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Simple groups all of whose second maximal subgroups 
are (A)-groups 

By 

MOHAMED ASAAD 

1. Introduction. Throughout this paper the term group always means a group of finite 
order. A subgroup H of G is called pronormal in G if for every element x of G, H is 
conjugate to H x in (H, HX). We say that G is an (A)-group if every subgroup of G of prime 
order is pronormal in G and either the Sylow 2-subgroups of G are abelian or every cyclic 
subgroup of G of order 4 is pronormal in G. A finite group G is called a PN-group if every 
subgroup of prime order is normal in G. In [1], Buckley proved that a PN-group of odd 
order is supersolvable. The structure of a non PN-group, each of whose proper subgroups 
is a PN-group, has been analyzed by Sastry [2]. 

The purpose of this paper is to investigate the structure of a finite group, each of whose 
maximal subgroups is an (A)-group. We also classify a finite simple group, each of whose 
second maximal subgroups is an (A)-group. 

The following result will be repeatedly used: A subgroup H of G is normal in G iff it 
is both subnormal and pronormal in G [3, Exercise 6, p. 14]. 

The notation used in this paper is standard. In addition, W(I Gr) denotes the number 
of the distinct prime divisors of the order of G. 

2. Preliminaries. In this section, we collect some of the results that are needed in this 
paper. 

(2.1) Suppose that p is the largest prime divisor of the order of G, every subgroup of 
G of prime order q 4: p is pronormal in G and either (i) the Sylow 2-subgroups of G are 
abelian, or (ii) every cyclic subgroup of G of order 4 is pronormal in G. Then G possesses 
an ordered Sylow tower and G/Op(G) is supersolvable. In particular, G is solvable. 

P r o o f. This is [4, Theorem 4.2]. 

(2.2) If G/H is supersolvable, (IH[, 2) = 1, and every subgroup of H of prime order is 
pronormal in G, then G is supersolvable. 

P r o o f. This is [5, Theorem B]. 

(2.3) If G is a minimal non-supersolvable group (non-supersolvable group all of whose 
proper subgroups are supersolvable), then: 
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(i) G possesses an ordered Sylow tower or G is a minimal non-nilpotent group (non- 
nilpotent group all of whose proper  subgroups are nilpotent). 

(ii) G possesses a unique normal  Sylow p-subgroup P for some prime p. 
(iii) P has exponent p if p > 2 and exponent at most  4 if p = 2. 
(iv) P/~b(P) is a minimal normal  subgroup of O/~b(P). 
(v) P'  has exponent p. 

P r o o f. This is (Doerk [6]; see also [7, Aufgaben 16, p. 721]). 

(2.4) If G is a non-nilpotent dihedral group of order 2 n or 4 n, where n is odd, then G 
is an (A)-group. 

P r o o f. We consider two cases: 

C a s e 1. I GJ = 2n, n is odd. Then G = SH, where S ~ Syl2 (G) and H is a normal  cyclic 
subgroup of G of order n. For  any x ~ G, S is conjugate to S x in (S, S ~) by Sylow's 
theorem. Hence S is p ronormal  in G. Clearly, all subgroups of G of odd order are normal  
in G. Therefore, G is an (A)-group. 

C a s e 2. ]G[ = 4n, n is odd. Let S e Sylz(G ) and let K be a subgroup of G such that 
K < S. If K x < S, x e G, then K and K x are conjugate in NG(S) by Burnside's theorem [3, 
Theorem 1.1, p. 240]. Since G is non-nilpotent, it follows that  NG(S ) < G. Hence K = K ~. 
Thus every Sylow 2-subgroup of G contains exactly one conjugate of K. Now [3, Exer- 
cise 4 (ii), p. 13] implies that  K is pronormal  in G. Clearly, all subgroups of G of odd order 
are normal  in G. Therefore, G is an (A)-group. 

(2.5) Set G = PSL(2, r) with r = p:, p a prime and r > 3. Then we have: 

(i) The groups PSL(2, r) are simple; 
(ii) PSL(2, 4) ~ PSL(2, 5) ~ Alt(5); 

(iii) All second maximal  subgroups of Alt (5) are (A)-groups. 

P r o  o f. For  (i) and (ii); see [3, Theorem 1.2, p. 419]. It  is known that all the second 
maximal  subgroups of Alt (5) are abelian. Now it follows easily that  all the second 
maximal subgroups of Alt (5) are (A)-groups. Thus (iii) holds. 

(2.6) Set G = PSL(2, r), with r = p:,p a prime and r > 3. Then G is a Zassenhaus group 
of degree (r + 1) and the subgroup N fixing a letter is a Frobenius group with elementary 
abelian kernel K of order r and a cyclic complement  H of order (r - 1)/d, where 
d = ( r -  1, 2). Further,  Na(K)= N is a maximal subgroup of G and H acts irre- 
ducibly on K. 

P r o  o f .  See [3, Theorem 8.2, p. 41], [3, Theorem 7.3(iii), p. 35] and [3, Lemma 1.1, 
p. 418]. 

(2.7) Suppose that G is one of the following groups: 

(1) PSL(2,p), where p is a prime with p > 5, pZ _ 1 ~ 0(5) and p2 _ I ~ 0(16); 
(2) PSL(2, 2 q ) ,  where q is an odd prime and 2 q - -  1 = prime; 
(3) PSL(2, 3q), where q is an odd prime and (3 ~ - 1)/2 = prime. 

Then every second maximal subgroup of G is an (A)-group. 
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P r o o f. A maximal  subgroup of G is one of the following groups: 

(i) A dihedral group of order 2(r - l)/d, where d = (r - 1, 2) and r = p or r = 2 q or 
r = 3 q. See [7 w Die Untergruppen von PSL(2, r), pp. 191-213]. 

(ii) A Frobenius group N with elementary abelian kernel K of order r and a cyclic 
complement  H of order (r - l)/d, where d = (r - 1, 2) and r = p or r = 2 q or r = 3 q. 
See remark (2.6). 

(iii) Alt0) .  

Remark  (2.4) implies that groups of type (i) are (A)-groups. Remark  (2.6) implies that 
N is a minimal non-abelian group. Hence all maximal  subgroups of N are (A)-groups. 
Since Alt (4) is a minimal non-abelian group, it follows that  all maximal subgroups of 
Alt (4) are (A)-groups. 

3. Groups all of whose maximal subgroups are (A)-groups. In this section, we consider 
the structure of groups all of whose maximal  subgroups are (A)-groups. We prove the 
following theorem: 

Theorem 3.1. I f  every maximal subgroup of  G is an (A)-group, then one of  the following 
statements is true: 

(1) G is supersolvable. 
(2) G = PQ, where P <  G, P ~ Sylp(G), P is elementary abelian, Q ~ Sylq(G) is non- 

normal and cyclic, and p > q. 
(3) G = PQ, where P <  G, P ~ Sylp(G), P is elementary abelian, Q ~ Sylq(G) is non- 

normal and cyclic, p < q, and G is a minimal non-abeIian group (non-abelian group all 
o f  whose proper subgroups are abelian). 

(4) G = PQ, where P <  G, P ~ Sylz(G), P is quaternion of  order 8, Q ~ Syla(G ) is non- 
normal and cyclic, and G is a minimal non-niIpotent group. 

P r o o f. Suppose that G is not supersolvable. Let M be an arbitrary maximal  sub- 
group of G. Then M is an (A)-group by hypothesis. By (2.1), M / O v ( M  ) is supersolvable, 
where p is the largest prime divisor of the order of M. Applying (2.2), we conclude that 
M is supersolvable. Thus G is a minimal non-supersolvable group. By Hupper t ' s  theorem, 
G is solvable [7, Satz 9.6, p. 718]. We argue that W([ G[) = 2. If not, W([ G[) > 3. Then it 
follows from (2.3(i)) that  G possesses an ordered Sylow tower, and so P <  G, where 
P s Sylp(G) and p is the largest prime divisor of the order of G. By hypothesis, P is an 
(A)-group. Then every subgroup H of P of order p is p ronormal  in P. On the other hand, 
every subgroup of P is subnormal.  Now we conclude that every subgroup H of P of 
order p is normal  in P and so Ol(P ) = ( x  ~ P ] x  p = 1> < Z(P). By (2.3 (ii)), P is the 
unique normal  Sylow subgroup of G. Then by (2.3 (iii)) P has exponent p. Hence 
(21(P) = P = Z(P). It follows now from (2.3 (iv)) that  P is a minimal normal  subgroup of 
G. Since G is solvable and W(rG[) > 3, it follows from [7, Haupsatz  1.8, p. 662] that  there 
exist two Hall  subgroups K 1 and K 2 of G such that P < KI  c~ K2 and ( I G : K l l ,  
I G : K 2 J) = 1. Let H be a subgroup of Ki (i = 1, 2) of order p. By hypothesis, Ki (i = 1, 2) 
are (A)-groups. Then H is pronormal  in K~ (i = 1, 2). Clearly, H is subnormal  in K~ 
(i = 1, 2). Now we conclude that  H <  K~ (i = 1, 2) and so H <  G. Since P is a minimal 
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normal  subgroup of G, it follows that  H = P. By [7, Hauptsa tz  1.8, p. 662], G = HK, 
where K is a p ' -Hal l  subgroup of G. Clearly, G/H _~ K is supersolvable. Now it follows 
easily that  G is supersolvable, a contradiction. Thus W(] G[) = 2. 

If G has an ordered Sylow tower, then there exists a normal  Sylow p-subgroup P of G, 
where p is the largest prime divisor of the order of G. Hence, as in the preceding 
paragraph,  P is elementary abelian. Let Q e Sylq(G), where p > q. We argue that Q is 
cyclic. If not, Q has at least two distinct maximal subgroups Q~ (i = 1, 2). By hypothesis, 
PQ~ (i = 1, 2) are (A)-groups. Let H be a subgroup of P of order p. Then H is both  
subnormal and pronormal  in PQI (i = 1, 2) and so H<~ PQi (i = 1, 2). Hence H<a G. 
Now (2.3 (iv)) implies that  H = P and hence G is supersolvable, a contradiction. Thus Q 
is non-normal  cyclic. This proves (2). 

If G has not an ordered Sylow tower, then, by (2.3 (i)), G is a minimal non-nilpotent 
group. By (2.3 (ii)), G possesses a unique normal  Sylow p-subgroup R Obviously, p < q, 
where q is a prime divisor of the order of G and W(I GI) = 2. By (2.3 (iii)), P is of exponent 
p or P is of exponent 4. 

C a s e 1. P is of exponent p. I fp  = 2, then it follows easily that P is elementary abelian 
2-group and so G is a minimal non-abelian group. I f p  4= 2, then, as in the preceding first 
paragraph,  P is elementary abelian p-group and so G is a minimal non-abelian group. 
This proves (3). 

C a s e 2. P is of exponent 4. By hypothesis, P is an (A)-group. Then every subgroup 
of P of order 2 or every cyclic subgroup of P of order 4 is pronormal  in P. On the other 
hand, every subgroup of P is subnormal.  Now we conclude that every subgroup of P of 
order 2 or every cyclic subgroup of P of order 4 is normal  in P. Hence every subgroup 
of P is normal  in P (recall that P is of exponent 4). Since P is non-abelian, it fotlows that 
P is Hamil tonian group (P is non-abelian group in which every subgroup is normal). 
F rom [7, Satz 7.12, p. 308], we conclude that  P = P1 x Pz, where P1 is quaternion group 
of order 8 and P2 is an elementary abelian 2-group. Since P is Hamil tonian group, it 
follows that  f21(P ) < Z(P). Since P'  + 1 and G is a minimal non-nilpotent group, it 
follows from Re'dei [8], that  P' = Z(P). By (2.3 (v)), P'  < [21(P ). Hence f21(P) = P'. On the 
other hand, E21(P ) = f21 (P1) x P2 = P~ x P2 and P~ = P'. Now it follows that  P2 = I and 
so P = P1. Since G is a minimal non-nilpotent group, it follows that  Z(G) = P' x QI, 
where Q1 is a maximal subgroup of Q and Q 6 Sylq(G), and hence G/Z(G) = G is a 
minimal non-abelian group and IP l  = 4, where P<a G and F e  Syl2(G ). Clearly, t5 is 
elementary abelian. Since G/P :-G/Ca(P)-~ Aut(P), and ]Aut(/5)l--6,  it follows that  
q = 3. This proves (4). 

As an immediate corollary we have: 

Corollary 3.2. I f  every maximal subgroup of G is an (A)-group, then G' is nilpotent. 
Further, G is supersolvable when W([GI) > 3. 

P r o o f. Theorem 3.1 implies that  either (i) G is supersolvable or (ii) G = PQ, where 
P<a G, P ~ Sylp(G), Q e Sylq(G) and Q is non-normal  and cyclic. If G is as in (i), then G' 
is nilpotent [7, Satz 9.1 b), p. 716]. If G is as in (ii), then G/P ~ Q and hence P _>_ G'. 
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4. Simple groups all of whose second maximal subgroups are (A)-groups. In this section, 
we prove the following theorem: 

Theorem 4.1. Let  G be a non-abelian simple group with the property that all its second 
maximal subgroups are (A)-groups. Then G is one of  the following groups: 

(a) PSL(2, p), where p is a prime with P > 3, p2 _ 1 ~ 0(5) and p2 _ 1 ~ 0(16); 
(b) PSL(2, 2~), where q is a prime and 2 q - I = prime; 
(c) PSL(2, 3q), where q is an odd prime and (3 q - 1)/2 = prime. 

P r o o f. Let M be an arbi trary maximal  subgroup of G. Then all maximal subgroups 
of M are (A)-groups by hypothesis. Theorem 3.1 implies that  M is solvable. Hence all 
proper  subgroups of G are solvable. Applying Thompson ' s  theorem (9; see also [7, 
Bemerkung 7.5, p. 190]) it follows that G is isomorphic to one of the following simple 
groups: 

0 )  PSL(3, 3); 
(2) The Suzuki group Sz(r), where r = 2 q and q is an odd prime; 
(3) PSL(2, p), where p is a prime with p > 3 and pZ _ 1 ~ 0(5); 
(4) PSL(2, 2q), where q is a prime; 
(5) PSL(2, 3q), where q is an odd prime. 

We claim 

(i) G cannot be PSL(3, 3). 
Let x be an involution in the centre of a Sylow 2-subgroup of G = PSL(3, 3). Then 

C~(x) ~ GL(2,  3) by [10, Lemma  5.1, p. 341]. We know that  SL(2, 3) is a proper  subgroup 
of GL(2,  3). Then SL(2, 3) is an (A)-group by hypothesis. Hence if H is a subgroup of 
SL(2, 3) of order4,  H would be pronormal  and subnormal  in SL(2, 3) and so 
H<~ SL(2, 3). This is impossible because SL(2, 3) has no normal  subgroup of order 4. 

(ii) G cannot  be Sz(r), where r = 2 q and q is an odd prime. 
By [I0, Theorem 3.3, p. 184], Sz(r) is a Zassenhaus group. Then by [3, Theorem 8.2, 

p. 41], Sz(r) possesses a Frobenius group N with a cyclic complement  H of order (r - J) 
and kernel P of order r 2. Since P is non-abelian, it follows that Z ( P ) H  is a proper  
subgroup of N. Hence if G = Sz(r), Z(P) H would be an (A)-group by hypothesis. Let x 
be an involution of Z(P). Then ( x )  is both pronormal  and subnormal in Z(P) H and so 
( x ) - ~  Z(P) H. Hence ( x )  H = ( x )  x H and so H < CN(x). But CN(x) < P by [3, Theo- 
rem 7.6 (iv), p. 38]. This is a contradiction. Thus G can not be Sz(r), where r = 2 q and q 
is an odd prime. 

(iii) G cannot be PSL(2,p),  where p is a prime with p > 5, p2 _ ] ~ 0(5), and 
p2 _ 1 --- 0(16). 

Suppose that G = P S L ( 2 , p ) ,  where p is a prime with p > 5 ,  p 2 _ 1 ~ 0 ( 5 )  and 
p2 _ 1 - 0(16). Then by Dickson's theorem [7, Hauptsa tz  8.27, p. 213], Sym (4) is a proper  
subgroup of G = PSL(2, p). Clearly, Alt (4) is a proper  subgroup of Sym(4). By hypothe- 
sis, Alt (4) is an (A)-group. This is a contradiction because Alt (4) contains no subgroup 
of order 6. 
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(iv) G cannot be PSL (2, 2q), where q is an odd prime and 2 q - 1 :t= prime. Suppose 
that G = PSL(2, 2q), where q is an odd prime and 2 q - 1 @ prime. Then by (2.6), G 
possesses a Frobenius group N with kernel P of order 2 q and a cyclic complement H of 
order 2 q - 1. P is elementary abelian 2-group. Since 2 q - I 4= prime, it follows that N 
possesses a proper subgroup ( x )  P, where ( x )  is a proper subgroup of H. By hypothesis, 
( x )  P is an (A)-group. Let y be an involution of R Then ( y )  is both pronormal and 
subnormal in ( x )  P and so ( y ) - ~  ( x )  R Hence ( y )  ( x )  = ( y )  x ( x )  and so x ~ C,v(y). 
But Cu(y) < P by [3, Theorem 7.6 (iv), p~ 38]. This is a contradiction. Thus G can not be 
PSL(2, 2q), where q is an odd prime and 2 q - I 4 = prime. 

(v) G cannot be PSL(2, 30), where q is an odd prime and (3 q - 1)/2 4= prime. 

The proof of (v) is similar to that of (iv). 
So the only possibility for G is: 

(a) PSL(2,p), where p is a prime wi thp  > 3, p 2 - 1 ~ 0(5) a n d p  2 - I ~ 0(16). 
(b) PSL (2, 2q), where q is a prime and 2 q - 1 = prime. 
(c) PSL(2, 30), where q is an odd prime and (3 q - 1)/2 = prime. 

But we have seen in the analysis of (a), (b) and (c) that all the second maximal subgroups 
of G are (A)-groups (see remarks (2.5) and (2.7)). The theorem is proved. 
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