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ON FINITE CONDUCTOR DOMAINS 

Muhammad Zafrul lah 

An integral domain D is a FC domain i f  for all a,b in D, 
aD/~bD is f ini tely generated. Using a set of very general and 
useful lemmas, we show that an integrally closed FC domain is a 
Prefer v-mult ipl icat ion domain (PVMD). We use this result to 
improve some results which were originally proved for integrally 
closed FC domains (or for coherent domalns) to results on PVMD's. 
Finally we provide examples of integrally closed integral domains 
which are not FC domains. 

Throughout this note the letters D and K denote a 

commutative integral domain and its quotient field respectively. 

Let a/b ~, K. The ideal I of D such that for x ~ I, 

x(a/b) ~ D is called the conductor of a/b in D. An integral 

domain D is called a finite conductor (FC) domain if the conduc- 

tor of every x $ K is f ini tely generated ( fg ) .  Clearly D is FC 

i fandon ly  i f a D / ~ b D  is fg f o r a l l a ,  b i n D .  

It appears that there ;s no general method available, at 

present, to decide whether a certain integral domain has this FC 

property or not. Consequently, examples of integral domains 
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2 ZAFRULLAH 

without FC property keep appearing in current literature. One 

among the aims of this note is to show that a certain class of 

integrally closed integral domains do not have the FC property. 

We recall that D is coherent i f  every f in i tely generated ideal 

of D is f in i tely presented. According to Chase [1] D is coherent 

i f  and only i f  the intersection of any two fg ideals is again fg 

Thus by showing that a certain class of integral domains does not 

have the FC property we actually show that no coherent ring can 

be found in that class. 

We prove that an integrally closed FC domain is a, so 

called, PdJfer v-mult ipl icat ion domain (PVMD). Thus an 

integrally closed integral domain which is not a PVMD is not a 

FC domain, and hence cannot be a coherent domain. The above 

mentioned result wi l l  also be used to modify certain known 

results and to supply alternative proofs of others. This note is 

split into two sections. In the first section we prove a set of use- 

ful lemmas from which it follows that an integrally closed FC 

domain is a PVMD. In the second section we apply our knowledge 

of PVMD's to some known results either to modify them or to 

improve (simplify) their proofs. Included in this section are also 

examples of non FC domains. 

PRUFER V-MULTIPLICATION DOMAINS 

PVMD's are based on the notion of *-operations. For a 

detailed study of *-operations we refer the reader to sections 

32 and 34 of Gilmer [5]. For a quicker definit ion and for other 
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ZAFRULLAH 3 

purposes we note the following. 

Let F(D) be the set of fractional ideals of D. The opera- 

tion A t-~(A-1) -1 = A v, on F(D), is called the v-operation. An 

ideal A ~  F(D) is said to be a v-ideal if A = A v. Moreover A |s a 

v-ideal of f inite type if A = B v for some f ini tely generated B in 

F(D). If A, B E F(D) then (1) A ~ A v ;  (Av) v = A  v ; D - D  v 

(2) A C  B implies A v ~ B v (3) if A is principal then 

(AB)v = AB v. 

DEFINITION 1. An integral domain D |s a PVMD if the set H(D) 

of v-ideals of f[nite type, of D, forms a group under the v-mult i -  

plication (AB)v - (ABv) = (A v Bv) v. 

Finally an ideal A of D is called a t-ideal i f  for every 

fg ideal B ~  A, B v C A. Prime t-ideals and maximal t-ideals are 

defined in the usual manner. Grif f in ([6] Proposition 4) showed 

that D = / ~  Dp where P ranges over maximal t-ideals. He also 

proved (Ioc c[t) that D is a PVMD if and only i f  Dp is a valuation 

domain for every maximal t-~deal P of D. 

THEOREM 2. An integrally closed FC domain D is a PVMD. 

REMARK 3. We note that this theorem appears as an exercise in 

[5] (cf Ex.21 p.432). But since our proof is designed to draw some 

extra benefits the rePetition seems to be in order. 

For our proof of THEOREM 2 we need a string of lemmas 

each of which is an independent result in its own right. 

LEMMA 4. Let A be a f ini tely generated ideal of D and let S be 
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4 ZAFRULLAH 

a multiplicative set in D. Then 

(i) A-1Ds = (ADs)-1 

(il) (A v DS) v = (ADs) v . 

PROOF. (i). We note that if A = (X l , . . . ,Xn)  then 

A -1 = (1/Xl) D / ~  (1/x2) D/~. . .  r (1/xn)D)D~ = 

(1/x 1) D S/'1 �9 �9 �9 /"t (1/Xn)D S =~'(Xl,.. .  ,Xn)DS~-" = (ADs) -1 " 

(ii). Clearly A C A v and so AD S ~ AvD S. Whence (ADs) v 

(AvDs) v. Conversely, because A is fg A-1Ds = (ADs) -1. 

Now (ADS)v= ((ADs)-1) -1 = (A -1Ds ) - I~  (A-1)-IDs .~ 

-_ A D S. So (ADS)v=~ (AvDS) v and hence (ADs) v = (AvDS) v 
V 

LEMMA 5. Let D be an integrally closed integral domain and 

let P be a prime ideal of D such that PDp is a maximal t-ldeal 

of Dp an d Dp is a [~C doma|n~ Then Dp is a valuation domain. 

PROOF. From the hypothesis we know that if P is a maximal 

t-ldeal of D then PDp is a maximal t-ldeal of Dp. Now let 

a,b • PDp. Since Dp is FC (a,b) -1 = (1/ab) (aDp~ bDp) is fg,, 

Further since Dp is integrally closed we have ((a,b)  (a,b)-l) -1 

= ((a,b) (1/ab)(aDp/~ bDp) )-1 = Dp (cf Kaplansky [7] Ex 39, 

p.45). We claim that (a,b) ((1/ab) (aDp/~bDp))  = Dp. For if 

not (a,b) ( (1 /ab)  (aDp/~bDp))  isa fg ideal of Dpandso 

((a,b) ( ( 1/ab ) ( aDp /~  bDp) ) )v ~ PDp. Whence Dp~PDp 

a contradiction. Now (a,b) is an invertible ideal in a quasi- 

local domain and hence is principal. That Dp is a valuation 

domain is now easy to establish. 
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LEMMA 6. Let D be any commutative integral domain and let 

a,b E" D such that aD : bD ~ D. Then every minimal prime P of 

aD : bD is such that PDp is a t-ldeal. 

PROOF. We recall that i f  D --~Dp where P ranges over a set of 

prime ideals then aD :bD is contained in at least one of the prime 

ideals (cf [5] Ex.22, p. 52). Now we assume that P is a mini- 

mal prime of aD : bD t D. Then PDp is minimal over (aD : bD)Dp 

= aDp : bDp. Suppose that PDp is not a t-ideal. Then, since 

Dp = / ~  (Dp) M where M ranges over maximal t-ideals of Dp, 

aDp : bDp is contained in at least one of these M's. This 

contradicts the minlmallty of P over aD : bD. 

Now we note that if D is a FC domain then for every 

multlpllcatlve set S, D S is a FC domain. Using LEMMA's 5 and 

6 and the above observation we have the following lemma. 

LEMMA 7. Let D be an integrally closed FC domain. Then for 

every a,b ~' Dwi th  aD : b D t D e a c h m i n l m a l  prlmePo__f 

aD : bD is such that Dp is a valuation domain. 

Recall that a ring between D and K is called an overring 

of D. A valuation overring V of D is called essential i f  V is a 

quotient ring of D. The centre of an essential valuation overring 

of D is called an essential prime. Moreover an integral domain 

D is called essential i f  it is expressible as an intersection of 

essential valuation overrings of D. Finally let D =~  V , where 

~V~.~ is a family of valuation rings. Then A, where 

AEF (D), is called the w-operatlon induced by the family~V4,} 
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6 ZAFRULLAH 

of valuation domains. For this operation too the reader is referred 

to sections 32 and 34 of [5]. For the purposes of this note we 

need only to know the definition. 

Now by LEMMA 7 above and by Theorem E of Tang [10], 

an integrally closed FC domain is an essential domain. So now 

we are left with essential FC domains. Recall from [5](Proposl- 

tlon 44.13) that i f D is defined by a family F of essential valua- 

tion domains then the w-operatlon induced by F is equivalent to 

the v-operatlon. That is, for every fg ideal A of D A = A . 
V W 

Now with the help of these remarks we state a some-what 

stronger result. But first we note that the intersection of every 

two v-ldeals is again a v-ldeal. 

LEMMA 8. Let D be an essential domain. Then the following are 

equivalent. 

(1). The intersection of any two principal ideals is a v-ideal of 

finite tYPe. 

(2). Th e intersection of a finite number of principal ideals is a 

v- i  deal of f inite type. 

(3). The inverse of every f initely . generated ideal is a v-ideal of 

finite type. 

(4) D is a PVMD. 

PROOF. Let [Dp,~be the family of valuation domains defining D 

and let A be a f initely generated ideal. Then according to the 

remark made prior to LEMMA 8 A v : Aw = / ~  A Dp~ . 

(1)~v(2). Let A be a v-ldeal of f lnite type. Then 

A = (x 1, x 2, . . . ,  Xn)v for some natural number n. Consider 
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ZAF RU LLAH 7 

(x l ) /~  (a) wherea ~ D. Let B. = (x i ) /~ (a). By (1) B. isof 
I I 

finite type. That is B., = (bl) v where b., is f initely generated. Now 

from the definition of the *-operations, one can deduce that, 

( X bl) w = ( ~ (bi)v) w = (~: Bi) w =/"1 (~_.. (xl)/~ (a)) Dp 
=/'1 ( ~ ( ( (xl) /~ Ca) ) Dp ) ) Csince Dp is a valuation domaln 

and a quotient ring of D) 

= (~ (  Z" ((xl) DpnaOp) ) =/~t( ( X x i) Dp/' laDp) = 

(X l , . . . ,Xn)  v ~ (a) = A/'~(a). 

Now since ~ b.i is f initely generated, (~ 'b i )  w = (~[ bi) v and 

hence A l l (a)  is a v-ideal of finite type. Now, we know that 

the intersection of two principal ideals is of finite type, assuming 

that the intersection A of k principal ideals is of finite type 

we have shown that the intersectlon of k+l principal ideals is 

also of finite type. Thus the result follows from induction. 

(2)=:~(3). This follows from the fact that if A = (X l , . . . ,Xn)  
-1 -1 then A =./~(1/xl). By simple manipulation A can be given 

the form ( l /d) ( ( d l ) / ~ . . . / ' lCdn ) ) .  

( 3 ) 0 ( 4 ) .  That every finitely generated ideal should have a 

v-inverse of finite type is a requirement for D to be a PVMD. Let 

A = (X l , . . . ,Xn) .  To see that (AA-1)v = D we can verify that 
-1 ( A A ) w  = /~(AA-  1)Dp= D. 

(4)::~(1). From LEMMA 4, for every pair a,b ~ D, (a,b) -1 

= Ca)/~ (b). That (a) ~ (b) is of finite type, follows from the 
ab 

fact that D is a PVMD. 

THE PROOF OF THEOREM 2. The proof follows immediately from 

the above string of Lemmas. 
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8 ZAFRULLAH 

There do exist, in current literature, examples of essen- 

tial rings which are not PVMD's. This situation naturally demands 

necessary and sufficient conditions for an essential domain to 

be a PVMD. LEMMA 8 meets that demand. Moreover this lemma 

points out that in a non-PVMD essential domain D, there exists 

at least one pair of elements a and b such that aDrlbD is not 

of f inite type. 

We call a prime t-ideal P of D stable if  for every mult lp l l -  

cative set S with P ('1S = ~ , PDs is a t- ldeal. Using this notion 

and LEMMA's 4 and 5 we can prove the following result. 

COROLLARY 9. Let D be an integrally closed integral domain. 

Then D is a PVMD if  and only i f  (a) every maximal t-ldeal of D 

is stable and (b) Dp is aFC domain for ever_ y maximal t-ideal 

P o f D .  

Recall that D is a Prefer domain if D M is a valuation 

domain for every maximal ideal M. 

COROLLARY 10. Let D be integrally closed. Then D is a Pr[Jfer 

domain if and o n l y l f  (i) D is a FC domaln (ii) every prime ideal 

of D is a stable t-prime. 

In the next section we shall need the following two 

results. 

COROLLARY 11. Every quotient ring of a PVMD is again a PVMD. 

PROOF. The proof of this corollary is a straight-forward applica- 

tion of LEMMA 4. 

COROLLARY 12. Let__ D be a PVMD and . . . . . . . . .  le.~t a,b be an arbitrary 
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ZAFRULLAH 9 

pair of elements of D such that aD : bD ~ D. Then every minimal 

prime of aD:bD is an essential-prime. 

PROOF. The proof follows from LEMMA 6 and the fact that 

every maximal t- ideal of a PVMD is essential. 

From the fact mentioned in the above proof, or from the 

corollary itself (and Theorem E of [10]), it follows that a PVMD 

is essential. 

REMARK 13. The absolute converse of COROLLARY 12 is false. 

A counter example to that effect, and some partial converses, 

wil__ I appear in a joint.paper with Professor J. L. Mott. 

APPLICATIONS 

Most of the results of this section follow from the results 

and observations made in the previous section. 

COROLLARY 14 (cf Theorem 2 of [8]). Let D be an integrally 

closed quasi-!0cal domain whose .primes ar__e !i.nearly ordered by 

inclusion. Suppos e that D has the FC property ,. Then D is a 

valuation domain. 

PROOF. To show that D is a valuation domain it is sufficient to 

show that at least one prime ideal P of D is essential. Now, by 

THEOREM 2, D is a PVMD and hence is essential. 

Now we proceed to show that some of the known results, 

stated for integrally closed FC domains, can be proved for 

PVMD's without restricting the PVMD's to be FC domains. Recall 

that two commutative integral domains D ~ T are said to satisfy 
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10 ZAFRULLAH 

golng down (GD) if,  whenever P_~ P' are two prime ideals in D 

and a pr|me ideal Q' in T wlth Q ' / '~  D = P' there is a prime ideal 

Q | n T w i t h Q / ' ~ D  -- P. 

Lemma 2 of Dobbs [4] was stated for quasi-local domains 

wh|ch are either Krull domains of dimension ~ 2 ,  or integrally 

closed FC doma|ns which are not valuation rlngs. We state the 

above mentioned lemma as follows. 

COROLLARY 15. Let D be a quasi-local PVMD wh|ch is not a 

valuation domain. Then there exists u ~ K such that DC D [u] 

does not satisfy GD. 

PROOF. Note that a Krull domain is a PVMD in which every 

rank one prlme ideal is a max|mal t- ideal. Dobbs (Ioc cit), uses 

rank one primes of a Krull domain to avoid the FC condition. In 

the same way we can use the maxlmal t-ideals of the PVMD's to 

avoid the FC condition. The proof then follows the same lines 

as that of (a) Lemma 2 of [4]. 

COROLLARY 16 (cf [4] Theorem 3). Let D be a PVMD whlch is 

not Prefer. Then there exlsts u ~ K such that D ~ D [u] does not 

sat|sfy GD. 

PROOF. Since D is not Prefer, there exists a maximal ideal M 

such that D M is not a valuation domain. We note if  D C D[u] 

satisfy GD then so should D M ~ D [u] D-M = D M[U]. Now, 

slnce D M is a PVMD by COROLLARY 11, we apply COROLLARY 

15 to get the result. 

A noetherian domaln belng an FC domain we havet|n the 
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ZAFRULLAH 11 

light of the above results, a simpler proof of the following well 

known result. 

COROLLARY 17. An integrally closed noetherian domain D is 
m 

a Krull domain. 

PROOF. We start with the knowledge that D is a PVMD. By 

COROLLARY 14 , and in view of the fact that D is noetherian, 

Dp is a discrete rank one valuation domain for every rank one 

prime ideal P of D. Further, since a rank 2 valuation domain is 

not noetherian, no rank 2 prime ideal of D is essential. Whence 

every rank one prime ideal P, of D, is a maximal t-ideal and so 

D = / ~  Dp where P ranges over rank one prime ideals. According 

to COROLLARY 12 , every minimal prime of a principal ideal, 

of a PVMD, is essential. Further, D being noetherlan, every 

principal ideal of D has only a f inite number of minimal primes 

(cf Kaplansky [7] Theorem 88). Thus have we verified all the 

requirements for D to be a Krull domain. 

An overring T of D is said to be minimal i f  there exists no 

ring between D and T. Paplck [9] shows that i f  D is quasi-local, 

integrally closed and if it has a minimal overrlng T then T = D N 

where N is a prime ideal of D such that N = ND N and all non 

maximal prime ideals of D are contained in N ( [9] Lemma 2.7). 

COROLLARY 18. Let D be a quasi-local PVMD. If D has a 

minimal overrlng T then D is a valuation ring. 

PROOF. In view of Lemma 2.7 of [9], T = D N where every non 

maximal prime ideal of D is contalned in N. Consider a • M-N  

where M is the maximal ideal of D. Clearly M is minimal over aD 
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12 ZAFRULLAH 

and hence, by COROLLARY 12, is essential. 

As an interesting special case of COROLLARY 18 we cite 

Theorem 2.8 of Papick [9] which states: Let D be coherent, 

quasi-local an_d integrally closed. If D has a minimal overring T, 

then D is a valuation ring. 

It is interesting to note here that this result follows with- 

out any appeal to finite presentation of f initely generated ideals. 

We conclude this note with some specific examples of 

integrally closed non FC domains. It must be said that the litera- 

ture on multiplicative ideal theory abounds in examples of integ- 

rally closed integral domains which are not PVMD's. For example, 

rings of f inite character which do not have any defining family 

consisting of essential valuation overrings. Moreover if D is 

integrally closed and not a PVMD then D[X] is integrally closed 

and it is not a PVMD. 

Another set of examples comes from the ngtion of Schreier 

rings which were introduced by Cohn in [2]. Recall from [2] that, 

i nD,  an elementxlspr lmal i f x  i a b l n D  imp l iesx=cdwhere  

cj  a and dJb. An integrally closed integral domain is a Schreier 

domain if each of its elements is primal. We note that in a Schreier 

domain an irreducible element is prime. In view of thls~ it is easy 

to establish that a Schreier PVMD is a GCD domain (cf [5] Ex. 7, 

p. 430 ). Thus a Schreier ring which is not a GCD domain is an 

example of a non FC integrally closed integral domain. Finally, to 

this we may add the following corollary. 
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COROLLARY 19. A Schreler ring D is a GCD domain if and only 

if i t  is a FC domain. 

In the following we give an example of a Schreier domain 

which is not a GCD domain. 

EXAMPLE 20. Let D be a valuation domain of rank greater than 

land  let S = { s i L~where D [ s - l ] 7  K. Then according to 

[3] D + X D s [ X ] = { v 0  + z v ' X  i l  v0 E D andv. r D S ~ i s a  
' t ' z !  I I 

Schreier domain. Further, in view of Example 1.4 of [3], 

D + XD S [X] is nota GCDdomain. In particular, i f p •  Dsuch 

that pD S is a proper principal ideal then p and X do not have a 

GCD and it is easy to show that (p) /~(X) is generated by 

{pX/t I t  e: s] .  

REMARK 21. Having seen that an integrally closed FC domain 

is a PVMD, one may ask if the integral closure of a FC domain 

should be a PVMD. This question remains open. 
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