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Exact results for the thermodynamic quantities of the one-dimensional classical Heisen- 
berg model with nearest- and next-nearest-neighbor exchange interactions are obtained 
by means of the numerical transfer matrix method. For a wide range of exchange con- 
stants, the system exhibits helical short-range order on which we focus our attention. 
We find that the Fourier-transformed spin correlation function shows a maximum with 
asymmetric shape at the characteristic wave-number -qm (~=0, _+u). The correlation 
length defined as the inverse of the width at q = qm obeys a simple scaling law and 
shows a power-law singularity at zero temperature. Results for the heat capacity and 
the susceptibility are also presented and discussed in connection with the helical short- 
range order. 

1. Introduction 

One-dimensional magnetic systems have attracted 
wide-spread interest during the past decade. Exact 
solutions for various classical spin chains as well as 
certain quantum spin chains play special roles for un- 
derstanding characteristic phenomena occurring in 
real quasi-one-dimensional magnets. In some cases, 
not only qualitative but also quantitative compari- 
sons between theoretical results and experimental 
ones have been made. Unfortunately, however, these 
are restricted to systems where only nearest-neighbor 
interactions are present. Recently, in connection with 
the so-called frustration effect, renewed interest has 
been paid to systems involving competing interac- 
tions. In this paper, we focus our attention on a classi- 
cal spin chain with competing nearest-neighbor (nn) 
and next-nearest-neighbor (nnn) interactions (for the 
importance of quantum effects for systems with com- 
peting interactions see [1, 2]). It is well-known that 
in the classical spin chain, the antiferromagnetic nnn 
interaction leads to a helical spin order at zero tem- 
perature. At finite temperatures this helical order is 
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destroyed by thermal fluctuations; however, a well- 
developed helical short-range order is responsible for 
unique phenomena at low temperatures. 

In this paper we extend the transfer matrix meth- 
od of the nn problem to allow for nnn interactions 
and study by using this method the nature of the 
helical short-range order of the system described by 
the following Hamiltonian: 

N 

H= ~" {2J~S,.S,+~+2J2S,.S,+2}, (1) 
n=l  

where S, is the classical unit vector at the n - t  h site, 

S, = (sin O, cos ~,,  sin O, sin ~,, cos O,), (2) 

and satisfies the periodic boundary condition, S,+ N 
=S,.  (N is the number of sites in the chain.) The 
nn and the nnn exchange interaction constant are 
denoted, respectively, by J1 and J2 and are assumed 
to be antiferromagnetic (J1, J2 > 0 )  in this paper. We 
note that the factor of the spin magnitude ~ 1) 
is absorbed in the exchange interaction constants. 

It is noted that the dynamic and static correlation 
functions of the system described by the Hamiltonian 
(1) have been studied by Monte Carlo simulations 
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[3], which have wide applicability but yield inevitable 
errors. Our results by the transfer matrix method are 
complementary since they are exact in the sense that 
we can improve them systematically to any desired 
degree but are restricted to the static quantities. 

Now, we envisage the characteristics of our sys- 
tem. We first note that the ground state has a usual 
antiferromagnetic spin structure when the ratio j 
=J2/J1 is smaller than 1/4 but is helimagnetic for 

j >  1/4. The helimagnet is characterized by its wave- 
number Q which takes one of the following two 
values, _+ a r c c o s ( -  1/4j), where in our units the lattice 
constant is equal to unity. This degeneracy called the 
chiral symmetry corresponds to the degeneracy of the 
clockwise and the counter-clockwise turn of spins. 
Then, it is conceivable that there occurs an excitation 
of the chiral domain wall, which separates domains 
of opposite chirality in the helical spin structure. In 
fact, it has already been found that in the planar chain 
with nn and nnn interactions the chiral domain wall 
dominates the thermodynamics at low temperatures 
[4]. However, in the present system the chirality vec- 
tor defined by K, = S. x S, + 1/[ sin Q[ is a three dimen- 
sional vector, whereas it has only one component  
(pseudo-scalar) in the planar chain. Thus the effect 
of chiral domain walls is expected to be quite different 
from that in the planar model. Therefore it appears 
worthwhile to study the role of this type of excita- 
tions. 

In the next section, we formulate the transfer ma- 
trix method by introducing the dual lattice with the 
dual spin defined by the relative angle between nn 
spins in the original lattice. Then we solve numerically 
the transfer-matrix integral equations and obtain the 
results for the internal energy, the heat capacity and 
the susceptibility. These will be presented in graphical 
form in Sect. 3. Finally we give concluding remarks 
in Sect. 4. 

2. Formulation 

2.1. Free energy 

We develop in this section the transfer matrix method 
to obtain the thermodynamic properties of the classi- 
cal Heisenberg chain with nn and nnn interactions 
described by the Hamiltonian (1) [5]. With the nota- 
tion t = ks T/2Ji, where ks is the Boltzmann constant 
and T is the temperature, the partit ion function is 
written as 

Z =  I d a ,  exp{ -E(S , .S ,+ l+jS , . S ,+z ) / t } ,  (3) 
/i 

X~I< 

Y~ 

Z,II  

STt' 

S 

Fig. 1. Local coordinate system for the n-th spin. The z. axis is 
chosen parallel to S. while the y. axis is in the plane spanned by 
S. and S, + 1. Then, the angles, 0. and qS., are defined, respectively, 
by the angle between S,+1 and S. and by the angle between the 
components of S. + 1 and of S._ 1 projected onto the x , -  y, plane 

where dr2, is the volume element of the solid angle 
for the n - t  h spin, 

dI2 n = sin O, d O, d ~, /4 re. (4) 

By an analogy with the dual transformation in the 
planar model [-4], let us introduce a new set of the 
angles {O,, q~,} (see Fig. 1). We choose the z, axis 
parallel to S, and the y, axis in the plane spanned 
by S, and S,+1. Thus, O, is defined by the angle 
between S,+~ and S, and the angle q~, is defined by 
the angle between the components of S,_ 1 and of 
S,+l projected onto the x , - y ,  plane. In terms of 
these variables, Z is rewritten as 

N 

Z =  I~ {I2df2, 'A(0,-1,  0,; qS,)}, (5) 
n = l  

where 

A (0, _ 2, 0,; ~b,) = (1/2) exp { - (cos 0, _ 1 + cos 0,)/2 t 

- j  (cos 0,_ 1 cos 0, + sin 0._ i sin 0, cos ~b,)/t}. (6) 

It is easy to see that the integration over qb, results 
in the Besset function of an imaginary argument. 
Changing integral variables from {cos 0,} to {x,}, we 
obtain 

Z=~I{yl_ldXnAo(xn_i,  x.)}, (7) 



where we have defined A o and A 1 (which will be used 
later) by 

A,. (x._l ,  x.) = (1/2) exp { -- (x._ l + x.)/2 t - j  x ._  l x . / t}  

�9 I , , ( - - ( j / t ) / (1- -x .2_  1)(1-  x2)), m=0,  1. (8) 

Here Ira(Z) is the modified Bessel function defined by 
the following integral, 

I,~ (z) = (1/2 ~) ~L ~ d 4) exp (z cos 4)) cos m 4). (9) 

Now, we introduce the following integral equation 
in order to perform the multiple integration over x.'s 
in ( 7 ) :  

j [  1 d x 2 A 0 (xl ,  x2) O~(x2) = 2~ ~/a (x 1), (10) 

where the eigenvalue 2, and the eigenfunction ~,  can 
be chosen as real numbers since the kernel Ao (x~, x2) 
is real and symmetric with respect to xa and x2. We 
solve this integral equation numerically by means of 
the Gaussian quadrature. Utilizing the well-known 
expansion of the kernel Ao(x~, x2) with respect to 2~ 
and ~,,  

Ao(xl, x2) = 2 . ~  ~/~ (x1) ~t~ (x2), (11) 

and employing the orthonormality relation, 

~a_ 1 dx  0~(x) ~PB (x) = 6~,~, (12) 

where 6., r is the Kronecker delta function, we obtain 
the final form of the partition function: 

Z=Z(2~)  N. (13) 
oc 

In the thermodynamic limit, N ~ ~ ,  only the larg- 
est eigenvalue, 20, survives in the summation and the 
free energy per spin is given by 

f =  - - t ln2  o. (14) 

The internal energy e and the heat capacity C are 
obtained by differentiating f: 

e = - t 2 0 (f/t)/O t, (15) 

C = ~ / e t .  (16) 

2.2. Pair correlation function 

Probably the most interesting quantities to be calcu- 
lated for our spin chain is the two-spin correlation 
function�9 However more effort than before is needed 
to obtain it because the scalar product of a pair of 
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spins, S. .S.+, . ,  can not be expressed only by the an- 
gles (0., 4).) and (0. +,., 4). +,.) but depends on all the 
angles between the sites n and n + m. To see this, let 
us introduce the rotational operators, 

/-COS4). _- sin 4). ! )  

RZ(4)n)=l  Sio4)" 0 (17) 

which corresponds to a rotation around the z, axis 
by the angle u + 4)~ and 

(i o o t Rx(O.) = cos 0. sin 0. , 

- -  sin 0. cos 0 . /  
(18) 

which corresponds to a rotation around the x, axis 
by the angle 0,. Then, the successive operation of 
these rotations, T,=Rx(O._ORZ(4).),  transforms the 
n -  th coordinate system to the ( n -  1 ) -  th coordinate 
system. (See Fig. 1.) We need the z-component of S, + 
in the n - t h  coordinate system to obtain the scalar 
product, S,.S~+,.. Noticing that each S. is parallel 
to each z, axis, we obtain 

s..s.+m=(001){ lq �9 
",/= n + 1 / 3 3  

(19) 

The correlation function defined by the thermal aver- 
age of the spin product, (S..S.+.~), involves again 
the multiple integrals including the matrices T~: 

N 

Wm=(1/Z) H {52dQkA(Ok-1, Ok; 4)k)} 
k = l  

.(001) { 1-[ r,) 
\ l = n + l  3 3  

(20) 

Fortunately, the integrations over 4)k'S are again sepa- 
rable and are easily related to A m defined by (8): 

(1/270 S d 4)k RZ(4)k)A(Ok - 1, Ok; Ok) 

/ - -  A l  (Ok-1, Ok) 0 1 

= { 0 - -Al(Ok_l ,  Ok) 
\ 0 0 

0 

Ao (Ok - 1, Ok) 
(21) 

The diagonal form of this matrix as well as the block- 
diagonal form of R x make our calculations rather 
simple: Since we need only the (3.3) element of the 
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resultant matrix it is sufficient to deal with the 2 x 2 
matrices H ( n -  l, n), 

H ( n -  1, n)= {R~(O._ l)} ~/2 

. ( -  AI (O0_ 1 , 0.) Ao(O.- 0.)] {R~(0")}1/2' (22) 

with 

{RX(0.)~l/2_( cos (0./2) sin (0./2)] (23) 
"" - \  -- sin (0./2) cos (0./2)]" 

Changing again the integral variables, we obtain 

Wm=(l/~-l)fdxn... Idxn+m_l~lO(Xn)~to(Xn+m_l) 
n + m - - 2  

"(01){R~(x.)} 1/2 I-[ H(xh, xh+x) 
h = n  

To perform the multiple integration over x.'s we 
introduce the following integral equation: 

~dxz H(xl ,  x2) u~(x2) = ~/~ u,(xO. (25) 

As is easily realized, the kernel H(X1, x2) is neither 
a symmetric matrix nor symmetric with respect to 
the arguments xl and x2. Therefore it is necessary 
to consider its counterpart: 

~dx2 Hr(Xl, x2) v,(x2) = r/~ o,(xl), (26) 

where H T denotes the transposed matrix of H. Here 
i and 2 u~(o~) is a vector with two components, u~ u~ 

(v~ and v2). The solutions of these integral equations 
have the following properties: ( I )  The two integral 
equations share the eigenvalues {q,}. (2) u~ and o~ 
satisfy the orthonormality relations, 

IdxoT(x)u~(x)=~dx T u~ ~x) ~p (x) = ~ ,  b. (27) 

(3) Since H is not symmetric, the eigenvalues can 
be complex numbers. (4) When r/., u. and v~ are 
a solution their complex conjugates, ~/*, u* and ~*, 
are also a solution. The complex conjugate contribu- 
tions from these solutions will guarantee the reality 
of the spin correlation function. Keeping this in mind, 
we expand the kernel H in terms of the eigenvalue 
and the eigenfunction with the result 

H (xl, x2) = ~',tl~ u=(xl) ~)r (x2). (28) 
ct 

Substituting (28) into (24) and using the orthonorma- 
lity relation (27), we obtain 

.,-1 (29) W,.=~y~ Eo. Fo~, m> l 
ot 

where 

y~ = r/~/2o, (30) 

Eoa = I1_1 d x 0o (x)(01) {RX (x)} 1/2 u,, (31) 

Fo~= ~l_ l dXOo(X)v: {RX(x)} l/2 (~) . (32) 

Now it is straightforward to obtain the structure fac- 
tor which is the Fourier-transformed spin correlation 
function: 

S(q)= ~ Wm eiqm 
m ~ - - c o  

= 1 + 2 ~, E 0 ~ Fo ~ (cos q -- y~)/(1 - 2 y~ cos q + y2). 

(33) 

S(q) shows a maximum at q =  __+q,, where qm takes 
continuous values from rc to ~/2 depending on the 
temperature and the ratio j. The correlation length 

is defined as the inverse of the width of S(q) around 
q=q~: 

S(q)_~ S(qm)/[1 + {~(q-- qm)} 2]. (34) 

The dimensionless susceptibility is given by 

Z (q) = S (q)/t. (35) 

Before closing this section, we briefly describe how 
to calculate the correlation function for the chirality 
vector K. To this end we introduce the susceptibility 
of the chirality 

ffK = (l/t) ~ (K. .  K. +,.) exp (iq m) 

= (1/t sin 2 Q) ~ (sin 0. sin 0. +,. x . -x .  +,.) exp (i q m), 
r n  

(36) 

where x, is a unit vector having only an x-component 
in the n - t h  coordinate system. Proceeding in an 
analogous way as above we obtain the result: 

f f~  (q) = (lit sin 2 Q) ~ G~ (1 - z2)/(1 - 2 cos q z~ + z~Z), 

(37) 
where 

z~ = ~/,~o, (38) 

G, = ~ d x ~  ~o(X) ~b~ (x). (39) 

Here the eigenvalue ~ and the eigenfunction qS~ are 
the solution of the following integral equation, 

~ [ l d x z { - A x ( x l ,  x2) } ~b~(x2) = ~ q~.(xl). (40) 

We note that fft~(q) shows a maximum at q=0 .  The 
associated correlation length ~Kx is defined in the 
same way as 4. 



By using the numerical solutions of the integral 
equations (10), (25), (26), and (40), we will obtain the 
numerical results for thermodynamic  quantities, 
which will be presented in the next section. 

3. Results and discussion 

In the previous section, all thermodynamic quantities 
were given in terms of the eigenvalues and the eigen- 
functions of three kinds of the integral equations. We 
adopt  the 24-point Gaussian integration formula to 
solve them and to perform integrations [6]. The accu- 
racy of our results depends on the accuracy of our 
numerical solutions for the integral equations. At 
some points in the parameter  space, we compare  the 
results with those obtained by using the 40-point 
Gaussian integration formula. Another  check has also 
been made for the case of j = 0 ,  on which we can 
easily reproduce the exact result. These procedures 
confirm that  errors are significant only below t < 0.04. 
When values for the thermodynamic  quantities can 
be evaluated at t = 0, we use these to extrapolate our 
numerical values to t = 0 ;  otherwise we extrapolate 
to t = 0 rather arbitrary. 

We show first in Fig. 2 the internal energy as a 
function of temperature.  The internal energies in- 
crease from their zero temperature values 

0 0.2 0.k 0.6 > 

-0.2 

-0.~ 

-0.6 

-0.8 

-1.0 

i:0  

/ . / / /  

/ / / /  

/ / 

E 
Fig. 2. Internal energy versus temperature for different values of 
j. Note that for j > 1/4 the ground state is helimagnetic while for 
j_<_ 1/4 it is antiferromagnetic 
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Fig. 3. Heat capacity versus temperature for different values of j. 
Note the peak at low temperatures for the cases of j=0.5 and 0.8, 
where the helical short-range order dominates 

(e (t = 0)=  -- 1 + j  for j < 1/4 and e (t = 0 )=  - 1/Sj-j for 
j > 1/4) with finite slopes. This fact relates to the finite 
values of the heat capacity at zero temperature (see 
Fig. 3) and comes from the classical nature of our 
model. In real materials the quantum nature of spins 
affects thermodynamics  at low temperatures so that 
C ~  0 as t--+ 0. The most  significant feature seen in 
the heat capacity versus temperature curves is the 
strong peak for j >  1/4. Recalling the results of the 
planar model [4], we attribute it to the presence of 
chiral domain walls. However,  in the present case, 
the effect of chiral domain walls is less pronounced 
than for the planar model. The reason probably  is 
that the chirality vector K is a three dimensional vec- 
tor so that its effect is more or less similar to that 
of the familiar excitations. This is contrasted with the 
case of the planar model, where K is pseudo-scalar 
and therefore introduces Ising type excitations into 
the system. 

Next  we present the results of the structure factor 
S(q), which contain much more detailed information 
about  the nature of the helical short-range order. As 
a consequence of the helical order S(q) exhibits a max- 
imum at q = _ qm where q,, takes continuous values 
between r~ and ~r/2, depending on j. At t = 0  qm is 
equal to Q = a rccos ( -1 /4 j ) .  The wave-number  qm de- 
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Fig. 4. Fourier-transformed spin correlation function for different 
temperatures; the dotted lines represent the result for t=0.05 and 
the solid lines show that for t = 0.2. Note that the peak occurs at 
2n/3 for j=0 .5  while it occurs at ~ for j = 0 . 2  

pends also on the temperature but the dependence 
is so weak that we can find no trace in Fig. 4, where 
some examples of S(q) are presented. (This statement 
holds equally for other values ofj.) This is in contrast 
with the strong temperature dependence in the planar 
model [4]. On the other hand, the maximum of S(q) 
at q = qm tends to diverge at t-- 0, indicating the helical 
long-range order of our classical spin system. Another 
indication for the long-range order appears in Fig. 5, 
where the inverse of the correlation length 1/4 tends 
to zero as t--* 0. To see the low temperature behavior 
in more detail, we tried to fit the calculated values 
of 1/4 on the form, 1/~=f(t/So), where % has been 
assumed to be the chiral domain wall energy, ed = 2j 
--1/8j, which is estimated by assuming the simplest 
spin structure for the wall: Every spin in the left-hand 
side of the wall makes an angle Q with its nn spins 
and every spin in the right-hand side makes an angle 
- Q .  As is seen in Fig. 5 all the values for different 
t and j fall reasonably on a single curve. Although 
it is difficult to determine the functional form of f 
in the whole range of t/eo, f can be fitted by the 
power law, f ( x )  = cx  for x < 0.08. In addition, the cor- 
relation length of the chirality ~KK, shown in Fig. 6, 
obeys the same scaling law; however, (KK is always 
about 30% shorter than 4. These observations suggest 
that at such low temperatures the freedom of chirality 
is the only one to survive and dominate the thermody- 
namics. 

The other point which we want to emphasize is 
the asymmetric shape of S(q) for j >  1/4. The shape 
for j < 1/4 is symmetric around its maximum at q = rc 

l / ~ J  

0.1 

j=0.3 " 
0.4 ~ 
0.5 " 
0.6 " 
0 . 8  ~ 
1.0 �9 
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, ? 
�9 o . , , ~  

�9 .r ......... 
~ .o  -~ 

. - .  i o " "  

, i ). 
0.05 0.10 -C/~o 
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j=O.3/ 

0.6 / //0.2 

0 . 5  /111 II 
0.4 .5 

0.3 
//// / ..'/0.0 

02 / /  / . ."./ 'o.8 

0.1 ~ . 0  

i i 

0 0.1 0.2 ,t:: 
Fig. 5. Inverse correlation length versus temperature for different 
values of j, yielding the helical short-range order (the solid lines) 
and the antiferromagnetic short-range order (the dashed lines). The 
upper part shows sealing behavior 

0 K 0/ 0 0.2 

01  

0 0.1 0.2 

Fig. 6. Inverse correlation length of the chirality vector (see text) 
versus temperature for different values ofj .  Note that the chirality 
makes sense only in the helical short-range order phase 
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Fig. 7. Uniform susceptibility versus temperature for different values 
of j .  Note that  for j > l / 4  the ground state is helimagnetic while 
for j__< 1/4 it is antiferromagnetic 

but, when j increases beyond 1/4, the maximum shifts 
towards lower value of q,, and the shape becomes 
asymmetric around q=q,,. These features already 
have been pointed out by De Raedt and De Raedt 
[3] with an explanation based on the spin wave dis- 
persion curve. Here we want to emphasize again the 
important  contribution from the chiral domain wall: 
For  J~, J2 > 0 the domain wall including the antiferro- 
magnetic point (q = re) is more likely than that includ- 
ing the ferromagnetic point (q=0)  and hence S(q) is 
larger on the high q side of the maximum than on 
the low q side. 

Based on these findings we conclude with the fol- 
lowing conjecture. At t = 0 spins are aligned in parallel 
planes making an angle Q (or - Q) with their nn spins, 
although the plane can be chosen arbitrary. When 
t is increased some excitations appear in the system. 
It is natural to consider the local fluctuation of the 
helical plane, which leads to the chiral domain wall. 
We emphasize that these fluctuations do not affect 
so seriously the nn spin correlation since even at the 
center of the wall spins can keep the angle almost 
the same as that in the bulk. This is an important  
difference of the chiral domain wall from that in the 
planar model. Roughly speaking, qm corresponds to 
the averaged angle between nn spins and hence it 
is consistent with the fact that q,, does not depend 
crucially on the temperature. On the other hand these 
excitations affect the heat capacity and the chiral sus- 

ceptibility, on which we have found the effects of these 
excitations. When t is increased more the chirality 
looses its meaning. It is noted that the characteristic 
energy of these excitations are much smaller than the 
typical energy of the system, for example the nn inter- 
action. 

Finally, we present the result of the uniform sus- 
ceptibility in Fig. 7. For  j - - 0  the susceptibility shows 
a broad maximum at t - 0 . 5 .  This maximum shifts 
towards lower temperature as j increases from zero 
but around j = 0 . 4  it turns to shift towards higher 
temperature. This is due to a competition between 
nn and nnn exchange interactions but no other signifi- 
cant behavior caused by the helical short-range order 
is found. 

4. Conclusion 

In this paper, we have developed the transfer matrix 
method for the Heisenberg chain to allow to include 
the nnn interaction. The thermodynamic quantities 
have been given in terms of the eigenvalues and the 
eigenfunctions of integral equations; these have been 
solved numerically with the aid of the Gaussian inte- 
gration formula. Numerical results reveal characteris- 
tic effects of the helical short-range order. Especially 
in the structure factor S(q) we have found that for 
j > 1/4 a maximum occurs at q-- 4- q,, with asymmet- 
ric shape around the maximum. These findings are 
similar to those for a helical chain in the planar mod- 
el, but the following points are different: (1) The 
characteristic wave number qm shows no appreciable 
temperature dependence and (2) the correlation 
length tends to diverge as 1/t at very low tempera- 
tures. These differences have been attributed to the 
different nature of the chiral domain walls in the two 
system, being important  excitations at low tempera- 
tures. 

At last we want to comment on the experimental 
results for the quasi-one-dimensional magnet, 
FeMgBO4, in which the nnn interaction has the same 
order of magnitude as the nn interaction because of 
the zig-zag form of the magnetic chains [7, 8]. Quali- 
tative features of the experimental results for the sus- 
ceptibility and the spin correlation functions seem to 
be reproduced correctly by our calculations. For  a 
quantitative comparison, however, it is necessary to 
take into account of the nonmagnetic-impurity effect 
because this material contains an inevitable site inver- 
sion between Fe a+ and Mg z+. Further, it may turn 
out necessary to consider the anisotropy. It is an in- 
teresting problem to study the anisotropic Heisenberg 
model which interpolates the two helical models, the 
planar model and the isotropic Heisenberg model. 
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