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Simple groups all of whose second maximal subgroups
are (A)-groups

By

MOHAMED ASAAD

1. Introduction. Throughout this paper the term group always means a group of finite
order. A subgroup H of G is called pronormal in G if for every element x of G, H is
conjugate to H” in {H, H*>. We say that G is an (A)-group if every subgroup of G of prime
order is pronormal in G and either the Sylow 2-subgroups of G are abelian or every cyclic
subgroup of G of order 4 is pronormal in G. A finite group G is called a PN-group if every
subgroup of prime order is normal in G. In {1}, Buckley proved that a PN-group of odd
order is supersolvable. The structure of a non PN-group, each of whose proper subgroups
is a PN-group, has been analyzed by Sastry [2].

The purpose of this paper is to investigate the structure of a finite group, each of whose
maximal subgroups is an (A)-group. We also classify a finite sihple group, each of whose
second maximal subgroups is an (A)-group.

The following result will be repeatedly used: A subgroup H of G is normal in G iff it
is both subnormal and pronormal in G {3, Exercise 6, p. 14]. v

The notation used in this paper is standard. In addition, W (]G|) denotes the number
of the distinct prime divisors of the order of G.

2. Preliminaries. In this section, we collect some of the results that are needed in this
paper.

{2.1) Suppose that p is the largest prime divisor of the order of G, every subgroup of
G of prime order ¢ + p is pronormal in G and either (i) the Sylow 2-subgroups of G are
abelian, or (ii) every cyclic subgroup of G of order 4 is pronormal in G. Then G possesses
an ordered Sylow tower and G/O,(G) is supersolvable. In particular, G is solvable.

Proof. This is [4, Theorem 4.2].

(2.2) If G/H is supersolvable, (| H|, 2) = 1, and every subgroup of H of prime order is
pronormal in G, then G is supersolvable.

Proof. This is [5, Theorem B].

(2.3) If G is a minimal non-supersolvable group (non-supersolvable group all of whose
proper subgroups are supersolvable), then:
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(i) G possesses an ordered Sylow tower or G is a minimal non-nilpotent group {non-
niipotent group all of whose proper subgroups are nilpotent).
(i) G possesses a unique normal Sylow p-subgroup P for some prime p.
(iii) P has exponent p if p > 2 and exponent at most 4 if p = 2.
(iv) P/¢(P)is a minimal normal subgroup of G/¢(P).
(v) P has exponent p.

Proof. This is (Doerk [6]; see also [7, Aufgaben 16, p. 721]).

(2.4) If G is a non-nilpotent dihedral group of order 2n or 4n, where n is odd, then G
is an (A)-group.

Proof. We consider two cases:

Case 1.|G| = 2nnisodd. Then G = SH, where S € 8Syl,(G) and H is a normal cyclic
subgroup of G of order n. For any x € G, S is conjugate to S* in ¢S, §) by Sylow’s
theorem. Hence S is pronormal in G. Clearly, all subgroups of G of odd order are normal
in G. Therefore, G is an (A}-group.

Case 2. |G| =4n, nis odd. Let § € Syl,(G) and let K be a subgroup of G such that
K < S. IfK*< §, x € G, then K and K* are conjugate in Ng(S) by Burnside’s theorem [3,
Theorem 1.1, p. 240]. Since G is non-nilpotent, it follows that N;(S) < G. Hence K = K*.
Thus every Sylow 2-subgroup of G contains exactly one conjugate of K. Now {3, Exer-
cise 4 (ii), p. 13]implies that K is pronormal in G. Clearly, all subgroups of G of odd order
are normal in G. Therefore, G is an (A)-group.

(2.5) Set G = PSL(2, r) with r = p’, p a prime and r > 3. Then we have:

(i) The groups PSL(2, r} are simple;
(i) PSL(2,4) = PSL(2, 5) = Alt(5);
(ii}) Al second maximal subgroups of Alt(5) are (A)-groups.

Proof. For (i) and (ii); see {3, Theorem 1.2, p. 419]. It is known that all the second
maximal subgroups of Alt(5) are abelian. Now it follows easily that all the second
maximal subgroups of Alt(5) are (A)-groups. Thus (iii) holds.

(2.6) Set G = PSL(2, r), with r = p/, p a prime and r > 3. Then G is a Zassenhaus group
of degree (r + 1) and the subgroup N fixing a letter is a Frobenius group with elementary
abelian kernel K of order r and a cyclic complement H of order (r — 1)/d, where
d=(r—1,2). Further, Ny(K)= N is a maximal subgroup of G and H acts irre-
ducibly on K.

Proof. See [3, Theorem 8.2, p. 41], [3, Theorem 7.3 (iii), p. 35] and {3, Lemma 1.1,
p- 418].
(2.7) Suppose that G is one of the following groups:
(1) PSL(2, p), where p is a prime with p > 5, p* — 1 % 0(5) and p? — 1 % 0(16);
(2) PSL(2, 29, where g is an odd prime and 27 — 1 = prime;
(3) PSL(2, 39, where ¢ is an odd prime and (3¢ - 1)/2 = prime.

Then every second maximal subgroup of G is an (A)-group.
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Proof. A maximal subgroup of G is one of the following groups:

(i) A dihedral group of order 2(r — 1)/d, where d = (r — 1,2) and r = p or r = 2% or
r = 3% See [7 §8 Die Untergruppen von PSL(2, r}, pp. 191-213].
(i) A Frobenius group N with elementary abelian kernel K of order r and a cyclic
complement H of order (r — 1)/d, whered = (r — 1,2)andr =porr=2%7orr = 3%
See remark (2.6).
(i) Alt(4).

Remark (2.4) implies that groups of type (i) are (A)-groups. Remark (2.6) implies that
N is a minimal non-abelian group. Hence all maximal subgroups of N are (A)-groups.
Since Alt(4) is a minimal non-abelian group, it follows that all maximal subgroups of
Alt{4) are (A)-groups.

3. Groups all of whose maximal subgroups are (A)-groups. In this section, we consider
the structure of groups all of whose maximal subgroups are (A)-groups. We prove the
following theorem:

Theorem 3.1. If every maximal subgroup of G is an (A)-group, then one of the following
Statements is true:

(1) G is supersolvable.

(2) G=PQ, where P<a G, PeSyl,(G), P is elementary abelian, Q € Syl,(G) is non-
normal and cyclic, and p > q.

(3) G=PQ, where P<a1 G, PeSyl,(G), P is elementary abelian, Q € Syl (G) is non-
normal and cyclic, p < q, and G is a minimal non-abelian group (non-abelian group all
of whose proper subgroups are abelian).

(4) G = PQ, where P<a G, P e Syl,(G), P is quaternion of order 8, Q € Syl;(G) is non-
normal and cyelic, and G is a minimal non-nilpotent group.

Proof. Suppose that G is not supersolvable. Let M be an arbitrary maximal sub-
group of G. Then M is an (A)-group by hypothesis. By (2.1), M/0,(M) is supersolvable,
where p is the largest prime divisor of the order of M. Applying (2.2), we conclude that
M is supersolvable. Thus G is a minimal non-supersolvable group. By Huppert’s theorem,
G is solvable [7, Satz 9.6, p. 718]. We argue that W(|G|) = 2. If not, W(|G|) = 3. Then it
follows from (2.3(i)) that G possesses an ordered Sylow tower, and so P<1 G, where
P eSyl,(G) and p is the largest prime divisor of the order of G. By hypothesis, P is an
(A)-group. Then every subgroup H of P of order p is pronormal in P. On the other hand,
every subgroup of P is subnormal. Now we conclude that every subgroup H of P of
order p is normal in P and so Q,(P)=(xeP|x?=1> £ Z(P). By (23(ii)), P is the
unique normal Sylow subgroup of G. Then by (2.3(iii)) P has exponent p. Hence
Q,(P) = P = Z(P). It follows now from (2.3 (iv)) that P is a minimal normal subgroup of
G. Since G is solvable and W(|G|) = 3, it follows from [7, Haupsatz 1.8, p. 662] that there
exist two Hall subgroups K; and K, of G such that P< K, n K, and ({G:K,|,
{G: K,|) = 1. Let H be a subgroup of K, (i = 1, 2) of order p. By hypothesis, K; (i = 1, 2)
are (A)-groups. Then H is pronormal in K; (i = 1, 2). Clearly, H is subnormal in K;
(i =1,2). Now we conclude that H< K, (i = 1, 2) and so H<a G. Since P is a minimal
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normal subgroup of G, it follows that H = P. By {7, Hauptsatz 1.8, p. 662}, G = HK,
where K is a p’~-Hall subgroup of G. Clearly, G/H = K 1is supersolvable. Now it follows
easily that G is supersolvable, a contradiction. Thus W{(|G|) = 2.

If G has an ordered Sylow tower, then there exists a normal Sylow p-subgroup P of G,
where p is the largest prime divisor of the order of G. Hence, as in the preceding
paragraph, P is elementary abelian. Let Q e Syl (G), where p > g. We argue that @ is
cyclic. If not, Q has at least two distinct maximal subgroups Q; (i = 1, 2). By hypothesis,
PQ; (i=1,2) are (A)-groups. Let H be a subgroup of P of order p. Then H is both
subnormal and pronormal in PQ; (i=1,2) and so H<a PQ,; (i =1, 2}. Hence H< G.
Now (2.3 (iv)) implies that H = P and hence G is supersolvable, a contradiction. Thus Q
is non-normal cyclic. This proves (2).

If G has not an ordered Sylow tower, then, by (2.3(i)), G is a minimal non-nilpotent
group. By (2.3 (ii)), G possesses a unique normal Sylow p-subgroup P. Obviously, p < g,
where ¢ is a prime divisor of the order of G and W{| G|} = 2. By (2.3(iii)), P is of exponent
p or P is of exponent 4.

Case 1. Pisofexponent p. If p = 2, then it follows easily that P is elementary abelian
2-group and so G is a minimal non-abelian group. If p & 2, then, as in the preceding first
paragraph, P is elementary abelian p-group and so G is a minimal non-abelian group.
This proves (3).

Case 2. Pis of exponent 4. By hypothesis, P is an {A)-group. Then every subgroup
of P of order 2 or every cyclic subgroup of P of order 4 is pronormal in 2. On the other
hand, every subgroup of P is subnormal. Now we conclude that every subgroup of P of
order 2 or every cyclic subgroup of P of order 4 is normal in P. Hence every subgroup
of P is normal in P (recall that P is of exponent 4). Since P is non-abelian, it follows that
P is Hamiltonian group (P is non-abelian group in which every subgroup is normal).
From [7, Satz 7.12, p. 308}, we conclude that P = P, x P,, where P, is quaternion group
of order & and P, is an clementary abelian 2-group. Since P is Hamiltonian group, it
follows that Q,(P) < Z(P). Since P'#+ 1 and G is a minimal non-nilpotent group, it
follows from Re'dei [8], that P' = Z(P). By (2.3(v)), P' < €,(P). Hence Q,{P) = P'. On the
other hand, Q,(P) = Q,(P) x P, = P{ x P, and P| = P’ Now it follows that &, =1 and
so P = P,. Since G is a minimal non-nilpotent group, it follows that Z(G) = P’ x Q,,
where Q; is a maximal subgroup of Q and Q € Syl,(G), and hence G/Z{G) =G is a
minimal non-abelian group and |P| = 4, where P<a G and P € Syl,(G). Clearly, P is
clementary abelian. Since G/P = G/Ca(P) = Aut(P), and |Aut(P)| = 6, it follows that
g = 3. This proves (4).

As an immediate corollary we have:

Corollary 3.2. If every maximal subgroup of G is an (Aj-group, then G’ is nilpotent.
Further, G is supersolvable when W(|G|) = 3.

Proof. Theorem 3.1 implies that either (i) G is supersolvable or (ii) G = P, whese
P <1 G, P eSyl,(G), Q €Syl (G) and Q is non-normal and cyclic. If G is as in (i), then G’
is nilpotent [7, Satz9.1b), p. 716]. If G is as in (ii), then G/P =~ Q and hence P = G'.
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4. Simple groups all of whose second maximal subgroups are (A)-groups. In this section,
we prove the following theorem:

Theorem 4.1. Let G be a non-abelian simple group with the property that all its second
maximal subgroups are (A)-groups. Then G is one of the following groups:

{a) PSL(2, p), where p is a prime with P >3, p? — 1 % 0(5) and p*> — 1 %= 0(16);
(b} PSL(2,29), where q is a prime and 29 — 1 = prime;
() PSL(2, 39, where q is an odd prime and (3% — 1)/2 = prime.

Proof. Let M be an arbitrary maximal subgroup of G. Then all maximal subgroups
of M are (A)-groups by hypothesis. Theorem 3.1 implies that M is solvable. Hence all
proper subgroups of G are solvable. Applying Thompson’s theorem (9; see also {7,
Bemerkung 7.5, p. 190]) it follows that G is isomorphic to one of the following simple
groups:

(1) PSL(3, 3);

(2) The Suzuki group Sz(r), where r = 27 and g is an odd prime;
(3) PSL(2, p), where p is a prime with p > 3 and p* — 1 £ 0(5);
(4) PSL(2, 29, where g is a prime;

(5) PSL(2, 39, where g is an odd prime.

We claim

(i} G cannot be PSL(3, 3).

Let x be an involution in the centre of a Sylow 2-subgroup of G = PSL(3, 3). Then
Celx) = GL(2, 3) by [10, Lemma 5.1, p. 341]. We know that SL(2, 3} is a proper subgroup
of GL(2, 3). Then SL{2, 3) is an (A)-group by hypothesis. Hence if H is a subgroup of
SL(2,3) of order4, H would be pronormal and subnormal in SL(2,3) and so
H <3 SL(2, 3). This is impossible because SL(2, 3) has no normal subgroup of order 4.

(i) G cannot be Sz(r), where r = 27 and g is an odd prime.

By [10, Theorem 3.3, p. 184], Sz(r) is a Zassenhaus group. Then by [3, Theorem 8.2,
n. 41}, Sz(r) possesses a Frobenius group N with a cyclic complement H of order (r — 1)
and kernel P of order 2 Since P is non-abelian, it follows that Z(P) H is a proper
subgroup of N. Hence if G = Sz(r), Z(P) H would be an (A)-group by hypothesis. Let x
be an involution of Z(P). Then {x) is both pronormal and subnormal in Z(P) H and so
{xy=1Z(P) H. Hence {x) H = {x) x Hand so H = Cy(x). But Cy(x) < P by [3, Theo-
rem 7.6 (iv), p. 38]. This is a contradiction. Thus G can not be Sz(r), where ¥ = 2¢ and ¢
is an odd prime.

(iii) G cannot be PSL(2,p), where p is a prime with p> 5, p?> — 1 % 0(5), and
p* —1=0(16).

Suppose that G = PSL(2, p), where p is a prime with p > 5, p> —1 £ 0(5) and
p> — 1 = 0(16). Then by Dickson’s theorem [7, Hauptsatz 8.27, p. 213], Sym (4) is a proper
subgroup of G = PSL(2, p). Clearly, Alt(4) is a proper subgroup of Sym (4). By hypothe-
sis, Alt(4) is an (A)-group. This is a contradiction because Alt(4) contains no subgroup
of order 6.
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(iv) G cannot be PSL(2, 29), where ¢ is an odd prime and 2¢ — 1 + prime. Suppose
that G = PSL(2, 29), where ¢ is an odd prime and 27 — 1 % prime. Then by {2.6), G
possesses a Frobenius group N with kernel P of order 27 and a cyclic complement H of
order 27 — 1. P is elementary abelian 2-group. Since 2¢ — 1 = prime, it follows that N
possesses a proper subgroup (x> P, where {x) is a proper subgroup of H. By hypothesis,
{x) P is an (A)-group. Let y be an involution of P. Then {y) is both pronormal and
subnormal in (x> P and so (y) <1 {x) P. Hence {y) (x> = {(¥> x {x) and s0 x € Cyx(y).
But Cy(y) < P by [3, Theorem 7.6 (iv), p. 38]. This is a contradiction. Thus G can not be
PSL(2, 29, where ¢ is an odd prime and 2? — 1 3 prime.

(v) G cannot be PSL(2, 39, where ¢ is an odd prime and (3¢ — 1)/2 + prime.

The proof of (v) is similar to that of (iv).
So the only possibility for G is:

(@) PSL(2, p), where p is a prime with p > 3, p> — 1 £ 0(5) and p? — 1 % 0(16).
(b) PSL(2, 29, where g is a prime and 2¢ — 1 = prime.
(¢} PSL(2, 3%, where g is an odd prime and (3¢ — 1)/2 = prime.

But we have seen in the analysis of (a), (b) and (c) that ali the second maximal subgroups
of G are (A)-groups (see remarks (2.5) and (2.7)). The theorem is proved.
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