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Abstract. We present a fully nonlinear stochastic theory of chemical reactions closely 
below, at and above instability points. As explicit example we treat the Prigogine-Lefever- 
Nicolis model of two interacting kinds of molecules, generalizing it to two and three 
dimensions, to a mode continuum, and taking into account fluctuations. Adopting a 
description by means of birth and death processes we establish the master-equation, and 
proceed to the Fokker-Planck equation. This is transformed to new coordinates connected 
with unstable and stable modes. After adiabatic elimination of the stable modes, we 
obtain a functional Fokker-Planck equation for a continuous set of "unstable" modes. 
This final equation can now be treated by standard methods. In one dimension our results 
reveal striking analogies to the Ginzburg-Landau theory of superconductivity, to the 
continuous mode laser and to small-band excitations at hydrodynamical instabilities, 
while in three dimensions, in thin layers a hexagonal structure similar to B6nard cells 
Occurs. 

§ 1. Introduction 

Physicists have studied the thermodynamics and 
statistics of chemical reactions since a long time. More 
recently, new types of chemical reactions have been 
investigated both experimentally and theoretically 
[-1-22]. These chemical reactions occur far from 
thermal equilibrium and are accompanied by spatial 
and/or temporal oscillations. To account for these 
new patterns ("dissipative structures" [15]) several 
reaction-diffusion models have been proposed which 
use nonlinear kinetic equations for the numbers (or 
concentrations) of reacting molecules. The spatial and 
temporal behaviour of the concentrations of the 
molecules under consideration is controlled by exter- 
nal parameters, e.g. by the concentration of other 
reactants which are fed into the reactor. If e.g. the 
concentration b of a "controlling" reactant is smaller 
than a certain critical value b c, the system is struc- 
tureless. At the "threshold" b=b c this configuration 
becomes unstable and finally for b>bc, completely 

new types of solutions to the kinetic equations occur. 
The old solution "bifurcates" into the new ones. This 
bifurcation is accompanied by a gain of information. 
Due to the nonlinearity of the kinetic equations, the 
physical nature of these transitions was not completely 
clear, however. An impetus to a reconsideration of this 
problem came from a seemingly quite different disci- 
pline, namely laser physics. Here it could be shown in 
all details that the laser threshold can be interpreted 
as a non-equilibrium phasetransition having profound 
analogies to phase transitions of systems in thermal 
equilibrium [--23-30]. This has lead to a discussion of 
chemical reaction models which exhibit a similar 
phase transition-like behaviour [18-21]. In these 
models a single kind of molecules is treated explicitly. 
The mathematical structure of the models which take 
into account fluctuations is very similar to that of 
models of tunnel diodes [,31]. Prigogine, Lefever and 
Nicolis [-15-17] and others dealt with two kinds of 
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molecules. As has been shown this model describes 
the occurrence of spatial and temporal patterns. 
Recently Tomita et aI. [32] treated temporal oscilla- 
tions using some kind of linearization method which 
takes into account fluctuations but which has to 
exclude the immediate transition region where the 
instability occurs. On the other hand Nicolis [17] and 
other authors [33] neglected the fluctuations and 
applied bifurcation theory [34] to treat the branching 
of the new solutions. There is some intrinsic difficulty 
with the neglect of fluctuations, however, because it 
is well known from phase transition theory and from 
the explicit example of the laser that just at the transi- 
tion point fluctuations play a major role. 
In our paper we give a novel approach to the bifurca- 
tion problem which includes fluctuations and thus 
seems promising to replace the hitherto used bifurca- 
t ion  theory. As an explicit example we treat the 
Prigogine-Lefever-Nicolis model 1-15-17], which we 
incidentally generalize to two and three dimensions, 
and to a mode continuum. We present the results for 
the socalled soft mode instability whereas in a sub- 
sequent paper essentiallythe same method will be 
applied to instabilities with temporal oscillations. The 
main results of our analysis (including the hitherto 
known results of stability considerations) can be 
summarized as follows: 
For b<bc ,  the equilibrium concentrations M(x), 
N(x) of the two types of molecules X, Y at space 
point x, are constant 

M (x) = M o (x) -- a, N (x) = g o (X) - b/a. 

At b = b  c waves of the form ~kZk(X) (where e.g. 
~ sin k x) and [ k I = k c become unstable. 

For b ~  b c we decompose M(x), N(x) into 

M ( x ) = a + q l ( x ) ;  N ( x ) = b / a + q 2 ( x  ). (1.1) 

The (large) deviations qj(x) are represented as super- 
positions 

q;(x) = ~ (0} a) ~k(x)+ OJ 2) ~k(x)) Zk (X), (1.2) 
k 

where ~k and ~k are treated as slowly varying ampli- 
tudes and O are certain operators defined below. 
We eliminate the damped modes adiabatically and find 
for ~k(x), Ik] = kc, the following Fokker-Planck equa- 
tion: 

a) in one dimension: 

f = [ - ~  dx(6/6~(x))((2°  + 2 ( 1 ) V z ) ~ ( x ) - A ~ 3 ( x ) )  (1.3) 

f 

(where ~ is assumed real. For complex { see 1.4). 

The stationary solution of it is the well-known Ginz- 
burg-Landau functional of the theory of superconduc- 
tivity and of the continuous mode laser [23]. This 
allows us to interpret the present chemical instability 
as a quasi-phase transition including symmetry break- 
ing (bifurcation). 

b) in three dimensions: 

= [ -- j" d 3 x E [(~/6 ~k(X))((¢~0 -[- ~(1 )V 2) ~k(X ) 
k 

+ E c-llkk'k"~k'(X)~k ''(X) 
k'k" 

-- 2 alJkk 'k''k'''~k'(X)~k''(X)~k'''(X)) 
k'k"k'" 

-- Gl162/(6 ~k(X)1~ ~¢ (X))] f ;  ~k = ~ k' 

(1.4) 

The coefficients 2o, 2 (1), gl, dl, I, J and G are explicitly 
given in the following. Here we just mention that in 
a thin layer, the solutions of (1.4) are identical to those 
of hexagonal B6nard cells or rolls in hydrodynamics 
[3O, 36]. 
These close analogies to the Ginzburg-Landau theory 
of superconductivity, to the theory of laser fluctuations 
and to hydrodynamic instabilities are a further con- 
tribution to our assertion [30, 37, 381 that there are 
large classes of phenomena in physics, chemistry and 
other sciences which exhibit striking similarities at the 
transition from disorder to order. 

§ 2. Mas ter  Equat ion and F o k k e r - P l a n c k  Equat ion 

We consider the following reaction scheme [15-17] 

A-- ,  X 

B + X - ~  Y + D  (2.1) 
2 X  + Y ~ 3 X  

X ~ E  

where the concentrations of the molecules of kind 
A, B are externally given and kept fixed, while the 
numbers of molecules of kind X and Y are assumed 
to be variable. They are denoted by M, N respectively. 
Because we want to take into account spatial effects, 
we divide the space in which the chemical reaction 
takes place into cells which still contain a large number 
of molecules (compared to unity). We distinguish the 
cells by an index I and denote the number of molecules 
in cell l by M~, N r We introduce as usual suitable 
dimensionless constants a, b which are proportional 
to the concentrations of the molecules of kind A, B. 
We obtain the following master equation for the 
probability distribution P( . . . .  MI ;  NI; ...) which gives 
us the joint probability to find M r , N v, . . . .  M l, N 1 . . . .  
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molecules in cells 1', .... 1, [39] 

P(.. .  ; M,, n , ; . . . ) = ~ ,  v[aP(... ; M , -  1, N,; ...) 
1 

+ b(M,+ 1)v -1 n( . . .  ; M  l+  1, N l - 1; . . . )  
+ ( M , -  2)(M, - 1)(N] + 1)v -3 

• P( . . . ;  M~-1 ,  N~+ 1; ...) 
+ ( M  1+ 1)v -1 P ( . . . ; M I +  1, N1;...) 

- P(... ; M l, NI; ...)(a+(b+ 1)Mlv -1 (2.2) 
+ M I ( M I -  1)NIV- 3) + 2 [Di {(Ml+a-[- 1) 

l , a  

• P( . . . ;  M r -  1, N~; ...; M , + ~ +  1, N~+,; ...) 
-M,+,P( . . .  ;M,, N~; ... ; M,+,, NI~,; ...)} 

~f + D  z ~(Nl+~ + 1) 
-P(. . . ;  M,, NI -1 ;  ...; M1+,, NI+~+ 1; ...) 

- NIP(.. .  ; M,, ~ ; . . .  ; MI+ ~, N1+,; ...)}]. 

In it v is the volume of a cell, 1. The first sum takes into 
account the chemical reactions, the second sum con- 
taining the "diffusion constants" D'~, D 2 takes into 
account the diffusion of the two kinds of molecules. 
The sum over a runs over the nearest neighbouring 
cells of the cell 1. If the numbers M~, Nil are sufficiently 
large compared to unity and if the function P is slowly 
varying with respect to its arguments we may proceed 
to the Fokker-Planck equation. A detailed analysis 
which will be published elsewhere shows that van 
Kampen's objection [40] against the transformation 
of a master equation into a Fokker-Planck equation 
does not hold in the present case within a well defined 
region. This implies in particular a>>l and /~= 
(D1/D2) 1/2 < 1. 
TO obtain the Fokker-Planck equation we expand ex- 
pressions of the type (MI+ 1)P( .... MI+I ,  NI, ...) etc. 
into a power series with respect to "1" keeping as usual 
the first three terms. Furthermore we let 1 become a 
continuous index which may be interpreted as the space 
coordinate x. This requires that we replace the usual 
derivative by the variational derivative. Incidentically, 
we replace M1/v, Nl/v by the densities M(x), N(x), 
and P( .... M~,N I . . . .  ) by F( .... M(x),N(x) . . . .  ). Since 
the detailed mathematics of this procedure is well 
known [41] and does not contribute to the under- 
standing of the physics we just quote the final result 

/?= ~d3x[ - {(a - ( b +  l lM+M2N+D1 . VZM)F}M(x) 
- { ( b M - M 2 N + D 2 .  V2N)F}N(x) 

+ 2 {(a + (b + 1) M + M 2 N)F}M(,,),M(x) 

- { ( b M  + M 2 N )  F}M(~), N(x) 
1 

+ ~- {(bM + M 2 N) F}N(~), r~(x) 

+ D 1 (V (5/5 M(x))) 2 (MF) + D 2 (V (bib N(x))) 2 (NF)]. 
(2.3) 

The indices M(x) or N(x) indicate the variational 
derivative with respect to M(x) or N(x). D 1 and D 2 
are the usual diffusion constants. The Fokker-Planck 
equation (2.3) is still far too complicated to allow for 
an explicit solution. We therefore proceed in several 
steps: We first use the known results of the stability 
analysis of the corresponding rate equations without 
fluctuations [17]. According to these considerations 
there exist stable spatially homogeneous and time 
independent solutions M(x)=  a, N(x) = b/a provided 
b < b  c. We therefore introduce new variables qj(x) by 

M(x)=a+ql(x), N(x)=b/a+qz(x), 

and obtain the following Fokker-Planck equation: 

F :  y dx [ -  {((b- 1)ql + aZ q2 -}- g(ql,q2) + D1 V2 ql)F}ql(x) 

- {(-bql -a2q2 - g ( q l ,  q2)+D2 VZq2)F}q2(x) 

+;_l~)ll(q)F}qt(xl ' A F q~(x)--~D12(q) }q,(x),q2(x) 

1 ^ 
+~{O22(q)F}q2(,,),q2(,,) 

+ D 1 (V (6/~ ql (x))) 2 (a + ql)V 

+ D 2 (V (6/6qz(X))) 2 (b/a + q2) F]. (2.4) 

F is now a functional of the variables qj(x). We have 
used the following abbreviations 

g (ql, q2) = 2aql q2 + bq2/a + q2q2, (2.5) 

bll  =2a+ 2ab+(3b+ l)ql +a2 qa + 2aqlq2 
+(b/a)q~ + q~2 q2, (2.6) 

b12 =/)22 =2ab+ 3bql +bq2/a+a2q2 
+ 2aql q2 + q2 q2. (2.7) 

§3. Transformation of the Fokker-Planck Equation 
to Eigensolutions of  Linearized Rate Equations 

Our further procedure is suggested by considering the 
rate equations of ql, q2. They are obtained from the 
Fokker-Planck equation (2.4) as the equations of 
motion of the average values ~ = ~ qf(Dq), where (Dq) 
denotes functional integration. Keeping in these equa- 
tions only terms linear in ql, q2 we obtain 

~1 = K o q  ' q=  (ql) ,  (3.1) 
q2 

with 
K o = ( b - I + D 1 V 2  a 2 

- b  --a2 +D2 g 2 ) ~  (K12) ' (3.2) 

By means of the hypothesis 

q = eZ~tUj (3.3) 

we obtain 
K o u s = 2jn j. (3.4) 
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If 2 j<0 the solution is still stable. It is well known, 
however, that new types of solutions occur if one or 
several )ffs become positive. The eigenvalues of (3.4) 
are given by 

25 = c~/2 + (1/2)1/~74-fl, j = l , 2 ( - + , - 1 / -  ) (3.5) 

with 

a=(b  - 1 +(D 1 +D 2) V 2 - - a  2 ) (3.6) 

and 

fi = (1 - D 1 g 2) (a 2 - D 2 V 2) + bD2 V 2. (3.7) 

In our present paper we confine ourselves to the case 
of real 2's. Because K o is, at least in general, no t  
selfadjoint we consider also the solutions of the 
adjoint equation 

11(5) K o -= )~ jll  (5). (3.8) 

Note that (3.2), (3,5) and (3.8) still contain the Laplace 
operator. We now introduce functions Zk(X) which 
fulfill the wave equation in one, two or three dimensions 

V 2 Xk(X ) = -- k 2 Zk(X), (3.9) 

and which will be fixed later by the boundary condi- 
tions. We then put 

uu, k)= \0(~ )] Zk(X), (3.10) 

where O15) are differential operators acting on )6 
Similarly we introduce 

(5, ~)= z*(x) ~O~ )I, (3.11) 

where the differential operators O act to the left hand 
side, or, if an integration is performed, act on the 
function standing on the right hand side. We require 
that u, fi form an orthonormal set 

(~(5, k), u(j', k ')) = 6j  j, 6kk, (3.12) 

where ( . . . )  denotes the scalar product and integration 
over d3x. The O's must be chosen in such a way that 
(3.10) and (3.11) fulfill the Eqs. (3.4) and (3.8), respec- 
tively, and that the orthonormality condition (3.12) is 
fulfilled. Then the O's take the following general form 

O~ j) -=-- b -  1 (a 2 + 2j _ D217 2) 

O(~ )-- 1 

O(~ )= ( b -  1 + D 1172 --3@. (~- 225) -1. (3.13) 

Note that there is still one constant arbitrary which 
we have chosen so to put 0 2 = 1. By a transformation 

which we exhibit by means of the u's 

u°[)= - b - l (a  2 + 2 j - D  a V2)Z • sj 

bl(~ ) -~- 7, " Sj 

~a)= b ( ~ -  2~.)- 1 Z" sf t 
~ )  = (b - 1 + 91 V 2 _ 2j) (c~ - 225)- 1 Z" sf  1 (3.14) 

the eigenvectors u can be scaled differently. The most 
general vector q(x) can be expressed as superposition: 

q(x)= \0(211 ] 
(3.15) 

Using the property 

6 (5) O (j') = 65a, (3.16) 

we obtain { (x) and t/(x) from (3.15) in the form 

(x) = 0 ° )  q(x) (3.17) 

and 

(x) = ~(2) q(x). (3.18) 

This allows us to express the functional derivative 
6/6qi(x ) in the form 

6/6 qi(x) = ~ dx'(6/5 ~ (x'))6~ 1)6 (x - x') 
AI- S d x ' ( 6 / 6  ¢ (X')) (~12)6 (X -- X t) (3.19) 

or in short 

6/6 q, (x) = 011)6/6 ~ (x) + 0~2)6/6 ~ (x). (3.20) 

§ 4. Transformation of the Fokker-Planck Equation 
to New Mode Configuration 

We want to treat that ca~e explicitly in which 2 is real 
and in which one mode gets unstable, i.e. 21 >_0, 
whereas 22 <0  so that this mode is still stable. We 
first transform the Fokker-Planck equation (2.4) to 
the new modes amplitudes ~(x), t/(x). The linear part 
of the drift coefficients 

~. (6/6ql(x))Klqd3x+~. (6/6qz(x))K2qd3x (4.1) 

is transformed by means of (3.15) and (3.17)-(3.20)'to 

((6/6 ~1 (x)) 6 (1) + (a/a ~ Ix)) 6 ~)) 
• (2, 0(i)~ (x) + 2 e O(2)q (x))dx 3 (4.2) 

which by means of (3.12) reduces to 

5(6/6~(x))21~(x)d3x+5(5/6~(x))2z~(x)d3x. (4.3) 

The nonlinear part containing g transforms as 

(6/6qt (x ) -  6/Sq2(x))g (ql , q2) dax 
=~(5/6~(x))Q,gd3x+~(6/6rl(x))Q2gd3x (4.4) 
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where Qj(V)= O~ ;/-0(2 ;) and g has now the form 

g(qt, qz) = 2a(O[1)4 (x) + O[2)t/(x))(O(21) ¢ (x) + O(22l t/(x)) 

+ b ( o [ l )  ¢ (x) + 0~2) t/(x))2 

+ (Oil) 4 (x) + 0~2) t/(x)) 2 (0 (1) ~ (x) + 0(2) t/(x)) 

--= g (4, v/). (4.5) 

Similarly the differential operators which determine 
t h e  diffusion terms of the Fokker-Planck equation 
transform as 

c52/~5 q~ = (0J)) c5/~5 4 (x) + 0}2)6/6 ~l (x))2, (4.6) 

a /aql a qa = 4 (x) + O 2)a/& (x)) 

• (0(21)6/c5 4 (x) + 0~2216/611 (x)), (4.7) 

and 

(V (5/6qj(x)) 2 = (V (0}~)6/5 4 (x)+ 0}2)6/&1 (x))) 2 

-- (0} 1) V b/b ~ (x) + 0} 2) V b/617 (x)) 2. (4.8) 

As can be shown selfconsistently we may confine 
ourselves to the following drift coefficients 

b l  t = 2a + 2ab (4.9) 

D12 ~ D2 2 = 2ab, (4.10) 

i.e. we neglect the dependence of those terms on the 
coordinates q. 
We now proceed to treat a more specific situation. 
We assume that we are near the threshold (i.e. closely 
below, at or above it) so that the mode which gets 
unstable first for a certain wave number plays a 
dominant role. This suggests similar to considerations 
in laser physics or in hydrodynamics to write 4(x) in 
the form 

~(X):  E ~k(X)~k( x ) +  E 4k(X))~k(X) (4.11) 

The first summation runs over wave vectors k which 
have the same absolute value, kc, but which differ still 
with respect to their direction. The second sum con- 
tains the stable modes which are needed as virtual 
states and are eliminated adiabatically influencing the 
stability of the "unstable" modes. 
4k(x) is assumed to be a slowly varying function. 
Because we have for each k two eigenvalues 2~, 2 one 
of which is close to 0 and connected with 4, while the 
other is negative and connected with t/, we also decom- 
pose t/ in the form 

~/(X) = E tlk (X) Zk (X). (4.12) 
k 

If Zk is a complex function it is understood that 

Z~=X_k and 4_k=4";  t/_k=O*. 

To evaluate the expressions (4.4), (4.6) to (4.8) explicitly 
we now recall that we have to apply the operators 0 
to ¢(x) and r/(x). Because ~ and q(x) are, according to 
(4.11) and (4.12), a superposition of a slowly varying 
function times a rapidly varying function we may 
neglect the derivatives of the slowly varying function 
compared to those of Zk (with one exception explained 
below). Thus we evaluate these expressions for )~k 
only. 
The critical value be is determined by the requirement 
21 = 0 .  The first critical mode is determined by the 
condition that b c is a minimum 
b c = (D 1 k 2 + I)(D 2 k 2 + a2)/(D2 k2). (4.13) 

After a short calculation we find 
2 2 (4.14) k =k c=a(D1D2) -1/2 

For the following it is convenient to introduce new 
quantities by 

Dl k 2 =a(D1/Dz) 1/2 =a#, (4.15) 

and 
D2 k2 =a# -~, (4.16) 

where we have used the abbreviation 
(D,/D2) */2 = g (4.17) 

so that b C can be written in the form 

b = bc = (1 + a#) z. (4.18) 

For what follows we need the expansion of 21 around 
b = b c and k = kc. For k = k~ we obtain 

21 =(b-b~)(1 + a  2 - # 2 -  a#3)-,  +O((b_b~)2). (4.19) 

On the other hand, at b = b~, the expansion of 2, with 
respect to (V 2 +k~) yields 

2'14 ~ 4a# ((1 - #2)(1 + a#)k~) -I  V 2 4. (4.20) 

Here it is understood that 4 is slowly varying and the 
rapidly variation is projected out of (4.20). In total, 
we shall thus use 
21(b , V),~ )~ o + 2  (1) V 2, (4.20a) 

where 2 o is given by (4.19) and 2(1)V 2 by (4.20), 
The corresponding eigenvalue 22 is found to yield 
(for k = kc) 
22 = ~ = a# - i  (#2 __ 1)(1 +a#)  < O. (4.21) 

Using (3.13) we find the following expressions for 
the O's 
1. j = 1 , 2 1 ~ 0  Ikl=k~ 

o~1l= _ a (# (1 + a#))-* s 1 (4.22) 

0(2~l = 1. s 1 (4.23) 

O~ 1) = # (1 + ag)(a (#e _ 1))-1- si- 1 (4.24) 

0~)=  #2(# 2 - 1)- 1 s~ -1. (4.25) 



418 Z. Physik B 20 (1975) 

2. j - 2 ,  2 2 = ~ < 0  , Ikl=kc 

O[ z) = - a~ (1 + a#)-  x s 2 

0(22)= 1. S 2 

O~ 2)=/~ (1 + a#)(a (1 - #2))- ~ s2 a 

6(22) = (1 -V2)-~s21. 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Later on, we also need the O's for k = 0  and k=2kc.  
Since they can be calculated in a completely analogous 
manner, we do not exhibit them explicitly. 
One readily verifies that these O's guarantee that the 
u's are orthonormal and are eigenvectors to K0.The 
scaling factors s~, s2 will be put equal 1 which amounts 
to choosing the concentration N(x) as a reference. 
(Another choice would be ~1~(1)---2~(2)-- 1, which prefers 
M(x) as reference.) Using (4.3), (4.4), (4.6), (4.7), (4.8), 
(4.11), (4.12) the Fokker-Planck equation acquires the 
form: 

P = 1(I) + (II) +(III)} F, (4.30) 

where 

(I) = - ~ d3x ~ (6/6~k(X)){21 ~k+ Q1 gk(~,/~)}' (4.31) 
k 

21 =21(V, k) will be specified below, Q1 = Ql(k), and 

~k(~' 71)= 2 /kk'k"(Cl~-k'~k ' '  "Jr" C2~k,/~k,, "4- C3~/k,t]k,, ) 
k', k" 

+ E ~kk'k"k'"(al~k'~k"~k'"+a2~-k'~k"~k'" 
k', k",k'" 

+ a 3 ~k,/~k,,t/k,,, + a4tlk,~k,,tlk,,, ) (4.32) 

with 

, 3 lkk'k" = ~)~k Zk')~k ''d X, (4.33) 

, 3 Jkk'k"k . . . .  ~)~k)~k')~k"Zk '''d X (4.34) 

a n d  Cv~Cvk,k,, , av~avk ,  k,,k,,, 

(~[I) = --  J~ d3x  Z (~/(3~k(X)) {/~2 ~k At- Q2 gk}" (4.35) 
k 

k k 

+ G22 Y, b2/&lkarff,} (4.36) 
k 

where the coefficients Gi~ depend on k and are specified 
below. 

§ 5. Adiabatic Elimination 

The resulting Fokker-Planck equation has the form 

/~ =(L1 +L2 +L3)F,  (5.1) 

where the Liouville operators are as follows 

L 1 =Ll(g)~, ~, tl), only 8~ with Ik[ =k~, (5.2) 

L2 =L2(8~, fin' ~' t/), only fie with [k[ 4=k c, (5.3) 

L3 = L3(6~, 6n, ~., 0), with mixed 6's. (5.4) 

3¢, 8, are abbreviations for the functional derivatives 
with respect to ~ and t/, respectively. We assume that 
L 2 contains the operators 3~, 8, linearly or quadrati- 
cally standing on the left hand side of the whole expres- 
sion. Similarly (5.4) is assumed to be a bilinear function 
in 8~ and fir, both derivatives again standing on the left 
of the whole expression L 2. We now try to eliminate 
the damped modes assuming that these modes follow 
the motion of the unstable modes adiabatically. This 
suggests to apply a similar approach as in the Born- 
Oppenheimer approximation by making the hypoth- 
esis 

F =  f(~c) h(r/; ~c; ~), c = critical, s = stable (5.5) 

where h is assumed to be a slowly varying function of 
~c, so that in a first approximation we may neglect the 
derivatives of this function with respect to ~c. The 
function h is assumed normalized in the sense 

{DtlD~ } h(t/; ~s; ~c) = 1. (5.6) 

We require t h a t  h(~,t/) fulfills the Fokker-Planck 
equation 

L 2 h (~/; ~) = 0. (5.7) 

In order to find an equation for f(~) we insert (5.5) 
into (5.1) and integrate over ~, and 0. Using (5.7) and 
the properties of (5.3) we find 

f =~ Ll hD~sDrl .f. (5.8) 

Our next task is to solve (5.7). Since we expect that the 
mode amplitudes ~s are still small (though finite due 
to fluctuations!) in a region somewhat above thresh- 
old, we keep in the following only the leading terms 
in ~c. Because for stability at least cubic terms are 
needed in the resulting drift terms, we keep in L a just 
terms quadratic in ~c. We further replace V by k in (3.5). 

Thus L 2 has the form 

= - S d3x  E 
k 

]kl*kc 

+ E ikk'k" Q1 (k) Cl k'k" ~k' ~k"} 
k',k" 

Ik'l= Ik"l=kc 

+~ d3x E 2 , Gal 6 / 6 ~ k t ~ k  
k 

Ikl*k¢ 

- S E 6/@dx){&Ck)  k(X) 
k 
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"~- E Ikk'k'" 02 (k) c~ ~k' ~k" } 
k'k" 

Ik '[=lk'q=k ~ 

k 

where we have neglected the cross term G12. (It is not 
difficult, however, to find the exact solution of (5.7), 
even if G12=t=0.) The solution of (5,7) is given by a 
product of Gaussian integrals, where {k(lk[eekO is 
centered around 

{k = -'~l(k) -1 E /kk, k,, Ol(k)Clk, k,, ~k, ~k,, (5.10) 
k ' k "  

Ik'[ = [k"[ =ke 

and t/k correspondingly (with 2l replaced by 22 and 
QI by Q2)- We now consider L1, which we obtain as 
follows: In (4.31) the sum over k is now restricted to 
Ikl=k~. In gk (4.32) we keep only terms, which after 
elimination of the stable modes give rise to terms up 
to third order in ~ .  Furthermore, the diffusion terms 
of L 1 are obtained from (4.36) by keeping only the 
first sumocG~a, and here again only the terms with 
Ikl =k~. 
The evaluation of (5.8) is now rather simple. Since the 
explicit formula is lengthy, we just quote the final 
result. As one may show, the whole result of the inte- 
gration in (5.8) essentially amounts to replacing ~s 
and r/in Lt by (5.10) and the corresponding expression 
in q. The final result is exhibited in the next paragraph. 

§ 6. Final Fokker-Planck Equation for ~k(X) 

This equation reads 

/ =  - -  ~ d 3 X  E [((~/(~ ~k(X)){/~1 (V) ~k(X) ~- Hk(~) } 
k 

- E f (6.1) 
k 

where all sums are now restricted to I k[ = k~, without 
being explicitly indicated. 2~(V) is given explicitly by 
(4.20a) with (4.20), (4.19). We have further 

Gn =2(a(1 __#2)2)-1.  #2(1 +a#)2 

and 

H k ( ~ ) =  E Ik 'k"k ' ' '~1 ~k'(X)~k"(X) 
k'k" 

-- E al Jkk'k"k'"  ~k'(X) ~k"(X) ~k'"(X) • 
k 'k"k" '  

(6.2) 

Here 

cl =(#(1 + ap)(p 2 - 1)) -1. (1 -a/z) 

and 

a l  f f k k ' k " k " '  ~ a I k k ' k " k ' "  f f k k ' k " k " '  

-= a(#(1 -#2)(1-1- a//)2)- 1Jkk,k,,k,,, 

+2 ~ Ikk,i~ Ii~k,,k,,, Q(kc){elk, ~ ,)H (~) -1 Q1 (~) • Clk,,k,,, 
k 

"4- C 2 k' I~ 2Z (~) - 1 Q 2 (~) q k" k"" } (6.3) 

is not restricted to I~1= kc ! 

For a discussion of the evolving spatial structures the 
"selection rules" inherent in I, (4.33), and J, (4.34), 
are important. One readily verifies: 

a) in one dimension: 
I = 0  for no boundary conditions, i.e. the Zk'S are 
plane waves; 
I ~ 0  for ;gkoc sinkx and k>>l. 
Further 
Jkk'k"k . . . .  J + 0  only if two pairs ofk's out ofk,k' ,k",k'" 
satisfy: 

k 1 = - -  k 2 -= - -  k c 

k 3 = _ k 4 = - k c 

if plane waves are used, or k=k'=k"=k'"=kc if 
)~kOC sin kx. 
We have evaluated al explicitly for plane waves. The 
resulting coefficient A in Eq. (1.3) then reads: 

A =(9(1 _//2)]23 (1 +a# )  2 a) -1 

• ( - 8 a  3 # 3 + 5 a  2 # 2 + 2 0 a # _ 8 ) .  

Note that for sufficiently big a #, the coefficient A be- 
comes negative. A closer inspection shows, that under 
this condition the mode with k = 0  approaches a 
marginal situation which requires then to consider 
the modes with k = 0  (and [k[ =2kc) as unstable modes. 

b) in ihree dimensions, thin layer without horizontal 
boundaries 

Zk = 910 sin (=z/d) exp (ikxx + ikyy). 

We put (kx, ky)=[.  Then Ikk,k,,=I=t=O if ~:, k', k" form 
a triangel with equal side lengths. (This triangel forms 
a basis of the hexagons 1-30, 36].) Jkk'k"k . . . .  J=t=0 if 
k, k', k", k'" form a parallelogram with two pairs of 
opposite sides so that 

t3 = - f q .  

We note in conclusion that a number of procedures 
are available to solve the Eqs. (1.3) and (1.4). The 
detailed results will be published in a subsequent 
paper. 
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Note Added in Proof After submission for publication of this paper 
the following somewhat related papers came to our attention: 
G. Nicolis, P. Allen and A. van Nypelseer, Progr. Theoret. Physics, 
52, 1481 (1974); and M. Malek-Mansour and G. Nicolis, preprint, 
February 1975, give a detailed discussion of birth-death processes. 
They include diffusion in a way different from our treatment. 
Y. Kuramoto and T. Tsusuki, Progr. Theor. Phys. 52, 1399 (1974) 
and preprint, 1975, treat small-band excitations of the one-dimen- 
sional Prigogine-Lefever-Nicolis model and of a general two- 
component system without fluctuations. 
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