ~ = - - -  

Proof. If we denote by L2(0, 1)/~ the space of class of functions defined up to a 
constant, we know that 

I F = - + cst - < Ihl 
W L2/~ cst~N W 
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d 2  d 2  

so that  

Let us now define y as the project ion of w onto the subspace of L2(O, 1) or thogona l  
to d. Of  course, 

(d,  y )  = O, (2.7) 

]y] = sin q/lw[. (2.8) 

Fo r  any k e R, (2.6) can be rewritten in, view of (2.7), as 

However ,  

( f ] d ( l w + k y ) ) 2 < - ] d 2 { l - 2 k f ] w y + k 2 f j v Z Y  2} 

Choosing  for k the value that  minimizes the second-order  po lynomia l  on the 
r ight-hand side yields 

Plugging the last inequali ty in (2.9) yields the expected result (2.4). D 

We can now apply L e m m a  1 to (2.2), provided we suppose that  we know a priori 
lower and upper  bounds  to ux: 

0 < u,, <_ ux(x) <_ UM, (2.10) 

which yield the stability est imate 

u~ sin qgl(a 1 - ao)Uo~[ _< lal(uo~ - ul~)l, (2.11) 
u M 

where 

1 
O = angle between the directions of al  - ao and - - .  (2.12) 

UOx 

As expected, this est imate vanishes when al  -- a o becomes propor t iona l  to i/Uo~ ! 
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Besides Lemma 1 which we apply later to a reparametrization of the same 
problem, the useful findings of this section are that we can obtain an explicit 
LZ-Lipschitz stability estimate for a from an H~-observation of u provided that: 

�9 u~ can be bounded to stay away from zero as in (2.10). 
�9 The angle between two admissible parameters and 1/ux can also be bound to 

stay away from zero. 

3. A Size x Curvature Condition for the Weli-Posedness of 
Nonlinear Least-Squares Problems 

In this section we describe a sufficient condition for the Q-well-posedness of our 
abstract nonlinear least-squares problem, based on the quasi-convexity and 
size x curvature conditions approach developed by Chavent in [4], [-5], and 
[23. 

Let 

f C  = convex subset of some vector (admissible set), space 
F = Hilbert space (observation space), 
z e F  (data), (3.1) 

q~: C ~ F (input ~ output mapping) 

be given. We consider in this section the nonlinear least-squares problem 

find ~ C  which minimizes J(x)=[cp(x)-zl~ over C. (3.2) 

We only require from ~o that it is regular along any segment of C, precisely: 

Vxo, xlmC, P : t m [ 0 , 1 ] - ~ P ( t ) = q ~ ( ( 1 - t ) X o + t X  0 is in WZ'~(0,1). 

(3.3) 
We call P a path in ~o(C), and throughout the paper we use the notation 

V(t) = P'(t)~ F (velocity along the path), 
A(t) = P"(t)~ F (acceleration along the path). (3.4) 

Of course, V(t) and A(t) are implicitly related to the path P associated to 
(Xo, Xl) which will always be clear from the context. 

Suppose now we have been able to find some Banach space E, with a norm 
I']~, such that 

C c E, C closed set in E, (3.5) 

"there exists 0 < ~,, _< eM 
suchthat  VXo,XleC andfora.e,  t~]0,1[ (3.6) 
. , . I x ~  - XolE - fV(t)FF <_ . ~ l x ~  - XolE, 

'there exists |  and R > 0  

such that Vx o, x 1 ~ C and for a.e. 

( ~  IN(t)[ 1 
IA(t)[ <_ O, I r(t)] 2 -< R " 

tel0, 1[ 
(3.7) 
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We comment first on hypothesis (3.6). In the finite-dimensional case a,, and a M 
are lower and upper bounds to the singular values of cp'(x) for all x of C. Hence 
(3.6) corresponds in some sense to the fact that the "linearized" least-squares 
problem is well-posed for any linearization point x of C. i t  allows us to obtain 
stability results on C for the I'i~ norm from stability results on q~(C) for the arc 
length v along a path P (remember that dv = IV(t)ldt). 

We now comment on hypothesis (3.7). The quantities 19 and R have a 
geometrical interpretation [5]: | is an upper bound to the deflection (i,e, angle of 
tangents) between any two points of any path P of the shape (3.3), and  R is a 
lower bound to the usual radius of  curvature along any path P of the shape (3.3). 

We may then define an tapper bound A to the length of any path P b y  

A = aM diam C. (3,8) 

As the geometrical intuition shows us that the deflection along a path P is 
necessarily smaller than A/R (see [5] for the proof), we suppose in what follows 
that the upper bound | to the deflection of paths given in (3.7) is at least as good 
as A/R, i:e., that 

vA 
19 = ~- ,  0 _< '~ < 1, (3,9) 

where z is called the "shape coefficient" of the estimation (3.6), (3.7), see [3]. 

Hypotheses (3.7) and (3.9) are satisfied if the following majorization Remark 1. 
holds for the acceleration A(t): 

I there exists fi > O such that 
VXo,Xl~C andfora.e,  t e l 0 , 1 [  (3.10) 

- - X  2 (IA(t)Ir <- fllXo alE, 

with | R, and r defined by Io:(? iam , 

If ~0 were twice differentiable on (C, E), then fi would be an upper bound to 
II qr for x e C. Notice also from (3.11) that the upper bound | to the deflection 
of ~o(C) can be made arbitrarily small by reducing the diameter of C (and hence 
of r because of (3.8)!). 

The numbers | R, and r give information on the shape of the set ~o(C), which 
is useful for the projection of z onto q~(C), which is one of the steps involved in the 
solution of the nonliner least-squares problem (3.2). However, the relevant quantity 
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for the Q-well-posedness of this projection is neither | nor R, but rather the 
smallest global radius o f  curvature between any two points of any path P defined 
in (3.3). We refer to [5] for the precise definition of this notion, and recall here 
only how to obtain a a lower bound R G to all these global radii of  curvature: 

R if 0 _ < O _ < ~ ,  

R a = (3.12) 
R(sin O + (~- 1 _ 1)O cos | if n - < |  

2 -  

Of  course, formula (3.12) has to be taken here as a definition. We have illustrated 
in Figure 3.1 the function |  RG for given R, and r, and define the maximum 
deflection O u  by 

|  = unique solution in ~, n of the equation tan O + ( r -  1 _ 1)O = 0, 

which is an upper bound to deflection values which ensure 

R o > 0. (3.13) 

In Figure 3.2 we give numerical values of this maximum deflection ON for values of 
the shape coefficient ~ ranging in [0, 1]. It can be seen that ON becomes 
close to rc/2 very quickly when 1/z becomes larger than a few units. When Remark 
1 applies, 1/z = eN/em is an upper bound to the condition number of the linearized 
problems, so that we can expect a value of | (larger than but) close to n/2 in 
all applications whose condition number eN/Cq~ is larger than, say, five. 

We now state the size x curvature condition for the Q-well-posedness of the 
nonlinear least-squares problem: 

1 . 5  

L 0  

0.5 t ~ l  

+ . ~ 1  I I I I I I I I t I I 

0,0 1 . 0  2 r s  3, 

Figure 3.1. The lower bound R o to the global 
radii of curvature as a function of the upper 
bound | to deflection, for various values of the 
shape coefficient ~. 

I Tk ~ ~ a N~ �9 ] 

0 .  7 _ J  

0 . 3  

0 . 0  

0 . 0  0 . 3  0 , 7  1. 

Figure 3.2 The maximum deflection | as a 
function of the shape coefficient r. 
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Theorem 3.1 Let  C, F, and ~o be given satisfying (3.1), (3.3), (3.5), (3.6), (3.7), 
and (3.9) and let R e and | be defined by (3.12) and (3.13). 

I f  the deflection size • curvature condition 

| < | (3.14) 

is satisfied, then the nonlinear least-squares problem (3.2) is Q-welt-posedness on 
the neighborhood 

f "  = { zeF id ( z ,  ~o(C)) < Re} (3.15) 

for  the Ix o - x 1 tE distance on C, and the following stability estimate holds: 

~1 1 
~"1921 - :2o[n -< I [V(t)l r dt < Izl - Zolv (3.16) 

Jo - 1 - x(R~/R)  

as soon as z o and z 1 satisfy 

[z o - zl[ v + max d(zj, q)(C)) <_ )~R~ for  some 0 < )~ < 1. (3.17) 
j=O,1 

In (3.16), V(t) is the velocity along the pa th  P associated to ~o and Xx- 
Not ice  first (see Figure 3.1) that  the size x curvature  condit ion (3.14) will hold 

as soon as either 0 _< | _< zc/2 [and then R G = R) or  zff2 < | < | (and then 
Re  < R becomes close to zero when | becomes close to OM). However ,  as we 
have seen in R e m a r k  1, | is usually p ropor t iona l  to the size of C. So there is some 
balancing between the size of  the set C of admissible parameters  and the upper  
bound  R G to the size of  errors on the da ta  which yield a Q-well-posed 
least-squares p rob lem (3.2). 

Not ice  also tha t  condi t ion (3.17) for the stability est imate (3.16] to hold means  
simply that  z o and zt have to be  close together and that  they are sufficiently near  
~p(C). For  | < 1 it also requires that  the observat ions  are bounded  away  from the 
bounda ry  of ~ .  Of  course, the Lipschitz constant  of the stability est imate 
deteriorates when Z ~ 1 - and it blows up if in addi t ion R G = R (X - 1 allows that  
zi approaches  some center of curvature  of  ~p(C)). 

To  conclude this section, let us anticipate how Theo rem 3.1 could be applied 
to the es t imat ion of the diffusion coefficient a in an elliptic equat ion:  compar ing  
(2.11) and (3.6) shows that  there is a chance of applying this theorem with 
E = L2(0, 1), as (2.11) will easily give us the first inequali ty of  (3.6) with ~m > 0. 
It  remains  to check if the other  inequalities in (3.6), (3.7), and (3.9) will hold with 
E = L2(0, I). We discuss these mat te rs  in the next sections. 

4. The Boundary Source Case: How To Learn Something from 
a Trivial Case 

In this section we consider the one-dimensional  elliptic equat ion  

-(aux)x = O, 0 < x < 1, 

together  with the bounda ry  condit ions 

u(0) = 0, a(1)u~(l) = g, 

(4.1) 

(4.2) 
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where 

g ~ ~ (4.3) 

is a given boundary injection rate. 
We remark first that the boundary condition at x = 1 suppresses the under- 

determination inherent to (4.1) itself which was pointed out in Section 2.1. Thus 
the estimation of a from a measurement of u has a chance of being better behaved. 

We also remark that the (unique) solution to (4.1), (4.2) can be given by a very 
simple explicit formula: 

f ~  dy 0 < < 1. u ( x )  = g a ( y ) '  _ x _ (4.4) 

We now consider the estimation of a in (4.1), (4.2) from an Hi-observation 
of u, i.e., from a a measurement z of ux: Given 

0 < am <- aM (4.5) 

we define 

C = {a: E0, 1] ~ Ela measurable, a,, < a(x) < aM for a.e. x e [0 ,  1]} 

(set of admissible parameters), (4.6) 

F = LZ(O, 1) (observation space), (4.7) 

g 
q ~ : C ~ F  defined by q ~ ( a ) = u x = - ,  Va~C 

a 

(parameter ~ output mapping). (4.8) 

Then to any observation 

z ~ F (4.9) 

we associate the error function 
t l l  

J(a) = Hq~(a) - zllv z = | lux -- z[ z (4.10) 
d o 

and estimate the corresponding a by solving the nonlinear least-squares problem 

find ~ C  which minimizes J(a) over C. (4.11) 

Of course, this problem is trivial because the mapping ~0 has a very simple 
analytical form, and we should be able to apply Theorem 3.1 without any difficulty. 

So we estimate the coefficients ~,,, aM, and t3 defined in (3.6) and (3.9): 
Given a o, a 1 ~L ~ and t~ [0, 1], we have 

[ V(t)IF -- Igl ((1 -- t)a o + tal) 4 

IA(t)IF = Iol ((1 - t ) ~ o  + t a 0  6 
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As we expected at the end of Section 3, choosing E = L2(0, 1) yields the first 
es t imate of (3.6) with am = [9 [/a z .  However ,  es t imate (3.9) on IA(t)Iv has no chance 
to bold, as (al - ao) 2 will never  be in L2(0, 1) when ao, a l  are only in L2(0, 1)! 
(Basically, the p rob lem comes f rom the fact that  a ~ !/a is not  twice difl~rentiable 
o n  L2(0, 1).) 

So Theorem 3.1 does not  a p p l y  to p rob lem (4.6)-(4~10), but, obviously,  it was 
silly to take a as an unknown  pa rame te r  when u is p ropor t iona l  to 1/a! So we 
make  the one- to-one change of the unknown  pa ramete r  

1 
b = - (4.t4) 

a 

and define our  set of  admissible pa ramete rs  

D = {b: [0, 1] --, ~]b  measurable ,  bm <_ b(x) <_ b~,i for a.e. x E [ 0 ,  1]}, (4.15) 

where, of course, 

1 1 
b m =  - -  > 0, bM = - -  < + oe, (4.16) 

a M am 

Then the analytical form of q~ simplifies further to 

~o(b) = gb, (4.17) 

so that  q~ is perfectly linear, and hence q~(D) is convex (which shows that  p(C) is 
convex too!). Then Theo rem 3.1 immediate ly  applies with 

�9 ,, = I01 = aM, fl = 0. (4.18) 

Hence  we have proved:  

Theorem 4.1. Let bin, bg, and 9 be 9iven by (4.16), (4.15), and (4.13) and let D 
and q~ be defined by (4.15) and (4.17). Then the least-squares problem 

find l)eD which minimizes J(b) = Irp(b) - zl 2 over D (4.19) 

for the estimation of  b from the measurement of  ux in L z is Q-well-posedness on 
= F = Lz(0, 1)for the [bl -- bolL2 distance on D. 

The interest of this result for what  follows is that  we cannot  use a as a 
pa ramete r  if we want  to use the technique of Section 3 to o b t a i n  an L z 
well-posedness result, and that  b = 1/a is a bet ter  candidate  for that  purpose.  

5. The Dirac Source Case 

5.1. Setting the Problem 

Following the suggestion made  at the end of Section 4, we take as the unknown  
pa rame te r  b = 1/a th roughou t  the remainder  of  this paper.  We consider in this 
section the one-dimensional  elliptic equat ion  (2.1), but  wi th  a source t e r m f  made  
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of a combination of Dirac functions: 

-(b-Xux)x = ~ f i 6 ( x - x j ) ,  0 < x _ <  1, (5.1) 

which we complement this time with Dirichlet boundary conditions 

u(0) = u(1) = 0, (5.2) 

where, of course, 

J is a finite set of indices, 
xj e ]0, 1[ denotes the location of thej th source, (5.3) 

e ~ denotes the amplitude of thej th source. 

Different from the boundary source case of Section 4, the boundary conditions 
(5.2) do not allow any explicit information on the unknown parameter b. Hence 
we expect some underdetermination for the determination of b if 1/ux happens to 
be bounded as seen in Section 2. We take advantage of the existence of an explicit 
solution to (5.1), (5.2): 

u(x) = - f ]  b(y){H( Y) dy, (5.4) 

where 

t x ~ f~6(y - xj) dy (primitive of the right-hand side), (5.5) H(x) 
3o j e J  

1~ b = S~ b( y)H( y) dy (b-weighted mean value of H). (5.6) 
In b( y) dy 

We first consider the same set of admissible parameters as~in (4.15): 

D = {b: [0, 1] ~ Rib measurable, b,, < b(x) < bv  for a.e. x e [ 0 ,  1]}, (5.7) 

where 

0 < bm _< bM (5.8) 

are known lower and upper bounds to b, and suppose we are able to find some 
measure of the solution u in Hol(0, 1), or, equivalently, as ([u[ + [uxl2) '/2 and lUx] 
are equivalent norms on Ho~(0, 1), of its derivative ux in L2(0, 1). Hence we take as 
data space 

F = L2(O, 1) (5.9) 

and define the parameter ~ output mapping ~o by 

q): b e D  ~ ~o(b) = Ux = - b { H  - Hb} eV. (5.10) 

Now given 

z e F  = L2(0, 1) (5.11) 
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we consider the problem of  estimating b in D from the data z. As we have seen in 
Section 2, we need a lower bound to tu~l in order to apply the stability lemma 
(Lemma 1). This can be easily achieved in our case by supposing that the 
experimental device (i.e., the sources) satisfies, for some H~, HM e 

O<Hm<IH(x ) - -HbI<_HM,  VXE [0, 1], 'r (5.12) 

(Notice that (5.12) will be automatically satisfied if, for example, a finite nmnber 
of sources and sinks of the same amplitude are located in an alternate way from 
the left to the right,) We define 

H,, b,, 
= -  x - -  (5.13) 

H g  b~ 

and note that gg converges to a constant if bg/b,, ~ 1 ("homogeneous case") and 
~ 0 when bM/br, -+ + oc ("heterogeneous case"), In order to obtain a stability 

result for b in a weighted LZ-norm, we also define 

h(x) = inflH(x) - / t b l ,  Vx~ [0, 1], (5:t4) 
bed 

which satisfies 

h(x) _> Hm > 0, gxe  [0, 1], (5.15) 
th]L2 >-- Hm > O. 

Hypothesis (5.12) immediately yields, using (5.4) and (5.7), the sought for lower 
bound to tu~!, 

[u~(x)l _> b,,Hm for a.e. xe[0, 1], VbsD, (5.16) 

which is required to apply Lemma 1, but at the same time (5.16) shows that t/u~ 
is bounded, which leads to difficulties as it makes it possible for two different 
elements b of D to yield exactly the same solution u of (5.1), (5,2)! 

5.2. Using the Stability Estimate 

We now obtain, for b = 1/a, a stability estimate similar to the one we had in (2.11) 
for a. For any two b o, bl e D we obtain (compare with (2.2)) 

bo - b~ {H -/Tb~ - Uo~ - ul~ + an unknown constant. (5.17) 
bl bl 

Then we have 

I.emma 2. Let bo, bt ~ D and Uo, ul be the eorrespondin9 solutions to the Dirichlet 
problem (5.1), (5.2), and suppose that hypotheses (5.8) and (5.12) hold. Then 

sin 0l(bl - bo)(H - Hb0)[ ___ [uax - Uox[, 

where ~ is defined in (5.13), and 

~ t 0 ,  21 is the angle between the direaions 

(5.18) 

b 0 - b I 
and {H -- Hbo} - t. 

bl 
(5.19) 
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/'roof. 
noticing that 

[d[ >- H ~  1, Iwl~ -< H,~ 1, 

and defining ~k as in (5.19) yields 

H, .  s in  ~ bo - b l  uo:, - ul~  , 
U~ ~ - 1  {H -/~b~ -< b a 

which in turn yields (5.18) using (5.8) and (5.13). 

Applying Lemma 1 to (5.17) with d = (bo - ba)/bl and w = {H -/-/b0) -~, 

[] 

As we noticed in Section 4.1, estimate (5.18) vanishes if (bo - ba)/bl happens 
to be proportional to the piecewise constant function {H -/Tb} - 1: the problem of 
estimating b in D from a measurement of u x is underdetermined, or in other terms 
the parameter ~ output mapping ~o is not injective. We take care of this in the 
next section. 

5.3. Eliminating the Underdetermination 

There are two ways for handling the noninjectivity of q~: 

�9 either it is decided to live with it, so that the search for b is replaced by the 
search for (connected components of) equivalence classes of b's [5] 

| or some additional information is added in order to suppress the under- 
determination as, for example, in the regularization technique. 

We follow the second approach here, but rather than adding a general-purpose 
regularizing term, we add the minimum amount of information that it is needed 
to suppress the underdetermination. The idea is to prevent (b o - b O / b  1 and 
{H -/Tb0 } -1 becoming proportional, or better, in view of Lemma 2, to prevent 
the angle between the corresponding directions becoming smaller than some 
~m > 0. This is done by noticing that {H -/Tb0 } - 1 necessarily has a discontinuity 
at each point source xj, j e  J, and by requiring that (bo - b~)/b~ is constant around 
some (at least one!) of the source points xj.  So we define 

j c J nonempty subset of indexes of source points at which additional 
information on b is known, (5.20) 

t / =  (t/j > 0, j e J) vector of radii of balls on which information 

on b is known, (5.21) 

which of course are supposed to satisfy 

I~ = ]x j  - qj, x j  + qj[ c ]0, 1[, Vj~L (5.22) 

lj,~Ijz= ~, VJl, J2~'~ Jl #J2 .  (5.23) 

We may then define our new admissible parameter set by 

D r = {b ~ D IVj ~ J, b(x) = bj = an unknown constant on l j} (5.24) 

for which we have 
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L e m m a  3. Let hypotheses (5.8) and (5.12) of Section 5.1 hold, and let D n be 
defined by (5.20)-(5.24). First we have 

1 z (5.25) 0 _< 1 - ~ Y~ njAj < 1, 
jeY 

where 

!Y, lu,~ vje7,  (5.26) 
A j -  H~t ' 

which allows us to define the underdetermination angle ~t,, by 

0 < 0 . - <  2 , 
(5.27) 

l = - , ~  thai .  c o s  ~ , ,  1 1 2 
jeJ 

Moreover, for any b o, bi e D,, the angle ~O between the directions of  (bo - bi)/bl and 
{H - Rbo} -1 satisfies 

O > Or, > 0. (5.28) 

Proof Let b o, b t e D, be given. The angle ~ between the direction of (b o - bt)/bl 
and {H - Hbo }-  1 is the angle between the unit vectors  c and v defined by 

(bo - bl)/bl {H -- Hb0} t 
c = -  v = + (5.29) 

I(bo bo/bll I { H -  Hbo} I 

where the +__ sign has been chosen such that  

<c, 9> >_ o. (5.30) 

So we have, by definition of c and 9, 

LcL = Ivi = 1, (5.31) 

cos ~O = (c, v> > 0. (5.32) 

The  latter equat ion  rewrites, using the median theorem,  as 

cos O = 1 - � 8 9  912 > 0. (5.33) 

In order  to find a lower bound  to 0, we have to find a lower bound  to Bc - vl 2. 
However ,  c and  9 have a very simple shape over  each I i interval sur rounding a 
source point  xj where j e ] (see Figure 5.1): 

c(x) = cj = constant,  gx  e I~ 

(by definition of Dn), 

J'v 7 = constant ,  Vx e I j, x < x j, 
v(x) 9 + j constant ,  V x e I ) ,  x > xj 

(5.34) 

(5.35) 
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e 
I 
! 
a 

i 

Cj 

/v 

xj--~j xj Xj+~j 

-< , / j  :~ 

Figure 5.1. Behavior of c and v on the 1j- interval for j e J. 

(by definition of the H function), 
and a simple calculation shows that 

Iv + - v ;  I -> A j, Vj ~ J, (5.36) 

where Aj is defined in (5.26). Hence, from hypotheses (5.22) and (5.23) we obtain 

Ic - v l 2 >__ ~_ f I c(x) - v(x) l 2 dx 
jeJ JIj 

= Y ' t [ (q  - v ; )  2 + % - <)2]. 
j J  

The second-order polynomial in cj inside the bracket is minimum for 

cj = (~7 + v;) /2 .  

Hence, using (5.36), we obtain 

]C - -  Vl z ___ 1 2 rlj A2" (5.37) 
jeY 

However, because of (5.30) and (5.31) we have 

I c -  vl 2 = Icl 2 + Ivl z - 2 ( c ,  v> <_ 2 

which, together with (5.37) proves (5.25), and allows us to define ~k,, by (5.27). 
From (5.33) and (5.37) we obtain 

oos  V, -- 1 - �88 Z ,~A~.  
j e J  

i.e., using (5.27) 

cos  0 --< c o s  Om. 

which proves (5.28). [] 
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A t  this point  we already have a precise stability estimate for  the estimation o f  b in 
D.  in the zero-residual case by combining Lemmas 2 and 3: 

sin Oral(b1 - bo)(H - ~[b)[ <s Iq~(bl) -- q~(bo)[, u o, bl eD n. (5.38) 

We combine in the two next sections this estimate with the geometrical 
approach of Section 3 in order to obtain a stability result for the nonzero resid- 
ual case. 

5.4. Estimation o f  the Geometrical Quantities Associated to D~ and q~ 

In this section we check the prerequisites for application of the geometric theory 
of Section 3 to the problem 

find /~D~ which minimizes J ( b ) = l q ~ ( b ) - z ] ~  overDo, (5.39) 

where D, is defined in (5.24), q~ in (5.10), and z in (5.11). Given b o, b 1 in D., b o ~ bl, 
we define a path P in ~o(D,) by 

P(t) = ~0(b,), gt e [0, 1], 
(5.40) 

bt = (1 - t)bo + tbx, Vt~[0, 12. 

We notice first that P is infintely differentiable from [0, 1] to F, as q~ is well 
known to be infintely differentiable from D equipped with the L~(0, 1) norm to 
F = L2(0, 1). Hence, 

V(t) = P'(t), A(t) = P"(t) (5.41) 

exist for any t e [0, 1]. We choose a norm [" It on D, such that E is a Banach space, 
D, is a closed (convex) subset of E, and estimations (3.6)-(3.8) on V(t) and A(t) 
hold. In view of the L2-stability estimate (5.38) obtained in Section 5.3, a proper 
choice for E is 

E = L2(0, 1) (5.42) 

for which D, is clearly a closed (convex) subset. We are left with the estimation 
of the constants c~,,, ~u of (3.6) and O and R of (3.7) which have to satis~ (3.9): 

Estimation o f  am. We approximate V(t) by the finite difference 

(P(t + dt) - P(t))/dt. 

For any t ~ [0, 1] and dt ~ ~ such that t + dt ~ [0, !] we have 

P(t + dt) - P(t) = (P(bt+dt) -- (p(b~) 

and, using (5.38) 

[P(t + dt) - P(t)[ > Y f  sin ~,,i(bt+d, -- bt)(H - Hb,)l 

= ) f  sin q9 m dtl(b~ - bo)(H - /Tb ) l .  

Dividing by dt and passing to the limit yields 

I V(t)t > :/g sin ~b,,l(bl - bo)(H - Hb,)l (5.43) 
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and, using (5.15) 

~,, = H,, ~ sin ~9,,. (5.44) 

Est imat ion  o f ~  M. In order to calculate V(t) from the closed formula (5.10) for 
P(t) = ~p(bt), we begin by calculating the Gateaux derivative of /4b at b e D  in 
the direction c e L~176 1). For  k sufficiently small we have 

Rb+k c S~ (b + kc)H S~ (b + kc)(ux/b + ~qb) _ S~ Ux + k ~ cu~/b 

= ~ (b + kc) = S~ (b + kc) - S~o (b + kc) + a~b' 

However, ~o 1 u~ -- 0 and ux = b(H - Hb). Hence, 

Rb+kc = lq b + k ~ c(H - Hb) 
~ (b + kc) ' 

which shows that 

d Hb+kclk=O -- ~ c(H -- I4b) (5.45) 
dk flo b 

This implies that 

dHb~ _ ~ (bl - bo)(H - H-b,) (5.46) 

dt So b, 
Using the closed form formula (5.10) yields 

V(t) = - ( b l  - bo)(H - Jqb) + ~SO t (bl - bo)(H - Hb), (5.47) 

which we rewrite as 

V(t) = - ( b  1 - bo)(n  - Jqb,) + f ]  (bl - bo)(H - Hb) 

,2, ) f] (be - bo)(,, - 
For veL2(0, 1) we define ]VlL~/~ = Iv -- ~ VlL~ and we remember that 

[VlL~/~ <-- [VIL~ for all v~L2(0, 1). (5.48) 

Using [VIL'(O,1) --< IvlL~(o,I) we find 

- -  b t  L 2 l g(t)]L~ <_ I(b 1 - bo)(H - -  Hb,)[L 2 -~ 1 ~ [(b I -- bo)(H - Hb,)l. 

A simple calculation shows that 

b,(x) b M 
1-[~-~,So , 1 - ~  < -1 ,  Vxe[O, 1], 
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so that finally 

bM bM 
I V(t)i _< b~  [(b, - bo)(H -/~b,)l -< ~ Hu(b~ - bo) (5.49) 

and hence 

H b M _  aM = �9 (5.50) 
M b,n 

Estimation of  | and R. We differentiate formula (5.47) with respect to t in 
order  to obtain A(t). Letting c = b~ - bo we easily obtain, using (5.46), 

fo c b, c (5.5t) 

Estimating the LZ-norm of  the term in the parentheses by the same technique 
we have just used for V(t) yields 

- b M IA(t)l < 2 [c(H Hb)l x [c] 
- b . ,  b , .  

which, together with the lower bound  (5.43) on [V(t)], yields, as l cl <_ bM -bm, 

[A(t)l 2 
< 

[ V(t)12 - b,,HMaf3 sin z ~= '  

iA(t) i 2(bM/b,, - 1)(bM/bm) < 
[ V(t) l - J/f sin O~ ' 

so that  we can choose, using (3.7), 

R = �89 3 sin 2 0m, (5.52) 

| = 2(bM/bm - 1)(bM/b') (5.53) 
Yg sin 0,,  

Refining the estimation. The output  set ~0(C) tends to become convex when 
t r/[~ ~ �89 i.e., when the largest interval on which b is known to be constant  tends 
to fill the whole space domain  [0, 1]. Let us first see whether  this fact is reflected 
in our  estimations of R and 19: when I~1~ --' �89 R given by (5.52) remains bounded,  
and we have not  been able to improve upon that  using the above technique (i.e., 
to find a better estimation such that R--* oo when [t/]~ --. �89 Also | given by 
(5.33), does not  vanish when I~1~ ~ �89 We next gave an alternative estimate of the 
deflection which has this property.  F r o m  (5.51) we find, using (5.48), 

_< 2 [c(H b,,- Rb)l _tIClL~/R ~, . (5.54) [A(t) l 

Let  us denote by ] the index of the source with the largest interval Io~, so that  

[r/I ~ = max r/j = n i. (5.55) 
jeY 
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But c takes a constant  value c; on the interval I), so that  c - Oj - 0 on I~, and 
ic -ci]  < 2(bu - b,,) outsite o f / j .  Hence, 

]C]L~/~ < [C -- C7[L2 < 2(1 -- 2[t/[~)l/2(b M - b,,). 

Similarly, 

]b, lL2 m <_ ]bt -- b~2lL2 < (1 -- 2lrllJ1/Z(bM -- b,,,) 

which yields, as IclL,< b~t -- bm, 

IA(t)l < 2[c(H -/~bt)l(1 - 2It/Ion) / ~ , ,  + 1 , 

so that  

]A(t)[ 2(1 - 21t/l| + b~/bM)(bM/bm -- 1)(bM/b,,) 
- -  < (5.56) 
IV(t)] - W sin I[/m 

which, in view of (3.7), gives the following upper bound for the deflection: 

2(1 - 21q1~)~/2(1 + b~/bu)(bu/bm - 1)(bM/bm) 
O 2 = (5.57) 

sin ~,, 

When ]q[~ is small, estimation (5.57) is less precise than (5.53), so we take, as a 
final estimate for the deflection, 

{ ( b b 2 ~ )  } 2(b~ /b" - l ) (bM/b" )  
O = Min 1, (1 - 21nt~) ~/z 1 + ~t~ ~m (5.58) 

The corresponding shape coefficient z is then given by (see (3.8) and (3.9)) 

0 O x R  
z - - (5.59) 

AIR e v d i a m c '  

i.e., 

( b " 5 ) J f 2  = Min 1, (1 - 2[r/]~) 1/2 1 + ~ ) ~  sin ~,,. (5.60) 

Knowledge of the shape coefficient z allows the determination of the maximum 
deflection OM by (3.13) and of the lower bound R~ to global radii of curvature 
by (3.12). 

5.5. The Final Stability Result 

Having estimated in the previous section all geometrical quantities associated in 
(3.6), (3.7), and (3.9) to ~p(D,) we can now apply Theorem 3.1 to obtain the 
well-posedness of the least-squares problem (5.39). 

Theorem 5.1. Suppose that the lower and upper bounds b,, and bM on b, the source 
locations and amplitudes x~, f j, j ~ J, and the radii tli, j ~ J, o f  the balls surrounding 
the sources over which b is known to take constant values satisfy the following 
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conditions: 

i 
O < b,. <_ bM, 
Ij = ]xj -- r/j, xj + t/j[ e l 0 ,  1[, Vj ~ J, (5.6t) 
Ijc~Ij, = (25, Vj, j ' e J ,  j t j ' ,  

Hm > 0 (proper arrangement of  sources), (5.62) 

where H,, is defined by (5.5) and (5.12), 

| < | (deflection size x curvature condition), (5.63) 

where | is defined by (5.58) and |  by (3.13) and (5:60). 7hen, if R G is defined 
by (3.12), (5.52), and (5.60),for any data z satisfying 

z ~ / ~  = {zELZ(O, l)]d(z, qo(D,)) < Ra}, (5.64) 

the least-squares problem (5.39) for the estimation of b in D. from the measurement 
of z of ux is Q-well-posedness for the h-weighted L2-norm on b, and the following 
stability estimate holds: 

1 

J(f sin O~lh(/;o -/~l)IL2 < [Zo - zl [L2 (5.65) 
- -  1 -- zRa/R 

as soon as 

IZo - Zl IL~ + Max d(zj, q~(D,)) < )~Ra, 0 < )~ < 1. (5.66) 
j=0,1 

Notice first from (5.58) that the size x curvature condition (5.63) will be 
satisfied as soon as bu/bm is close enough to 1 or Ir/[~o is close enough to �89 
Hence, for each value of It/1~, there exists an upper bound to the ratio bulb,, for 
which the inverse problem is well-posed, this upper bound being less and less 
restrictive when [t/[~ approaches �89 i.e., when one of the balls over which the 
parameter is known to be constant tends to fill up the space domain. 

Notice also that we obtain stability o fb  for a weighted L2-norm: the stability 
of b is better at locations x where h(x) is large, i~e., where ]u~(x)L is large, which 
corresponds to the physical intuition. 

Notice also from formula (3.12) defining Ra that the size of the neighborhood 
~U on which stability holds will be R independent of the size D~, provided that 
bu/bm is small enough so that | given by (5.58) is smaller than n/Z Allowing the 
size of D~ to grow beyond this limit will be paid for by a reduction in the size of 

to R G < R, with Ro approaching zero when bM/bm approaches its upper limit 
corresponding to | = |  given by (3.13). 

To conclude this section we give the numerical values of all constants 
appearing in the stability theorem (Theorem 5.1) in the simple case where the 
right-hand side of the elliptic equations contains only one Dirac source of 
amplitude one located at the center of the interval. Hence we estimate the 
coefficient b in 

--(b-lux)x = 6(x --�89 0 < x < 1, (5.67) 

u(0) = u(1) = 0, (5,68) 
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f rom 

Z E L2(0, l) = measurement  of  ux (5.69) 

using the addi t ional  informat ion  that  

b e D, = {b[0 < b,, < b(x) < b m, b = constant  over  ]1 - r/, 1 + r/[ }. (5.70) 

The  p rob lem is hence complete ly  specified as soon as we have chosen 

t / e  ]0, �89 (radius of  the ball over  which the pa rame te r  b 
is known  to be constant),  (5.71) 

( = ~ e [ 1 ,  + o o [  (upper  to lower bound  rat io for b), (5.72) 

b,, > 0 (lower bound  to b). (5.73) 

We then immediate ly  find that  

h(x) = cons tant  = Hm(1 + O-1,  

HM = ((1 + ( ) -1 ,  (5.74) 
~ = ( - 2 ,  

so that  the stability es t imate  (5.65) rewrites as 

^ ^ (2(1 + () 1 
Ibo - bilL2 < - -  • Izo -- zt]L2. (5.75) 

sin ~m 1 -- z(RG/R ) 

For  each value of the " regular iza t ion"  pa rame te r  q, the size • curvature  condi t ion 
(5:63) imposes an upper  limit (~t to the bin~bin rat io to ensure the well-posedness 
of  the inverse problem.  This upper  limit (m is shown in Figure 5.2. It  becomes 
unbounded  when t / a p p r o a c h e s  0.5 (for q = 0.5 the ou tpu t  set q~(D)~) is convex!). 

2 . 0  

1 . 3  

1 . 0  

0 . 0  0 , 2  0 . 3  0. 

Figure 5.2. Upper limit (M to bM/b, ~ ensuring well-posedness of the inverse problem following 
Theorem 5.1 for example (5.67)-(5.70). 
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Figure 5.3. Values of R/b,~ and R~/bm as functions of t / (  = b.,/b~ a n d  .~, 

In Figure 5.3 we show the radius of curvature R and the global radius of , 
curvature R G as functions of q and (-1. Note that the interval over which R~ is 
strictly smaller than R but still positive is quite small (compare (3.12), (3.13), and 
Figure 3.1). Recall that positive values of R~ give the size of the cylindrical 
neighborhood of ~o(D,) with respect to which the inverse problem is Q-well-posed, 
provided that ( < (M- Figure 5.4 gives the graphs for the deflection O in multiples 
of rc and the shape coefficient z. Notice that r has very roughly the value 0.2 for 
values ~/and ~ which give a deflection O close to ~/2: As it can be seen in Figure 
3.2, this value of ~ corresponds to a maximum deflection O M only a little larger 
than ~/2. Hence, for such values of z the set {(~, ()1(~/2) < O(~, () < O u} is small, 

0 . 7  

0 . 3  

0 . 0  

T, I ~ IPl I 

',,\ x\ ~\ \ From left 1o right : 
\ 11 = .4g 

" \ \ \ . =.37s 
\ \ ~=.25 
",, ', , ,  ~=,12s 

\ q = ,01 ,, 
\ 

' \ - '\ \ 
,\ '\ \ \ 

\ 
\, \ '\ 

" \  \ \ 

0 . 7  O . G  0 . 9  L O  

I ~/z,t. ] 

ao I ] 
-] From top to go.ore : /t 

q -- .4g i 

-{ n = .2s / : I  
J ,1 = .12s / / t  

f@ 

0 . 0  I 

0 .3  ~ .s  0 . 0  ~ . ~  

Figure 5.4. The upper bound | to the deflection of paths of ~0(D~) and the shape of coefficient z of  
the estimation R, O and A as functions of 1/( = b,,/b M and r/. 
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Figure 5.5. (a) The Lipschitz constant  of the inverse problem for data in the first half of the security 
strip around ~o(D,) (i.e., g = 0.5) as functions of 1/~ = b~b  M and q. (b) The lower bound sin 0,, associated 
to the set D r as functions of 1/C = b,,/bm and 7. 

and there is only little gain in allowing | to pass beyond n/2. We show in Figure 
5.5(a) the Lipschitz constant of (5.75). This figure corresonds to the choice Z = 0.5, 
so that the data z o and z I are located no further from ~o(D,) than "in the middle" 
of the security strip around qffD,) defined by R G. For Z = 0.1 the graphs look 
similar to those of Figure 5.5 but are scaled with the factor �89 Finally, in Figure 
5.5(b) we give the graph for sin G.  associated with the set D, for various values 
of t /and ~- 1 

6. The Distributed Source Case 

In this section we consider the estimation of b in 

{ - ( b -  lux)x = 
(6.1) 

u(O) = u(1) 0 

from observation of ux, and with f eL2(O, 1). We put H(x)= S~ f(s)ds and 
recall the notation of /tb, D, b,., and bM of the previous section. Due to the 
increased assumption in the regularity of f in this section there always exists 
at least one zero of 

b-lux= - H  + Hb, beD. 

If the coefficients b are restricted to be constant in the neighborhood of zeros 
of H - /4b ,  then it will be possible to establish stability in the sense of Section3. 

For H., > 0 we define 

f~,. = 0 {x~[0, 1"1: [H(x) - /4h i  > H,.} (6.2) 
beD 
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H(x) = kx and 

Moreover ,  define 

and for b ~ D we put  

+ = {x nm: H(x) - & ___ Hm} 

and 

~ ,  = {x ~ I-I.: H(x) - HI, -<- - H=}. 

It  is assumed that  f~,~ is not  empty.  Since D is a connected subset of L ~176 and 
since b-+ H (x ) -  Bb is cont inuous  from D c L ~176 to ~ for every x a [0 ,  1] it 
follows tha t  {H(x) - H~,lb~D} is a connected subset of  a for every xE[0 ,  1]. 
Consequently,  the definition of f~,~ and f ~  is independent  of the representat ive 
b ~ D and f ~  w f ~  = f~m. Clearly, f~= is a closed set and hence its complement  
is open. It  can therefore be represented as a countable  union of nonintersect ing 
open intervals. Fo r  simplicity we assume that  there are only finitely m a n y  
such intervals s {Sj}j=I, that  they are indexed f rom left to right in the domain  
(0, 1), and that  $1 and SN do not  contain  0 or  1 in their closure. Between any 
pair  of the endpoints  0 and 1 and  of  the intervals N {Sj}j=I there are subsets of  
f~+ and f~,7,. Hencefor th  we assume tha t  these subsets belong al ternately to 
f~+ and f~,7,. Fur thermore ,  let q = ( t h , . . . ,  t/re)~ ~N t/i > 0, be a vector  char-  
acterizing ne ighborhoods  I j  = ]lj - t/k, rj 4- t/j[ of  S 3 = ]lj, rj[. These neighbor-  
hoods  are assumed to be pairwise disjoint. The  nota t ion  is i l lustrated in Figure 6.1. 

In  ana logy to the case of  point  sources in Section 5 we m a y  refer to the 
intervals S~ as "sources ."  We also note  that  the complemen t  of  ~m consists of  one 
open interval  in the case that  f >_ 0, f # 0, and provided that  H ,  > O is small 
enough. It  m a y  also be useful to consider the following specific example.  

R e m a r k  2. T o  illustrate further the set f~,, and its dependence on H,, ,  let us 
consider the specific case when f = k ~ ~. In this case 

= k ~ sb(s) as 
jlo b(s) as" 

x__ = min  ~~ sb ds and .~ = max  ~(o* sb as 
b~o ~ b ds b~D ~ b ds 

b, u 

f lj--~j lj rj rj+~j \ / j + t  --qj+l / j + l  r ) + l  r)+1 + t / J + l  
. . . .  ! I l ! ~t l | t J - 

sj ~ s.~ / 1 

Figure 6.1. Notations for the distributed source case. 

~ x  
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Then, for H,, > 0 sufficiently small, 

F /m=f~m~f /~  + = 0, X U 2 + ~ - ,  1 . 

For the proof of Theorem 6.1 the following modification of Lemma 1 is required. 
It can be verified with techniques analogous to those of Lemma 1. We use ]f~l to 
denote the measure of a set f~ c R. 

Lemma 4. Let ~ ~ N be a measurable set and let d~LZ(f~), weL~176 and 
h ~ L2(f~) satisfy 

d 
- = h + an unknown constant. 
w 

Then we have 

1 ]WIL~n) _d sin <_ [hiLl(n), 
If~[ 1/2 IwlL~n~ w L2(f~) 

where ~ ~ [0, n/2] is the angle between the directions d and w and 

sin ~ = / 1  
(d, W>L2(f~) 

2 2 " IdlL2r l WlL2r 

The class of admissible coefficients is given by 

O, = {b~Dlb(x) = b je  ~ on Ij, j = 1 , . . . ,  N}, 

and the parameter to output mapping 

(p: L2(~m) ---. L2(~m) 

is given by 

r = ux. 

We note the following relationship between the L2(0, 1)- and the L2(f~m)-norms 
for elements bsD~: 

< [blL2,O,1 ) < ( 2r/max q - ( r j m a x -  ljmax)) 1/2 
_ _  _ . 2?]mi~ . IblL2(a~), (6.3) 

where 

qm~. = min{q,]i = 1 , . . . ,  N}, ?]max = max{?],li = 1 . . . . .  N}, 

and j max is the index of the largest interval Ss. We further define HM such that 

I H(x) - /4h i  --< H~t, Vx ~ f~,, and b ~ D,, (6.4) 

and we put ~ = (H,,bm)(HMbM)-1 and 

N 

J = ~ (]lj - ?]s, lj[ ~ ]rj, rj + ?]s[ )" 
j= l  
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The following stability estimate can be obtained in the zero residual case. 

Theorem 6.1 Let the assumptions made on Hm, ~,. ,  and S~ hoM and assume 
that 

H~ ~ H ~ ] f  2 2 t L2(J) ~max 

~ ' -  H~t ~ q ~ -  9H~ > 0. (6~5) 
j = l  

Then r i f~ ] -16 ]0 , � 89  which allows us to define $m as the unique solution in 
]0, x/2] o / c o s  4',. = 1 - rlf~,,I-1/2. Moreover, the estimate 

yY sin 4'"[(b I - bo)(H -/4bo)lL~(n,.) --< I~o(bo - (P(bl)lLZ(f~,) (6.6) 

holds for every b o and b I ~D,, with sin 4'" > 0. In view of  (6.2) and (6.3), Theorem 
6.1 implies 

[bo - bl IL2(0,1)--< KIcP(bo) - q~(bl)lL~(n~) 

for some constant K which is independent of  bo and b x in D.. 

Proof of Theorem 6,1. Let bo be in D, and recall that 

b~ - bl {H - lqbo } u~ - ul~ 
- -  - + an unknown constant. 

bl bl 

Applying Lemma 4 with d = (b o - bl)/ba, w = 1/(H - Hbo), and fl = ~ "  gives 

1 [(H -- Bbo)-llL~(n~) b o -- bl /Tbo ) 
If2m] 1/2 I(H - / - t b o ) -  1 IL*(n~) I b~ (H - -  , ]L2(n,.) sin 4' 

] u~ , (6.7) 
Ulx 

bll L2(f~m) 

where 6' is the angle between the directions given by d and w. From (6.7), (6.3), 
and (6.4) we conclude that  

H "  1 
HMb~ [(bo - bl)(H - Rb~)[L~(n,.) sin 4' _< ~ [Uo~, - ul.~lL2,n,.) 

and consequently 

Yft(bo - ba)(H -/Tbo)lL~r sin 4' <_ [Uox -- ulxlL2(n,or (6.8) 

Next define c = d/IdlLz(n,) and v = ++_w/IwlL~(n~)~ with the sign chosen such 
that (c, V}L2(n~) --> 0. As in the proof of Lemma 3 we have 

1 � 8 9  = - -  /) [L~(fl,.) 2 0 .  (6.9) 

Below we establish that  

- v l . , ~  >_ 
j = l  

2 ' 2  2 HMI f 1[2~j)r/max" ~ r 
9H~ / -]f~ml" (6A0) 
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Combin ing  (6.9) and (6.10) implies 

r 
0 < cos 0 < 1 - cos ~k,~ < 1, 

2lf~ml 

and therefore 

sin ~ > sin ~,~ > 0. 

This est imate together  with (6.8) implies the desired result. It  remains  to verify 
(6.10). Obvious ly  we have 

N 

[ c -  vJL2~n~) > ~ [c - v]L~tv~), (6.11) 
j=l 

where U~ = I ~ u I f  = ]Ij - r/~, lj[ w ]rj ,  u~, rj + t/j[, and 

- v[L~(v~ = [c - v[ 2 dx + [c - -  /)12 dx. (6.12) 

Observe  that  c equals an unknown  constant  on U~ for j = 1 . . . . .  N. A simple 
calculat ion shows that  the expression on the r ight -hand side of  (6.12) is m i n i m u m  
when c is equal  to the following constant :  

= 2rh /) dx + ~ v dx on Uj. 

Therefore  we find 

- vlL~vj~ > v ds + ~ v ds - v(x) dx 

f , f  I f , ,  1 f ,  ff 2 + ~ v ds + ~ v ds - v(x) dx. (6.13) 

Fo r  the first term on the r ight-hand side of  (6.13) we have 

f,e f,e if, e ae = 1 [ v ( 0  - v(x)] a(r + ~ (v(g) - v(x)) clx 

~,?(f,; )2 l f,,(fi, )2 _> Iv(~) - v(x)l d~ dx - 4//7 [v(O - v(x)[ d~ , (6.14) 

where we used the fact that  (a + b) 2 >_ �89 2 - b 2 for any a, b e JR. (In the case of  
point  sources the analogue  to the last te rm is zero.) In  the following estimates we 
u s e  

1 L2~n=) 1~"11/2 I~m]1/2 < < -  (6.15) 
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and 

1 
- -  <_ ( H ( x )  - S~bo)- 1, g x  ~ f~m. 
H~ 

(6.16) 

From (6.14) we find 

v d~ + v d ~ -  v(x) dx 

' ' ' t )2 
>-- 8nJ I nr,,i ~ H(O - Bbo H(x) z fSbo de dx 

1 H~ ; , ( f ,  I t , (  1 ), [ )2 4CIn. I  ~ ~ ~ ( o ) - -  ~bO do de dx 

>-- 8n~ Inml HI ,  I(H(g) - Bbo) - (H(x) -/Tbo)l dg dx 

2 6 / 4rls I~,,,IH,, .Jxp\.b# J,  lf(~ 

n ~  H~I 2 f f lL~a~ * 3 2 3 >--2  4- 4Hm~Ij -- 2 * Js)-~rlJ dx 
- 8,7s InmiHM 4ttj [~mlHm 

H 2 2 

- I n , . !  L2HI, 9H*~ j '  

The last term in (6,13) is estimated in an analogous manner. We obtain 

Ic - vlL,-~,~ _ lflml LHI ,  914~ m j ,  j = ! , . . . ,  N. 

Using this estimate in (6.11) we obtain 

2 2 2 > 1 pi-i~ us "s HMIflv,J,"m:~] 
-la,,l LHI, 9 ~  J' j = l  

which is the desired estimate (6.10). 

With the estimates of Theorem 6.1 it is simple to argue Q-stability of the 
least-squares problem 

mini 4o(b) 2 (6.17) - -  Z IL2(~.d ~ 
b ~ D~ 

where z~L2(~m) and cp(b)= ux(b), with u(b) the solution of (6.1). In fact, 
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the estimates for the geometric quantities e,,, aM, 01, and R are obtained in 
the same manner as in Section 5. The only change occurs in the estimate of 
02, where in formulas (5.56)-(5.60) the term (1 -21r/]~) 1/2 can be replaced by 
([Sjmaxl--2)lira,x) 1/2" Thus, for problem (6.17) the deflection (9 and the shape 
coefficient z are given by 

| = Min 1, (ISjma~l--2lt/maxl) 1/2 1 + ~ -~insin ~k,~ 

and 

{ ( b m ) ~ 2  sin o ' '  = Min 1, (ISjma~]--21~ma~l) 1/2 1 + bMJ.} 

respectively, while | R, and R G are as given in Section 5. Furthermore, we put 

h(x) = Inf L H(x) - /7~[  for x e ~qm, 
beD~ 

and we note that h(x) >_ H,, for x~f~,~. We obtain the following: 

Theorem 6.2. Under the assumptions of  Theorem 6.1 the least-squares problem 
(6.17) with 

~U = {zsL2(f~m)ld(z, qo(D.)) < RG} 

is Q-well-posed with the h-weighted La-norm on b, and the followin9 stability 
estimate holds: 

1 
.3f sin 0,,Ih(bo -/;1)[L~n,o) < IZo -zlIL~(n,) 

- 1 -- zRG/R 

as soon as 

IZo - ZllL~n,o) + Max d(zj, ~o(D,)) < )~RG, where 0 < X < 1. 
j=O,1 
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