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We study Schl6gl's second model, characterized by chemical reactions 

kl k3 
2X~ ~3X, X-. >0, 

k2 k4 

in d-dimensional space. The reactions are assumed to be local; local fluctuations are 
fully taken into account, and particle transport occurs via diffusion. 
In contrast to previous investigations, we find no phase transition when k4=~0 and 
d<4.  For k 4 = 0, k 3 4=0, and 1 < d<  4, we find a second-order phase transition which is 
in the same universality class as the transition in Schl6gl's first model. Only for d > 4 we 
do find the first-order transition found also by previous authors. 
These claims are supported by extensive Monte Carlo calculations for various re- 
alizations of this process on discrete space-time lattices. 

1. Introduction 

Instabilities in systems far from equilibrium have 
been studied very intensively during the last years 
[1, 2]. The variety of phenomena observed there is 
extremely rich, reaching from close analogies of 
equilibrium phase transitions to such phenomena 
like self-generated chaos. 
In this paper we shall study transitions between two 
stationary states in models for autocatalytic chemi- 
cal reactions. Two such models were introduced by 
Schl/Sgl [3], and studied later in great detail as pro- 
totype models with second order resp. first order 
transitions. They are characterized by the reactions 

~1 ]s 
X < ,2X,  X ,  ,0  (model I) (1.1) 

re2 k4 

and by 

kl k3 
2X~ ,3X,  X~ ,0  (model II). (1.2) 

k2 k4 

The rate equations are 

dn 
dt -k~-k3n+lcln-Kzn2 (model I) (1.3) 
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and 

dn 
dt -k4-k3n+kln2-kan3  (model II). (1.4) 

By suitable rescalings, we can always put 

~k 1 =k z = tq = ~c 2 = 1. (1.5) 

Model I is in this approximation just the well- 
known Malthus-Verhulst population model. The sta- 
tionary solution of (1.3) shows a bifurcation for k4 
=0 :  

{01 f~ k3>1 (1.6) 
n=  - k  3 or 0 for /c a < l  

(see Fig. la), resembling a second order phase tran- 
sition. For k~ > 0, there is no sharp transition. 
The equation determining the stationary state of 
Model II, 

k4-k3n+ 3n2-n3 =O, (1.7) 

has either one real and two complex solutions or 
three real solutions, depending on the ra tes  k 3 and 
k 4 (see Fig. 1 b). In the latter case, only two of these 
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Fig. 1. Phase diagrams in the rate approximation, a) Model I, 
with ~1 =K~=I, b) Model II, with k1=3, k2=l  

solutions are stable under small fluctuations, and the 
model shows a first order transition. For  

k 4 = k 2 = l ,  k3=k1=3 ,  n = l ,  (1.8) 

one has a triple solution corresponding to a critical 
point, i.e. a second order transition. All this becomes 
fairly obvious by noting the similarity of (1.7) with 
the van der Waals-equation [3]. 
Now we may ask how these results are modified by 
fluctuations, if we treat the models as Markov pro- 
cesses. 
In the simplest case, one might assume the systems 
to be well stirred, so that the positions of the par- 
ticles are irrelevant. In this case, the natural de- 
scription is by a nonlinear death- and birth-model 
[4]. The results (1.6)-(1.8) are then recovered in the 
limit of large systems - where, however, the assump- 
tion of perfect stirring becomes unrealistic. 
For a more realistic description, one should use a 
reaction-diffusion model, with local interactions and 
local fluctuations. This is what we shall do in the 
present paper. 
If one assumes the interactions to be strictly point- 
like, one encounters the usual short-distance diver- 
gences [5, 6], hence one has to resort to some reg- 
ularization prescription. Each different regulariza- 
tion defines of course a different model, but one 

expects all to have essentially the same phase struc- 
ture, and in particular to have the same critical 
behaviour near a second order phase transition. 
In this sense, model I is equivalent to a large num- 
ber of models which have been studied indepen- 
dently in various fields of science: to reggeon field 
theory [7, 81, to directed percolation [9, 10], and to 
the basic contact model [11] which itself is isomor- 
phic to the reggeon spin model [12, 13]. As a con- 
sequence, its critical behaviour is very well known 
[13-17]. 
The situation is different for model II. There exist 
several calculations [18-201 based on Langevin and 
multi-variate master equations, all of which claim to 
verify the results of the rate equation: they find (for 
d > 2 ;  d = n u m b e r  of dimensions) a first order tran- 
sition, and a critical point (with k4+ 0) which is in 
the same universality class as the Ising model. If 
true, this would be a most remarkable extension of 
the universality hypothesis, from models with de- 
tailed balance to models without it. 
There exists in addition a Monte Carlo simulation 
of model II, putting it on a lattice in space with 
continuous time [21]. For d--1, the authors do not 
find a phase transition. For  d=2 ,  their results are 
inconclusive, although suggestive of a transition in 
agreement with [18-20]. 
In contrast to this, we shall present formal argu- 
ments and rather detailed Monte Carlo calculations 
which show clearly that there is no sharp transition 
for d<4 ,  and for k4+0. We furthermore propose 
that for k4=0  and k3+0  there is a second-order 
phase transition, which for d <4  is in the same uni- 
versality class as the transition in model I. For  d 
= 1, 2 and 3, the existence of this transition is clearly 
seen in the Monte Carlo calculations, but only for d 
=1 our data are sufficient to indicate that it has 
indeed the same critical behaviour as model I. For 
d__>4, the transition at k~=0 becomes of first or- 
der. 
Our Monte Carlo simulations relied on the univer- 
sality hypothesis. Using this hypothesis, we sim- 
plified the model drastically, as compared e.g. to 
that of [211. First, we discretized time in addition to 
space. Secondly, we substituted the saturation re- 
action 3 X ~ 2 X  by assuming that any lattice point 
can be at most doubly occupied. Finally, some other 
modifications will be described later in detail. In 
order to test the universality hypothesis we also 
studied several other versions. They all showed qual- 
itatively similar behaviour. 
When making such modifications, one has of course 
to take care not to destroy the essential properties of 
the model. These properties of model II, as com- 
pared to model I, are (1) that saturation effects set in 
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only when > 3 particles meet, and (2) that autocata- 
lytic production occurs only when >2  particles 
meet. Ttaey are satisfied in aIt our versions. We atso 
checked that the mean-field approximations to our 
modified models (valid in the limit d-*@ o) show first 
order transitions which are in surprisingly good 
agreement with our Monte Carlo results for d =4. 
In the next section, we present the general formalism 
and the standard argument leading to an Ising-type 
behaviour of Model II. Conflicting formal and heu- 
ristic arguments are given in Sect. 3. In Sect. 4, we 
shall define the lattice model for which the most 
detailed Monte Carlo calculations have been per- 
formed, and present their results. Finally, in Sect. 5 
we end with a comparison of our approach with the 
approach of [21], and with some concluding re- 
marks. 

2. Formal Developments 

a. Operator Formulation 

We shall use here the Fock-space methods develop- 
ed in [6] and [22], employing essentially the no- 
tation of [6]. There, annihilation and creation fields 
0(x) and re(x) with the usual commutation relations 
and with 010>=0 were introduced. The time evolu- 
tion of a state [q~(t)) is described by 

IqS(t)> = L 14~(t)>, (2.1) 

with the Liouville operator L depending on the spe- 
cific model considered. Defining a scalar product 
such that 

with D being the diffusion coefficient. For model I, 
this was shown in [6]; for model II, it is easily 
found by applying the rules given there. 
In view of (2.2) we put 

O(x)={ ~@(x), =(x)=l+~@+(x) ,  (2.6) 

and get 

~ = -DV@ +. V@ +(K 1 -k3)  qo + @ + ~K 1 @+ 2@ 
/s @+ @2 __/C2 @+2@2 § (2.7) 

and 

~ n  = - D V @  + " V@ -k3@ + @ +~-9+ @2 

Z k, +k~@+e(2+~@+)@ - ~ @ + ( 1 + ~ @ + ) ~ r 1 6 2  +. 

(2.8) 

The advantage of this transformation is that 

(Ol@+(x) =0  (2.9) 

while (0  Ix(x) = (0[. 
One sees immediately from (2.7) and (2.8) that model 
I is renormalizable for d < 3  while model II is non- 
renormalizable, if expanded about the vacuum state, 
for all d >_ 2. 
We might add that the fields ~ and t/ of [19] are 
closely related to our fields: 

r~(x)=ilnn(x), fi(x)=n(x) 0(x). (2.10) 

With this transformation, the "hamil tonian" of [19] 
is easily seen to coincide with our Yu- 

n(x) = 1 + 4 2 0 + (x) (2.2) 

with { being an arbitrary positive constant of di- 
mension l d/2, the n-particle densities (correlation func- 
tions) in a state �9 at time t are 

pn(x,, ... x,,  t) = (010(x i).-. O(xn) I O(t)>. (2.3) 

If all reactions are strictly local, the two Schl6gl 
models are defined by Liouvillean densities (L 
= ~ r  ~e(x)) 

y~ = - D W -  V~ +,q(~2 _ =) O 

+ ~c2(rt - r~ 2) 0 z + k3(1 --re) 0 + k4(rc - 1) (2.4) 

and 

2~H = - D Vrc . V O  + kl(~ 3 - ~2) 02 

"4- k2(g ~ - rc 3) 0 3 + k3(1 - re) 0 + k4(rc - 1), (2.5) 

b. Critical Behaviour of Model t 

For k 4 = 0 the critical behaviour of model I has been 
studied among others by the a = 4 - d - e x p a n s i o n  
[14], by a high-"temperature" expansion [153, and 
by Monte Carlo methods [13]. We shall quote here 
only some results which later will prove useful for 
understanding model II. 
Let us first note that S has dimensionality t 1 l-a, 
while 

[qo] =[@+] =I -d/2. (2.11) 

From this one sees the quartic te rm K2@+2(~ 2 is 
irrelevant near the phase transition. Dropping this 
term does not change the critical behaviour. If we 
would drop, in contrast, all "irrelevant" terms in 
S n, we would end up with a trivial theory. 
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As shown in [14], the existence of a renormalization 
group fixed point depends crucially on the anti- 
hermiticity of the cubic couplings, i.e. on the op- 
posite signs of the terms q~+q~2 and q~+Zq). Another 
necessary condition is ~:1 >ka. 
The upper critical dimension is d+--4, the lower is 
[13, 15] d =1. In qualitative agreement with the 
rate approximation, there exists a critical value of k 3 
(for ~ and ~2 fixed, k4=0) such that there are two 
stationary states for k3<k3,~,: the vacuum and a 
state with 

n=-pl(x)~Po(k3,~-k3) p, fi>0. (2.12) 

For k3=k 3 .... all configurations with finitely many 
particles die out: the chance Pt to find at least one 
particle at time t>>0 in a state which had started 
with a finite number of particles at t = 0 decreases as 

P~ .~ po t-~, 6>0, (2.13) 
~--+ OO 

although the average particle number increases as 

(n)t~not" , t/>0. (2.14) 

The exponents fi, (5, and t/ (and other critical ex- 
ponents) can be found e.g. in [10, 13, 15-17]. 
The strong clustering expressed in (2.12) and (2.13) is 
also seen by looking at p2(x,y,t)/pl(x,t). This is the 
conditional probability density to find a particle 
near y, provided there is at the same time a particle 
at x. For large times, one finds for k3~k3,~ and 
finite Ix-yl 

pz(x, y, t) c d~ 
- -  (2.15) 

DI(X, t) I x - y V '  7=28+r / "  

Thus, the chance to find a second particle at a finite 
distance from any given particle does not go to zero 
at the critical point, in contrast to the assumption 
underlying the rate approximation. 
At d=4,  clustering may still be strong, but it no 
longer dominates the critical behaviour: the ex- 
ponents (8=I ,  r/=0, and f l = l )  are precisely those 
obtained from the rate approximation. This ex- 
presses just the fact that the chance for any two 
particles to meet is essentially independent, for d > 4, 
of their origin (whether they come from the same 
"ancestor" or not), and thus clusters can not evolve 
as coherent objects. 

c. Critical Behaviour of Model II 

According to the rate approximation and to [18- 
21], we should expect a critical point for k4>0, with 
a stationary density n+0.  This suggests replacing (p 

by a shifted field Z, with 

X(X)=~(x)-n~, (2.16) 

so that 

(0 IX(x) I q~ ~at) ~ 0. (2.17) 

The conjugate field (p+ should not be shifted. 
Under this shift, 5e H is transformed into 

s = q~ + F(Z)-q~+ 2Q + 2 , ,  (2.18) 

with 

F(z)=DV2z + ~(k,,-k3n+ kl n2 -k2 n3) 
2 1 

+(2k ln -k3 -3kzn  ) Z + ~ ( k l -  1 k 3 3k2n)Z2-~  2Z, 

(2.19) 

Q = (3 k 2 n - k 1) ~ 2/,,/2, (2.20) 

and 5~ containing all higher terms. 
One finds that all terms lumped into ~i1 are irre- 
levant under the renormalization group [19]. This is 
most easily seen by making the further transfor- 
mation 

q )+~2 /a~+ ,  Z ~  ~ 2/a~, (2.21) 

such that [~5+]=/ 1 a/2 and [~]=/1-a/2. Then all 
coupling constants in ~iI have positive dimension of 
length [19], for d~4 .  
Neglecting 5~n, one gets however a theory with de- 
tailed balance. The equation Sdax Lflil~ ) =0  for the 
stationary state is thus equivalent to 

{F(x) - ~o + Q} [,I 0 = 0, (2.22) 

with the solution 

14~> = S [de] e Id~x {~) ~ + (~)+�89 g(~(~))} 10), (2.23) 

X 
i f(X) = ~ d Z FO0. (2.24) 

0 

This state is easily seen to be just the equilibrium 
state of ~o4-theory with k T= Q and W = - f t .  
Thus the critical behaviour of model II is, according 
to this standard treatment, exactly that of the Ising 
model. 

3. Arguments Against the Standard Treatment 
of Model II 

a . d = l  

The first argument against the conclusion that mod- 
el II has an Ising-type critical point comes from 
considering d--- 1. 
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For d =  1, model I is well known to show a critical 
point (at k 4 = 0  ) [11, 13, 15, 167. At first sight, this 
seems to contradict the Mermin-Wagner theorem. 
This theorem is, however, not applicable as the sta- 
tionary state of Model I is not a thermal equilib- 
rium with a short-range hamiltonian_ 
In contrast, for model II the above treatment would 
suggest that there is indeed no phase transition for d 
= 1. This difference between models I and II would 
be very hard to understand: 
For ~:a<~:3 .... the stationary state of model I has a 
non-zero particle density n and a finite range { of 
correlations. Let us assume that in model II the 

1 
interaction range is >~, and that k l ~ n K  , and 

1 
k2Vnt  %. Then it is easy to see that both models 

should have essentially the same stationary state. 
Since, on the other hand, n = 0  for sufficiently large 
k3, there must exist a singular point also for model 
II, with k,~ = 0. 

b. d > l  

For  all d<4,  very similar heuristic arguments sug- 
gest that the critical behaviour of models I and II is 
indeed the same - implying, of course, that the criti- 
cal point of model II is also at k 4 = 0. 
The essential difference between the two models is 
that in model II a single particle cannot produce off- 
spring. Near the critical point, however, the ability 
of a single modeM-particle to produce such off- 
spring becomes irrelevant: due to the strong cluster- 
ing mentioned in the last section, there will always 
be a second particle near-by (on a length scale de- 
fined by the correlation length). The same is true of 
the reaction 2X---,X, which near the critical point is 
indistinguishable from 3X---,2X. 
Of course, this is only true for d<4 .  For  d__>4, 
clustering no Ionger dominates the critical behaviour 
of model I, and the two models are no longer 
equivalent. This implies that the constants Po, Po, 
no, and c in (2.12)-(Z15) must diverge for d / 4 .  We 
expect 

P ~ 1 7 6 1 7 6  for d / 4 .  (3.1) 
P0,n0,  c --~ 0 

c. Alternative Field Theoretic Treatment 

As we have already stressed, a perturbative treat- 
ment of 5r n about the vacuum is impossible: drop- 
ping in (2.8) all non-renormalizable terms, we end 

up with a trivial theory. The above arguments might 
explain this qualitatively: near the critical point, the 
basic entities are not single particles but clusters of 
particles. 
This suggests that we make a transformation to new 
creation and annihilation operators which create 
resp. annihilate just such clusters. Let us assume that 
we are working on a hypercubic lattice in space, so 
that 

[~,(i), ~(j)] = ~i,j- (3.2) 

Then one such transformation is* 

50) =e  a(=~ 1)= 1 + a {  q5 + (i), (3.3) 

~(i) =1_ ~ 10 ) 0(i)=(a~) -1 c}(i). (3.4) 
a 

One easily checks that [~(i),7~(j)]=[~5(i),c/5+(j)] 
= 6~,2, and that (}10) = 0. 
For k 4 =0, the Liouvillean expressed in terms of the 
new variables ~ and q5 + is 

~PlI = - D V (  ~ e(o + (ak 1 - a2 k2 - k 3 )  (p+ (p 

- ( 3  a k  2 - k l )  ~ -  1 q5 + q~2 + ~ [-2(kl _ ak2) 

+�89 _a2kz _ k 3 )  ] (~+ (~2 § ~ i i .  (3.5) 

Here, ~ii contains terms with higher derivatives 
(from the lattice approximation to V~r-gO) and/or 
higher powers of the fields. Assuming the constant a, 
to be dimensionless, one has [~5] = [(~+] =1 ~/2, and 
all terms of 5~i are irrelevant as compared to the 
terms written explicitly in (3.5). These latter terms 
are however just those of model I, suggesting that 
both models have indeed the same critical be- 
haviour. 
This argument is of course far from being rigorous. 
It does not say anything, in particular, about what 
happens at d=4.  Also, the constant a has to be 
chosen appropriately in order to get the correct 
signs of the qo+qo z and ~o+ap couplings. But it does 
not seem worse than the standard argument pre- 
sented in the last section. The crucial assumption in 
both was that perturbatively irrelevant terms can be 
simply thrown away. While this should work in 
cases where the true solution is already close to the 
perturbative (i.e. deterministic) one, it can com- 
pletely fail if this is not true. 

* In writing the right-hand side of (3.3), we have also changed 
the definition of the scalar product (and whence of hermitian 
conjugation). One is free to do this in the present formalism [6], 
and only with the new scalar product the analogon of (2.3) holds 
for the densities of clusters 
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d. Detailed Balance and the Interface 
between the Two Phases 

The crucial property missed by the standard argu- 
ment seems to be the lack of detailed balance in 
model II and, related to it, the existence of an ab- 
sorbing state (the vacuum) if k~=0. (The terms in 
•n violating detailed balance are all "irrelevant".) 
That the lack of detailed balance leads to problems 
in locating the transition of model II is well known. 
Assume that the k~ are such that the rate equation 
(1.4) has two stable solutions. Two different argu- 
ments have been proposed in order to decide which 
one is the abolutely stable state. 
The first was proposed by Schl6gl [3]. He adds a 
diffusion term to (1.4) and looks at the kink so- 
lutions interpolating between the stationary so- 
lutions. In general this kink will move, so that one 
of the solutions "eats up" the other. Equilibrium is 
thus defined by Vkink : 0. 
The other argument, proposed by Nicolis and others 
[23], assumes strict homogeneity, but includes (in 
contrast to the above) homogeneous fluctuations. In 
the bistable region, the master equation for finite 
volume has then a solution with two bumps. In the 
limit of infinite volume, one of the bumps becomes a 
6-function, P(n),.~5(n-n~,te eq.)' while the other dies 
out, except exactly on the transition point k 3 

- -  k 3 ,  Nico l i s -  

The problem is that, for fixed kl ,k  2 and k4<k 4 .... 
the predicted transition point k3, Schlag 1 is always 
larger than the transition point k3, Naool~ (see Fig. 2). 
For  systems with (small) inhomogeneities and fluc- 
tuations, and with k3, Nicolis<k3<k3, Schl6gl, the fol- 
lowing happens: assume that, at a particular instant, 
nmn> in the whole system. A roughly homogeneous 
fluctuation will sooner or later lead to a collapse 
leading to nmn< in some finite region. The kink at 

k n  

\ 

Nico l i s  / 
g Tu r n e r " - - . . . . .~  i 1 

I ! 4 ~ J - S c h l o  g I 

\ 

) 

k3 

Fig. 2. Solid line: rate approximation for model II, with k 4 < k4.c,. ; 
dotted: transitions according to SchliSgl [3] and Nicolis [23]; 
dashed: more realistic behaviour (schematic) 

the boundary of this region will, however, move 
inwards, and after some time the original status will 
be restored. This permanent cycling is of course a 
manifestation of a lack of detailed balance, and it 
will wipe out the sharp transition, for k 4 :~= 0. 
This is seen more clearly by looking at the interface 
between the two phases, when k4=0. In this case 
k3,Nicolis=0 , since any finite population will finally 
die for all k 3 >0. Schl6gl's construction leads, on the 
other hand, to k3, schl~gl = 2. 
Let us now consider a "hyperstrip" 

O<xl<L,  - o o < x i <  oo, i=2  . . . . .  d. 

At x I =L,  we take absorbing boundary conditions (n 
=0), while at x l = 0  we assume that particles are 
permanently fed in, leading to a non-zero density. 
Between these two surfaces, there must be an in- 
terface. According to the standard treatment, the 
transition is first order (we still assume k4=0), and 
thus the width of the interface remains finite for 
k3~k3,cr (except when k 3=k3,cr exactly) and 
L---~ oo. 

In order to see that this cannot be correct, assume 
k3=k3,cr+e, with e>0.  Then the interface will be 
near x I ~0.  Its deterministic velocity would be posi- 
tive, however, for sufficiently small e. Thus the ac- 
tual interface will be strongly influenced by fluc- 
tuations: there is a permanent sparkling off of clus- 
ters, all of which die sooner or later, due to fluc- 
tuations in size. Since, for e~0 ,  sufficiently large 
clusters can live arbitrarily long and move arbitrari- 
ly far, the interface will become increasily fuzzy in 
this limit. 
This argument breaks down for d > 4  where, as we 
have seen in the last section, a cluster no longer 
evolves as a coherent object. 
A similar (albeit less drastic) effect is indeed seen 
when treating the model in the mean field approxi- 
mation of [-24]. There, one divides the system into 
cells, in each of which the particles react according 
to a master equation. Diffusion between cells is tak- 
en into account by adding to the reaction rate for 
X ~ 0  a term proportional to D, and adding to the 
rate for 0 ~ X  a term proportional to (n)D. One 
finds that, for any D >0, the critical point is shifted 
towards a smaller value of k4, as compared to the 
rate equation. We claim that, in a more exact treat- 
ment, it would be shifted to k 4 = 0. 

4. Monte Carlo Calculations 

The arguments of the previous section can hardly be 
claimed to be rigorous. Thus, we dediced to support 
them by Monte Carlo calculations. 
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a. The Model 

In order to obtain sufficient statistics, one can of 
course not perform molecular dynamics calculations 
with realistic interactions (e.g. hard spheres or Len- 
nard-Jones potentials). Since we are interested only 
in the critical behaviour, this is also not necessary. 
Thus, we studied highly simplified models where we 
kept only those features which we considered essen- 
tial. 
In all models, we discretized both space and time, 
i.e. we replaced the space-time continuum by a d +  1- 
dimensional cubic lattice. We also replace the satu- 
ration reaction 3 X ~ 2 X  by the prescription that 
any lattice point can be at most doubly occupied. 
The other reactions were simulated in a variety of 
different ways. A more or less random study of 
various models showed that all of them had the 
same qualitative behaviour. Some seemed however 
to have somewhat longer relaxation times than 
others, and some had transitions for very small val- 
ues of k 3. 
Finally, we settled down at the following model: 
each iteration t ~ t + l  consists of four steps (i) to 
(iv). During each step, the whole lattice is scanned 
through, and a set of new occupation numbers {m i 
= 0, 1, or 2; i = site} are calculated from the previous 
set of occupation numbers {ni}. After the whole 
lattice has been scanned, the ni's are replaced by the 
mi's, and we go on to the next step. The four steps 
are: 

(i) If site i is empty, we go to the next site. Other- 
wise, we choose a random number 0<r~< l .  If 
ri<k3, and if site i is singly occupied, we remove the 
particle. If it is doubly occupied, we remove both 
particles if q<k~,  and one if k~<ri<2k3(1-k3) .  
This simulates the reaction X k3 > 0. 

(ii) Similarly, we add a particle at site i with proba- 
bility k4, provided it is not already doubly oc- 
cupied. 

(iii) With probability 0.6 we go to the next site. 
Otherwise, and if site i is singly occupied, we move 
this particle with equal probability to one of its next 
neighbours. If i is doubly occupied, we move the two 
particles to opposite next neighbours. If this yields 
> 3 particles in one of the neighbouring points, the 
surplus particle(s) is (are) simply discarded. 
(iv) If and only if point i is doubly occupied, we 
add a particle in each of two neighbouring points i 
+ ~k, and in the two opposite points i-e~,. For  d > 2, 
the unit vectors ek are chosen randomly. This sim- 

ulates a reaction 2X ki=~ 6X, which in the rate 

approximation has the same effect as 2X k , = 4  3X. 
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Again we discard any particle which is to be added 
to a site which is already doubly occupied. 

b. Stationary States 

The most extensive runs were performed in 2 dimen- 
sions. For given values of k 3 and k 4, we performed 
up to 9,600 iterations on lattice sizes up to 60 x 60, 
just ot obtain a stationary state. The same number 
of iterations then was used to calculate the average 
density n of particles per site, by calculating its 
mean value after every tenth iteration. In order to 
be sure that no hysteresis has remained, we perform- 
ed sweeps with fixed k4, and with k 3 both increasing 
and decreasing (except for k~=0, where we made 
only one sweep with k 3 increasing). We started these 
sweeps with all sites doubly occupied. Helical 
boundary conditions were used, i.e. for a N x N- 
lattice we identified (i, N + 1) with (i + 1, 1), and (N, N 
+ i) with (1, 1). 
A first search, the result of which is shown in Fig. 
3a, showed the expected behaviour, intermediate be- 
tween Figs. l a and lb.  There is no sign of any 
singularity for k~ 4: 0, but there is clearly a transition 
near k4~0  , k3~0.4. 
The results of detailed runs in the latter region are 
shown in Fig. 3b. We see that there is definitely no 
phase transition for k4>0.01, but there is a tran- 
sition at 

k4=0  , k 3 =0.3805-t- 0.0005. (4.1) 

The data are not precise enough to decide whether 
it is indeed of second order (but they are compatible 
with it). This should not be surprising, as it should 
be of first-order in the absence of fluctuations. 
There are three possible criticisms against our in- 
terpretation. First, one might suspect that the criti- 
cal point is actually at a very small but non-zero 
value of k 4. Secondly, it might be that it is in the 
universality class of model I for all d, for some 
trivial reason. Third, our lattices might have been 
too small, so that the smoothness of the transition 
reflects only the finite lattice sizes. In order to elim- 
inate these possibilities, we compare in Fig. 4 the 
results for k 4=0.03 with the results in 3 and 4 di- 
mensions, also for k4=0.03. As expected, the tran- 
sition becomes steeper with increasing d. The 4- 
dimensional calculations strongly suggest a first-or- 
der transition, implying that the critical point has 
kr We notice that the 3- and 4-dimensional 
results were obtained on lattices of only 93 and 54 
points, while the 2-dimensional results were ob- 
tained from 45 x 45 points. The iteration times were 
comparable in all 3 cases. 
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Fig. 3a. Monte  Carlo phase diagram (density n of particles per 
site) for d=2 .  The continuous lines are curves k4=cons t  , hand- 
drawn through points whose errors where roughly of the same 
size as the thickness of the curves 
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Fig. 4. Average density n for k4=0.03 and d = 2  (circles), 3 (tri- 
angles), and 4 (squares). Full symbols: sweeps with k 3 increasing. 
Open symbols: sweeps with k 3 decreasing. The dashed line is the 
result of the mean-field approximation 
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Fig. 3b. Average density n of sites per site near the phase tran- 
sition for d=2 .  o:  sweeps with increasing k3, with fixed k4, zx: 
sweeps with decreasing k3, with fixed k 4. The continuous lines are 
only drawn for guidance. Curves: (a) k4=0 ;  (b) k ,=0 .01 ;  (c) k 4 
=0.02; (d) k4=0.03; (e) k,~=0.04; (0 k4=0.05; (g) k,~=0.07; (h) k 4 
=0.1 
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Fig. 5. Same as Fig. 2, but for d = 1 

Also shown in Fig. 4 is the result of the mean-field- 
approximation for our model. It is defined by re- 
placing in steps (iii) and (iv) "neighbouring point" 
by " random point". It describes exactly the be- 
haviour at d~oo .  It leads to a critical point at 
k 4 ~ 0.05. The location of the transition for k s = 0.03 
cannot be determined without further assumptions 
(compare Sect. 3d). 
As another check against a finite-size effect, we per- 
formed 2-dimensional calculations for k4=0.015 on 
lattices 60 x 60 and 25 x 25. Within statistical errors, 
both showed exactly the same smooth transition. 
Finally, we performed also calculations on one-di- 
mensional lattices. If the critical behaviour were Ising- 
like as claimed in [-18-20], we would not expect any 

transition. If it is the same as in model I, there 
should be a transition with qualitatively the same 
behaviour as in higher dimensions. For d = l ,  we 
have of course to modify step (iv). We chose instead 

Step (iv'): if point i is doubly occupied, we add one 
particle in i+  1 and one in i - 1 ,  provided 
these points are not already doubly oc- 
cupied. 

The results, shown in Fig. 5, clearly show the expect- 
ed transition at k 4 - 0  and k3=0.214+0.001. Al- 
though the transition is less steep than for d = 2  (as 
we should have expected), it seems still hard to 
extract critical exponents from these data. 
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Fig. 6. Monte Carlo results for <n)t (Fig. 5a) and Pt (Fig. 5b), for 
d = l .  o:  k3=0.213; o: k3=0.215; /,: k3=0.217. Data are based 
on 10 * runs for each value of k 3. The straight lines have the 
slopes predicted by Eqs. (2.12) and (2.13) 
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Fig. 7. Same as Fig. 6, but for d=2.  o:  k=0.378 (5x104 runs, 
lattice 25 x25); o: k=0.380 (2 x 10 s runs, lattice 35 x35); zx: k 
=0.381 (4 x 10 s runs, lattice 33 x 33). Helical boundary conditions 
have been used. Due to the finite size of the lattices, there is a 
small systematic error shifting the very large-t data points to 
lower values. No corrections for this have been applied 

c. Time-Dependent States 

According to our experience with model I [13], it 
was easier to obtain rough values for these ex- 
ponents from time-dependent states, by using (2.12) 
and (2.13). We thus performed also such calcu- 
lations, for k 4 = 0  , by starting with one doubly oc- 

cupied site with all other sites empty, and watching 
the evolution for typically ~ 1,000 iterations. 
Such calculations are particularly effective for d = l ,  
where we can choose the lattice large enough so that 
no particle ever reaches its boundary. There, we can 
also easily restrict the iterations to that part of the 
lattice which is not empty. 
The results of <n)~ are shown in Figs. 6a (d= 1) and 
7a (d=2), those for Pt in Figs. 6b and 7b. For 
comparison, also the predictions from (2.13) and 
(2.14) are shown. For  d =  1, as expected, scaling sets 
in later than in the model I calculations in [13]. 
Nevertheless, the data seem to agree with the pre- 
dictions. For d--2, scaling sets in even later. Again 
this was expected - for d=4,  we do not expect any 
scaling behaviour at all -, but it makes any compar- 
ison with the predictions meaningless. 

5. Discussion 

The Monte Carlo simulations of the last section 
clearly show that there is no first-order transition in 
Schl6gl's second model. They also indicate (although 
less clearly) that the observed second-order tran- 
sition is in the same universality class as the one in 
Schl6gl's first model. Both conclusions are in agree- 
ment with our prediction based on formal and heu- 
ristic arguments, but in striking disagreement with 
1-18-2o3. 
The Monte Carlo calculations of Hanusse et al. 1-21] 
indicated no phase transition in d = l ,  but a tran- 
sition at k4>0  in d=2,  although - as the authors 
state themselves - the data are far from convincing. 
The main difference between our specific model and 
theirs is that they use very large cells (~2 0  particles 
per cell) and very strong diffusion: the chance of one 
particle jumping into a cell is comparable or larger 
than the chance of a chemical reaction in this cell. 
In our model, in contrast, the number of particles 
per cell was <2, and the rate of interaction between 
cells was of the same order of magnitude as the 
reaction rates within a cell. 
As a consequence, even away from any critical 
point, the correlation length in [21] was so large 
that fluctuations were coherent over volumes con- 
taining very many (>102 ) particles. Thus within any 
reasonably long running time and on any manag- 
able lattice size, it seems impossible to reach the 
critical regime. This is indeed what was found in 
[21]. Although there it was claimed that no critical 
behaviour was seen in d = l ,  they did find that the 
model was bistable (for d--1 ?) for certain rate pa- 
rameters (private communication). These two state- 
ments are of course mutually excluding. As we ex- 
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pect  r e l axa t ion  t imes to be even longer  in d---2, their  
conc lus ion  in tha t  case seems even less justified.  
In  real is t ic  appl ica t ions ,  it might  well be tha t  the 
p a r a m e t e r  choice of  [-21] is more  appropr i a t e .  In  
tha t  case, it  might  be very ha rd  to observe  the 
cri t ical  behaviour ,  as a d v o c a t e d  in the p resen t  paper ,  
in any  true exper iment .  In  such exper iments ,  one 
should  ins tead  see someth ing  l ike a first o rde r  t ran-  
sit ion. But  the sharpness  of this t rans i t ions  is pr i-  
mar i ly  a measure  of  the size of  the cells, no t  of  the 
to ta l  system. This  is no t  wha t  one usual ly  would  
cons ider  a local  in t e rac t ion  model .  Also,  when more  
ref ined exper iments  would  become  avai lable ,  one fi- 
nal ly  should  observe  a c ross-over  to the behav iou r  
descr ibed  above.  
Our  conc lus ion  is thus tha t  the  second  Schl6gl  mod-  
el, when t rea ted  as a t ru ly  local  reac t ion-di f fus ion  
system, is an example  where f luc tua t ions  change  
dras t ica l ly  the phase  structure.  I t  is not an example  
of  universa l i ty  be tween  mode l s  wi th  and  wi thou t  
de ta i led  balance.  
Rather ,  it  suggest  ano the r  type of  universa l i ty ,  com-  
pr is ing all cr i t ical  po in ts  with an abso rb ing  s tate  
and  a single o rde r  p a r a m e t e r  in one universa l i ty  
class. This  class does not,  of  course,  inc lude  mul t i -  
cr i t ical  p h e n o m e n a  which also occur  in nonequi l ib -  
r ium models .  A n  example  resembl ing  a t r icr i t ical  
po in t  occurs  in the r eac t ion  scheme 2 X ~ 3 X ,  
3X-+X.  W e  have pe r fo rmed  some p re l im ina ry  cal- 
cu la t ions  for this mode l  in 1 d imens ion ,  showing 
indeed  a t r ans i t ion  with  cri t ical  b e h a v i o u r  d is t inc t ly  
different  f rom m o d e l  I. 

I am deeply indebted to M. Scheunert, M.K. Janssen, and P. 
Hanusse for numerous critical discussions on the subject of this 
paper. For very useful correspondence, I also want to thank Drs. 
E. Tirapegui and D. Walgraef. 

References 

Matheson, I., Walls, D.F., Gardiner, C.N.: J. Stat. Phys. 12, 21 
(1975) 
J~thnig, F., Richter, P.H.: J. Chem. Phys. 64, 4645 (1976) 
Nicolis, G., Turner, J.W.: Physica 89A, 326 (1977) 

5. Gardiner, C.W., McNeil, K.J., Walls, D.F., Matheson, I.S.: J. 
Star. Phys. 14, 307 (1976) 

6. Grassberger, P., Scheunert, M.: Fortschr. Phys. 28, 547 (1980) 
7. Moshe, M.: Phys. Rep. C37, 255 (1978) 
8. Grassberger, P., Sundermeyer, K.: Phys. Lett. B77, 220 (1978) 
9. Broadbent, S.R., Hammersley, J.M.: Camb. Philos. Soc. 53, 

629 (1957) 
10. Cardy, J.L., Sugar, R.L.: J. Phys. A13, L423 (1980) 
11. Harris, T.E.: Ann. Prob. 2, 969 (1974) 

Griffeath, D.: Additive and cancellative interacting particle 
systems. Springer Lecture Notes in Mathematics. Vol. 724. 
Berlin, Heidelberg, New York: Springer-Verlag 1979 

12. Amati, D., Ciafaloni, M., Le Bellac, M., Marchesini, G.: Nucl. 
Phys. Bl12, 107 (1976); 
Brower, R.C., Furman, M.A., Subbarao, K.: Phys. Rev. D15, 
1756 (1977) 

13. Grassberger, P., de la Torre, A.: Ann. Phys. (N.Y.) 122, 373 
(1979) 

14. Abarbanel, H.D.I., Bronzan, J.B.: Phys. Rev. D9, 2397 (1974) 
15. Brower, R.C., Furman, M.A., Moshe, M.: Phys. Lett. 76B, 213 

(1978) 
16. Kinzel, W., Yeomans, J.M.: J. Phys. A14, L163 (1981) 

Domany, E., Kinzel, W.: Weizmann Institute preprint (1981) 
17. Janssen, H.K.: Z. Phys. B - Condensed Matter 42, 151 (1981) 
18. Dewel, G., Walgraef, D., Borckmans, P.: Z. Phys. B - Con- 

densed Matter 28, 235 (1977); J. Stat. Phys. 24, 119 (1981); 
Adv. Chem. Phys. 49, 311 (1982) 

19. a. Brachet, M.E., Tirapegui, E.: Phys. Lett. 81A, 211 (1981); 
b. Langouche, F., Roekaerts, D., Tirapegui, E.: Leuven pre- 
prints KUL-TF-80/27 (1980) and -81/3 (1981) 

20. Malek-Mansour, M., Broeck, C. van den, Nicolis, G., Turner, 
LW.: Univ. Libre des Bruxelles preprint (1980) 
Nicolis, G., Malek-Mansour, M.: J. Stat. Phys. 22, 495 (1980) 

21. Hanusse, P., Blanch6, A.: In: Systems far from equilibrium. 
Sitges proceedings. Garrido, L. (ed.). Lecture Notes in Physics. 
Vol. 132, p. 335. Berlin, Heidelberg, New York: Springer 1980 
Hanusse, P.: In: Nonlinear phenomena in chemical dynamics. 
Bordeaux proceedings. Vidal, C., Pacault, A. (eds.). Berlin, 
Heidelberg, New York: Springer 1981 

22. Doi, M.: J. Phys. A9, 1465, 1479 (1976) 
23. Nicolis, G., Turner, J.W.: In: Bifurcation theory and appli- 

cations in scientific disciplines. Ann. NY Acad. Sci. 316, 251 
(1979) 

24. Malek-Mansour, M., Nicolis, G.: J. Stat. Phys. 13, 197 (1975) 

1. Haken, H.: Synergetics. 2nd edn. Berlin, Heidelberg, New 
York: Springer-Verlag 1979 

2. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium 
Systems. New York: Wiley 1977 

3. Schl6gl, F.: Z. Phys. 253, 147 (1972) 
4. McNeil, K.J., Walls, D.F.: J. Stat. Phys. 10, 439 (1974) 

Janssen, H.K.: Z. Phys. 270, 67 (1974) 

P. Grassberger 
Fachbereich 8 - Physik 
UniversitS.t - Gesamthochschule 
Wuppertal 
Postfach 100127 
D-5600 Wuppertal 1 
Federal Republic of Germany 

Responsible for advertisements: E. Lfickermann, Kurfiirstandamm 237, D-1000 Berlin 15, Telephone: (030) 8821031, Telex: 01-85411 Springer-Verlag Berlin.Heidelberg- 
New York. - Printers: Universit~itsdruckerei H. Stfirtz AG, Wiirzburg Printed in Germany - O Springer-Verlag GmbH & Co. KG Berlin Heidelberg 1982 


