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A new method for numerical deconvolution is described, for use in calculating drug input rates. 
The method is based on the least-squares criterion and is applicable when the input function can 
be assumed to take a prescribed form. In particular, an exponential input function and an input 
function derived from the cube-root dissolution law are considered. The stability of the method to 
data noise is shown by means of examples, using simulated data. 
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I N T R O D U C T I O N  

The use of linear systems analysis as a theoretical basis for the study of 
the in vivo performance of drug delivery systems is becoming widespread 
(1-4). The advantage of this approach is that a detailed description of the 
structure of the system (for example, using a compartment model) is 
unnecessary. A disadvantage, however, has been that the available 
methods for data analysis are highly sensitive to error in the data (5). This 
article reports a new approach to the numerical treatment of data, based on 
the least-squares criterion. By means of analyses of simulated data, the 
method is shown to be very stable to data noise and is therefore likely to be 
useful in the routine analysis of pharmacokinetic data. 

1Department of Pharmaceutics, The School of Pharmacy, University of London, London 
WC1, England. 
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I N T E G R A L  E Q U A T I O N  FOR L I N E A R  SYSTEMS 

For a linear system, the relationship between an input function P(t) 
and the resulting response Q(t) can be expressed by (3) 

t 

O(t) = fo F ( t -  T)P(T) dT  (1) 

where F(t) is the response to a unit impulse input. The problem considered 
here is that of estimating the function P(t) when experimental data are 
available on F(t) and Q(t). This is usually referred to as "numerical 
deconvolution." 

Equation 1 arises in many fields, and the literature on numerical 
methods for solving this equation is extensive. Gamel et al. (5) have 
conducted a comparative study of a number of methods, applied to the 
interpretation of dye-dilution data arising from experiments concerned 
with blood flow measurement. In brief, they concluded that most of the 
available methods perform satisfactorily with error-free data but that all 
the methods they studied were very sensitive to data noise, and frequently 
failed completely (in the sense that the estimated function bore essentially 
no resemblance to the true function). Benet and Chiang (3) and Wagner (4) 
have applied the recurrence method suggested by Rescigno and Segre (6) 
to pharmacokinetic data. Benet and Chiang (3) mention difficulties which 
arise because of data error but do not explore this matter in any depth. 
Wagner (4) treats only exact data. In view of the study by Gamel et al. (5), 
the influence of data noise is considered in some detail in the present 
article. 

In the method outlined in the following section the input function P(t) 
takes a prescribed form (in the numerical examples, an exponential 
function and a function derived from the cube-root dissolution law). The 
functional form of P(t) might be indicated by in vitro studies (for example, 
in vitro dissolution studies), by a theoretical model, or from previous 
experience with similar cases. The method provides estimates of the 
parameters which apply in vivo. 

In the following article (9) the use of polynomial functions to represent 
the unknown input function is described. Since a wide range of functions 
are amenable to approximation by polynomials, this approach depends to 
only a minor extent on assumptions concerning the functional form of the 
input. One use of a polynomial approximation is to indicate a suitable 
functional form for use with the present method. 
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USE OF THE L E A S T - S Q U A R E S  C R I T E R I O N  

In this section a general outline will be given of the use of the 
least-squares criterion in numerical deconvolution, and two specific cases 
of relevance to pharmacokinet ic  studies will be discussed. 

For the sake of simplicity of notation, and since the method can be 
applied to a general class of problems of which equation 1 is an example,  
linear operator  notation will be used. Equat ion 1 can be written in the form 

Q(t) = L{P(t)} (2) 

where L denotes a linear operator .  We require that the opera tor  L be 
"known"  in the sense that for any known (admissable) function X(t) ,  the 
function Y ( t ) = L { X ( t ) }  can be evaluated. When F(t) in equat ion 1 is 
known, the linear operator  defined by this equation satisfies this condition. 

Let  Pe(t) denote a particular estimate of the required function P(t). 
The function 

Qe(t) = L{Pe(t)} (3) 

can be evaluated. If Pe(t) is, in some sense, "close to"  the true function 
P(t), we expect Q ( t )  to be similarly "close to"  the function Q(t). This 
expectation and a definite meaning for the phrase "close to"  are expressed 
in the least-squares criterion. We define the residual sum of squares R as 
follows: 2 

R = s [Q(tr)-Qe(tr) ]  2 (4) 
r = l  

where h, t 2 , . . . ,  t;~ are the times at which experimental  observations of 
Q(t) are made.  The "bes t "  estimate of P(t) is now defined as that which 
minimizes R. This is what is meant ,  in the present  context, by the least- 
squares criterion. 

Without further assumptions, little progress can be made.  The usual 
approach in data fitting is to assume that the required function has a 
specific form, which involves certain parameters .  The problem is then to 
find the values of these parameters  to achieve the best fit to the data. 

2Weights can be introduced by writing equation 4 in the form 

R = ~ wr[O(tr)- Oe(tr)] 2 
r ~ l  

where w, is the weight attached to the rth data point. In the following, wr = 1, r = 1, . . . ,  m. 
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Following this procedure,  we assume that P( t )  can be written explicitly as a 
!t t function of the variable t and parameters c~, c2 . . . . .  cn. 

P( t )  = W( t ,  c'~, c~ . . . . .  c ' )  

The estimate Pc(t) is now written in the form 

Pe(t)  = W(I ,  cl ,  c 2 , . . . ,  cn) (5) 

!t I r where c~, c2, �9 �9 �9 c, are estimates of the parameters ca, c2, � 9  c , .  Using 
equations 3 and 5, equation 4 becomes 

R : ~ [ O ( t , ) - L , { W ( t ,  cl ,  c2 . . . . .  c,)}] 2 (6) 
r = l  

The notation Lr{ } indicates that this expression is to be evaluated at t = t,; 
thus if Y ( t )  = L { X ( t ) } ,  Y(G) = L~{X(t)} .  

The right-hand side of equation 6 is a function of the parameters;  
writing this function as U(c~, c2 . . . . .  c , ) ,  

R = U(c~, c2 . . . . .  c , )  (7) 

The required parameter  values are those which minimize R. This can be 
regarded as a general function minimization problem. The difference 
between this and more common function minimization problems is in the 
manner  in which the function U is evaluated. In the present case, U will 
not usually be known analytically, but will be evaluated by a procedure 
which involves the numerical evaluation of the linear operator  expression 
(for equation 1, a numerical integration). The parameter  values which 
minimize R are inserted into equation 5 to give the estimate Pc(t).  

There are many ways of approaching the problem of minimizing R. In 
the examples considered in the following sections, we are dealing with 
two-parameter  functions which can be written in such a way that R 
depends linearly on one of the parameters. To take advantage of this 
feature, the axial iteration technique (7) has been used. By this technique, 
one parameter  is fixed and a minimum is found with respect to the other 
parameter.  On the next iteration, the parameter  which is varied on the first 
iteration is fixed while a minimum is found with respect to the other 
parameter.  The process is repeated and the required minimum is 
approached by steps parallel to each axis in turn. The process is terminated 
when the change in parameter  values on successive iterations is less than a 
prescribed amount. The shortcomings of the axial iteration technique are 
discussed by Dixon (7), the major  one being the possibility of slow con- 
vergence. This was found to be a problem in some cases, but in no case 
prohibited the use of the m e t h o d  The advantage of the axial iteration 
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technique in the present case is that at each step the minimum with respect 
to the "linear" parameter is easily found. However, the use of other 
function minimization procedures might prove to be more satisfactory, at 
least in some cases. 

USE OF PRESCRIBED FUNCTIONS 

Exponential Function 

In this case, we assume that the function P(t) is an exponential 
function of time, of the form 

P(t) = k'D' e -k'' (8) 

where k' and D' are the parameters to be estimated. The symbols k and D 
will be used to denote particular estimates of these parameters. Equation 8 
could represent the dissolution rate of a drug from a dosage form by a 
first-order process, with rate constant k' and with D' denoting the total 
amount released. Using equation 8, the residual sum of squares R in 
equation 6 becomes, on replacing k' and D' by the estimates k and D, 

R = s [O(tr)-kDLr{e-kt}] 2 (9) 
r = l  

The linear property of L has been used in placing the term kD outside the 
operator expression. 

The minimum of R with respect to D, for a fixed k, is found by setting 
the partial derivative OR/OD at zero. We have 

OR/OD=ZDk 2 ~ [Lrle-k'I]e-2k ~ O(tr)L~{e -k'} (101 
r = l  r = l  

For each k, the value of D which minimizes R is then 

D = O(tr)L,{e -k' {e-k'}] 2 (11) 
r = l  

For a given value of k, the expression L,{e -kt} is evaluated numerically, at 
each time tr. The required value of D then follows from equation 11. 

From equation 10, we have 

32R/OD2= 2k 2 ~ [L,{e-k'}] 2 

This expression is positive for all values of k, indicating that the value of D 
calculated using equation 11 is indeed a value which minimizes R. 
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The minimum with respect to k can be found numerically. In the 
examples which follow, the N.A.G. 3 subroutine E 0 4 A A F  was used. This 
subroutine requires a user-supplied subroutine to evaluate the function to 
be minimized, R, for particular values of the parameter  k. Equation 9 
provides the basis for this evaluation. 

In both cases, the expression L,{ } is evaluated numerically. This 
expression has the form 

Lr{e kt} = fo"F(tr - T)e-kW dT 

In the numerical examples which follow, this expression has been evalu- 
ated by fitting the data representing F(t) to a polynomial and evaluating 
the integral using the trapezium rule. 

This approach has the advantage of flexibility; only minor changes are 
required in the program when different inputs are considered. An alter- 
n~tive approach is to represent F(t) by a suitable empirical function (such 
as a multiexponential function) and evaluate the integral analytically. This 
approach would be preferable if F(t) and P(t) were known to have the 
same form for all the data under investigation, provided that the integral 
can be evaluated. 

The method requires an initial estimate of either k or D, since a 
minimization with respect to either parameter  requires a "current"  esti- 
mate of the other. The obvious choice is to take as an initial estimate of D, 
the administered dose, which is likely to be at least of the same order  of 
magnitude as the true value. Alternatively, with suitable data, an estimate 
of D can be found independently by taking the ratio of the total area under 
the O(t)- t ime curve to the total area under the F( t ) - t ime curve. In fact, if a 
reliable estimate can be found by this method, the analysis is greatly 
simplified. A single evaluation is required to find the value of k which 
minimizes R, using the previously determined value of D. 

Cube-Root Law 

If the unknown function P(t) in equation 1 represents the in vivo 
release rate of a drug from a tablet, a possible expression to describe the 

3Nottingham Algorithms Group. The subroutine E04AAF estimates the minimum of the 
function by fitting a low-order polynomial, finding the minimum of this polynomial, and 
repeating the process as necessary. 
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release rate is the following, based on the cube root law: 4 

P( t )  = (3D' / t~ is ) (1  - -  t / trdis)  2 t ~  t~tis 

= 0 t > t~lis 

Using the unit step function, defined as 

U ( t )  = 0 t < 0 

=1  t~>0 

a single equation can be written to describe P(t): 

P(t) = (3 D ' /  t'a~s)(1 - t/ t'd~s)2[1 -- U (  t -  t~s)] (12) 

In this equation D '  is the released dose and t~lis is the dissolution time, the 
time required for the entire dose D '  to be released. This equation can be 
written in various forms. The present form is chosen so that P( t )  depends 
linearly on one of the parameters (D'). 

The procedure now follows that outlined in the previous section. 
Introducing equation 12 into equation 6, and replacing D '  and t~i~ by the 
estimates D and tdis, 

R = ~ [Q( t r ) - (3D/ ta i~ )L , { (1 - t / t a~s )2[1  - U(t--tdis)]}] 2 (13) 
r = l  

On setting OR/OD = 0, we obtain 

/dis 2r~n=l O ( tr ) Lr { (1 - t / t dis) 2[1 -- U ( t - tais)]} 
D -  

3 XZ~ [L~{(1 - t/ta~)2[1 - U ( t -  td~s)]}] 2 

A second differentiation shows this to be a minimum. Thus, for a given 
estimate for tdis, this expression yields the value of D which minimizes R. 
For a given estimate for D, the value of tais which minimizes R is found 
numerically, using equation 13, as described in the previous section. 

NUMERICAL EXAMPLES USING SIMULATED DATA 

The examples which follow are intended to illustrate the results 
obtained using the proposed method in cases where the exact values of the 
estimated parameters are known. In view of the study by Gamel et al. (5), 

4Modified from Wagner (8), equation 16.22. The present notation (on the left) is related to 
the notation in Wagner (8) (on the right) as follows: P(t )=-dW/dt ,  D'= Wo, t'ais = 
W 1 / 3 / K a .  
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the influence of data noise has been examined in some detail for selected 
examples.  No at tempt  at an exhaustive analysis has been made,  but the 
examples chosen are intended to represent  situations which might be met  
in practice. 

G E N E R A T I O N  OF D A T A  

Data  were generated by selecting a function F(t) ,  and a function P(t), 
which were used to calculate values of Q(t), numerically, using equation 1. 
To selected values of F(t), and to the calculated values of Q(t), noise was 
added. The resulting values were taken as "raw data"  for the calculation of 
an estimate of P(t) (or of the parameters  describing this function). The 
success of the procedure can be judged by comparing the estimates with 
the true values. 

The function F(t) was taken to be a biexponential function of t: 

F(t) = A1 e - a i r + A 2  e -~ 

For simplicity, the values A2 = a2 = 1 were chosen in all cases, with al  > 1. 
This involves no loss of generality and can be achieved with any such 
function by means of a transformation of the time and concentration scales. 
The condition al  > 1 implies that the smaller of the exponential  coefficients 
is chosen as the basis for the t ransformation of the time scale. 

The general character of F(t) can be changed by varying A1 and al .  If 
Aa is positive, F(t) declines f rom an initial maximum value, as does the 
plasma or blood concentration of a drug following intravenous adminis- 
tration. If A1 = - 1 ,  F(t) is initially zero, increases to a max imum value, and 
declines again to zero, which compares  with the plasma or blood concen- 
tration of a drug following oral administration. 

Noise was added to F(t) and O(t), to obtain the "raw data"  used in the 
analysis, by selecting random numbers f rom a normal distribution with a 
prescribed standard deviation (the N.A.G.  library subroutine G 0 5 A E F  s 
was used). The standard deviation was taken to be proport ional  to the 
function value, and is expressed as a percentage. Thus a noise level of x %  
added to the function value Y is a random number  drawn from a normal 
distribution with mean zero and standard deviation xY/lO0. 

In all the examples considered, a single t ime scale was used, which was 
the sequence 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0. The numbers 
are the times at which F(t) and O(t) were evaluated in generating the data. 

5The subroutine G05AEF is based on a pseudorandom number generator which provides 
sample values from a uniform distribution over the range (0, 1). 
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Since the t ime scales are cons idered  to be normal ized ,  no t ime units are 

given. T h e  t ime scale was se lec ted  ra ther  arbi trar i ly,  so that  a sufficient 

var ia t ion  in F ( t )  was obse rved  (see Tables  I I I  and IV). The  n u m b e r  of  da ta  

points ,  11, was chosen  as a r easonab le  n u m b e r  to be expec t ed  f rom a 
sui tably des igned exper iment .  

R E S U L T S  

The  inf luence of data  noise  on  p a r a m e t e r  es t imates  for  var ious  cases is 

shown in Tables  I and II and Tables  V to VII I .  6 

In Tables  I and II  the unit  impulse  response  F ( t )  decl ines  f r o m  an 

initial m a x i m u m  value  and has the charac te r  of the p lasma or b lood  

concen t r a t ion  of  a drug  fo l lowing an in t ravenous  input.  For  Tab le  I the 

data  were  gene ra t ed  (by numer ica l  eva lua t ion  of  equa t i on  1) using an 

exponen t i a l  input  func t ion  P ( t ) ,  and the  da ta  were  analyzed  using the 

asumpt ion  that  the input  funct ion  to be  ca lcula ted  has an exponen t i a l  form.  

6As in the previous discussion, in all tables a "prime" indicates the exact value of a parameter 
(D', k', and t~i~) and the corresponding symbol without the superscript indicates an estimate. 

Table !. Influence of Data Noise on Parameter Estimates 

F(t )  = e -S '  + e  - t  

P( t )  = k D  e -k '  D' = 0.600 k' = 2.000 

Noise levels 

1% 5% 10% 
Run 
No. D k D k D k 

1 0.610 1.955 0.608 1.964 0.601 2.540 
2 0.601 2.014 0.600 1.939 0.604 2.300 
3 0.600 1.972 0.619 1.800 0.637 2.012 
4 0.602 2.009 0.590 1.917 0.630 1.794 
5 0.604 1.965 0.583 2.034 0.588 1.979 
6 0.602 1.984 0.604 1.966 0.686 b 1.659 b 
7 0.605 2.027 0.605 1.779 0.597 1.973 
8 0.600 ~ 1.998 a 0.641 1.719 0.604 2.264 
9 0.599 2.009 0.615 2.010 0.607 1.956 

10 0.599 1.981 0.596 1.990 0.593 1.933 
Mean c 0.602 1.992 0.606 1.912 0.615 2.041 

sD c 0.003 0.022 0.016 0.102 0.028 0.245 

a'bData from which these estimates were derived are given in Table Ill. 
CMean and standard deviation were calculated before rounding estimates to the values 
reported. 
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Table I!. Influence of Data  Noise on Parameter  Est imates 

F ( t )  = e-~;t  + e  - t  

P ( t )  = ( 3 D / t a i s ) ( 1  - t / tais)  2 a D '  = 0.600 t~is = 1.150 

Noise levels 

1% 5% 10% 
Run 
No. D tdi s D tdi s D tdis 

1 0.603 1.139 0.591 1.196 0.600 1.191 
2 0.608 1.176 0.608 1.178 0.620 0.911 
3 0.602 1.145 0.594 1.156 0.613 0.996 
4 0.598 1.163 0.608 1.255 0.634 1.139 
5 0.603 1.149 0.585 1.177 0.606 1.212 
6 0.602 1.168 0.586 1.143 0.594 1.188 
7 0.603 1.161 0.600 1.156 0.664 c 1.366 c 
8 0.607 1.144 0.590 1.248 0.603 1.203 
9 0.601 1.158 0,617 1.278 0.617 1.036 

10 0.600 b 1.151 b 0.618 1.153 0.609 1.192 
Mean a 0.603 1.156 0.600 1.194 0.616 1.143 

S D  d 0.003 0.011 0.012 0.046 0.019 0.123 

aFor t <- tdis; P ( t )  = 0 for t >  tdi s. 
b'CData from which these estimates were derived are given in 
aSee footnote c in Table I. 

Table IV. 

That is, the form of the input function is assumed to be known, the object 
of the analysis being t o  determine the values of the parameters involved. 
Similarly, for Table II, the data were generated and subsequently analyzed 
using the "cube root"  input function. Tables III and IV give examples of 
the "raw data" used in the analyses reported in Tables I and II, respec- 
tively. 

The significant feature of the estimates shown in Tables I and II is 
their stability to data noise. For each noise level, the standard deviation of 
the estimates as a percentage of the mean (the coefficient of variation) is of 
the same order  of magnitude as the data noise. Also, the mean value, in 
each case, lies within one standard deviation of the true parameter  value. 

The estimates of Table II are derived from data which are intended to 
correspond approximately with those of Table I [compare Q(t) values in 
Tables III and IV]. It can be seen from a comparison of Tables I and II that 
the method performs equally well with a "cube root"  input as with an 
exponential input. This was found in all cases. For this reason, the remain- 
ing examples report  only the results obtained with the exponential input. 

Tables V and VI show the estimates obtained with different exponen- 
tial inputs, using the same unit impulse response F(t) as in Table I. Thus 
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Table I lL Examples  of Raw Data  Used  in the  Analyses  Repor ted  in Table I 

F(t)  = e-5t  + e - t  

P(t)  = k D  e -kt  D '  = 0.600 k '  = 2.000 

Values with 1% a Values with 10% b 
Exact values data  noise data  noise 

Time F(t)  Q(t) F(t)  O(t) F(t)  O(t )  

0.1 1.511 0.180 1.515 0,181 1,425 0.191 
0.2 1.187 0.293 1.177 0.291 1,220 0.250 
0.3 0.964 0.360 0.972 0.361 1.041 0.320 
0.4 0.806 0.394 0.789 0,388 0.702 0.397 
0.6 0.599 0.400 0.589 0,399 0.475 0.421 
0.8 0.468 0.368 0.473 0,372 0.452 0.402 
1.0 0.375 0.327 0,372 0,328 0.400 0.384 
1.2 0.304 0.288 0.307 0.286 0.294 0.293 
1.4 0.248 0.250 0.249 0.249 0.237 0.291 
1.6 0.202 0,211 0.208 0.210 0.185 0.218 
2.0 0.135 0.155 0.135 0.153 0.147 0.146 

'~bThe parameter  est imates derived using these data are given by items a and b, respectively, 
in Table I. These  examples  were selected as the best (a) and worst (b) est imates in Table I. 

Table IV. Examples  of Raw Data  Used  in the Analyses  Repor ted in Table II 

F(t)  = e -s t  + e-~ 

P(t)  = (3D/tdis)(1 - t / t d i s )  2 a D '= 0.600 t~is = 1.150 

Values with 1% b Values with 10% c 
Exact values data  noise data noise 

Time F(t)  O(t) F(t)  O(t) F(t)  O(t )  

0.1 1.511 0.240 1.515 0,244 1.425 0.255 
0.2 1.187 0,390 1.179 0,386 1.220 0.334 
0.3 0.964 0.476 0.934 0,474 1.041 0.423 
0.4 0.806 0.513 0.796 0,508 0.702 0.516 
0.6 0.599 0.495 0,596 0,502 0.475 0.521 
0.8 0.468 0A20 0,476 0.416 0.452 0.458 
1.0 0.375 0,335 0,375 0.335 0.400 0.393 
1.2 0,304 0,263 0,306 0.262 0.294 0.268 
1.4 0.248 0,209 0.250 0.207 0.237 0.242 
1.6 0,202 0,168 0.202 0.170 0 . t85  0.174 
2.0 0,135 0,118 0.136 0.118 0.147 0.111 

'~For t <~ tdis; P ( t ) =  0 for t > tais- 
b c  " The parameter  est imates derived using these data  are given by items b and c in 

The  examples  were selected as the best (b) and worst (c) est imates in Table II. 
Table II. 
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Table V. Influence of Data Noise on Parameter Estimates 

F ( t )  = e - S t  + e  - t  

P ( t )  = k D  e -kt D '  = 0.600 k'  = 1.000 

Noise levels 

1% 5% 10% 
Run 
No. D k D k D k 

1 0.600 1.012 0.608 0.934 0.580 1.042 
2 0.612 0.980 0.618 0.963 0.585 1.196 
3 0.600 1.006 0.617 0.931 0.588 1.141 
4 0.601 0.989 0.638 0.886 0.647 0.989 
5 0.599 1.012 0.605 0.923 0.659 0.876 
6 0.606 0.986 0.576 1.027 0.582 1.006 
7 0.603 0.991 0.611 0.974 0.699 0.878 
8 0.598 1.025 0.635 0.858 0.590 1.009 
9 0.596 1.009 0.677 0.838 0.598 1.091 

10 0.597 1.008 0.616 0.999 0.597 1.016 
Mean a 0.601 1.002 0.620 0.933 0.613 1.025 

SD a 0.005 0.014 0.025 0.057 0.039 0.097 

aSee footnote c in Table I. 

Table VII. Influence of Data Noise on Parameter Estimates 

F ( t )  = e-St + e  -t  

P ( t )  = k D e  - k t  D ' =  1.200 k ' =  0.500 

Noise levels 

1% 2% 5% 
Run 
No. D k D k D k 

1 1.187 0.511 1.263 0.452 1.080 0.569 
2 1.225 0.493 1.280 0.465 1.154 0.577 
3 1.195 0.506 1.294 0.445 1.104 0.603 
4 1.198 0.499 1.346 0.426 1.321 0.486 
5 1.178 0.516 1.281 0.436 1.357 0.440 
6 1.207 0.498 1.130 0.523 1.174 0.494 
7 1.208 0.496 1.230 0.487 1.365 0.474 
8 1.168 0.527 1.370 0.405 1.179 0.504 
9 1.175 0.514 1.431 0.410 1.235 0.507 

10 1.185 0.509 1.263 0.482 1.140 0.537 
Mean ~ 1.192 0.507 1.289 0.453 1.211 0.519 

s o  a 0.016 0.010 0.078 0.035 0.098 0.049 

aSee footnote c in Table I. 
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Table VII.  Influence of Data Noise on Parameter Estimates 

F ( t )  = - e  - s t  + e - 5  

P ( t )  = k D  e -kt D '  = 1.200 g'  = 2.000 

Noise levels 

1% 5% 10% 
Run 
No. D k D k D k 

1 1.201 2.021 1.208 1.947 ,1.149 2.131 
2 1.220 1.999 1.209 2.060 , 1.191 2.078 
3 1.200 2.020 1.233 1.845 1.214 2.061 
4 1.201 1.992 1.271 1.840 1.213 2.123 

5 1.203 2.017 1.222 1.835 1.287 1.673 
6 1.211 1.983 1.163 2.056 1.155 2.129 
7 1.207 2.000 1.210 1.959 1.391 1.885 
8 1.202 2.052 1.244 1,773 1.174 2.186 
9 1.192 2.045 1.312 1.740 1.155 2.184 

10 1,191 2.040 1.226 2.109 1.214 2.050 
Mean ~ 1.203 2.017 1.230 1.910 1.214 2.050 

SD a 0.008 0.022 0.038 0.110 0.071 0.150 

aSee footnote c in Table I. 

Table VIII .  Influence of Data Noise on Parameter Estimates 

F ( t )  = - e  - s '  + e - t  

P ( t )  = k D  e - k t  D ' =  1.200 k ' =  0.500 

Noise levels 

1% 5% 10% 

Run 
No. D k D k D k 

1 1,196 0.505 1.270 0.465 0.978 0.633 
2 1.208 0.507 1.275 0.476 1.391 0.416 
3 1.201 0,501 1.340 0.435 1.163 0.540 
4 1.187 0.508 1.372 0.436 1,220 0.516 
5 1.178 0.515 1.372 0.414 1.280 0.471 
6 1.200 0.505 1.142 0.517 1.215 0.474 
7 1.217 0.494 1.224 0.491 1.204 0.600 
8 1.157 0.531 1.371 0.420 1.195 0.502 
9 1.158 0.525 1.349 0.459 1.352 0.420 

10 1.180 0.511 1.353 0.438 1.105 0.571 
Mean a 1.188 0.510 1.307 0.455 1.210 0.514 

S D  a 0.019 0.010 0.074 0.031 0.112 0.069 

aSee footnote c in Table I. 
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Tables I, V, and VI illustrate the performance of the method as the 
constant k takes values greater than, equal to, and less than the smaller 
exponential coefficient of F(t). The method performs satisfactorily in all 
cases. 

However,  with very small values of k failures were encountered.  This 
is to be expected, since, for sufficiently small values of k, 

P(t) = kD e -kt 

kD 

In this case, P(t) behaves as a one-parameter  function (parameter kD) and 
when an attempt is made to fit a two-parameter  function one parameter  is 
indeterminate. Failures of this type were characterized by very rapid con- 
vergence (one or two iterations) to estimates which depended markedly on 
the initial estimate for D. 

Failures also occur with very large values of k. In this case, P(t) 
D6(t), where 6(0 is the unit impulse function. The resulting value of R is 
independent  of k. In practice, the method usually yields an estimate for k 
which is of the correct order of magnitude. The value of D obtained 
depends markedly on the initial estimate. 

The case in which k is very large is readily identified from inspection 
of the data. Equation 1 becomes 

Q(t) ~- DF(t)  (14) 

Thus O(t) is roughly proportional to F(t). Depending on the value of k, 
this approximate proportionality might not be observed with the first one 
or two data points. 

Better  estimates for D can be found in these cases by making use of 
approximate expressions which are independent of k. Using equation 14, 
we obtain in place of equation 11, 

D = O(t,)F(tr) Z F(tr) 2 
r = l  , r = l  

This equation gives estimates of D which are .of the correct order of 
magnitude, provided that the approximation of equation 14 is a reasonable 
one. 

Tables VII and VIII illustrate the performance of the method with a 
unit impulse response which has the features of the plasma or blood 
concentration following an oral solution dose of a drug. 
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