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Monte Carlo calculations of the thermodynamic properties (energy, specific heat, mag- 
netization suceptibility, renormalized coupling) of the nearest-neighbour Ising ferromag- 
net on a five-dimensional hypercubic lattice are presented and analyzed. Lattices of 
linear dimensions L =  3, 4, 5, 6, 7 with periodic boundary conditions are studied, and a 
finite size scaling analysis is performed, further confirming the recent suggestion that L 
does not scale with the correlation length ~ (the temperature variation of which near 
the critical temperature T~ is ~ocll-r/T~l-1/2), but rather with a "thermodynamic 
length" l (with lot[i-T/Tel -2/a, d=5  here). The susceptibility (extrapolated to the 
thermodynamic limit) agrees quantitatively with high temperature series extrapolations 
of Guttmann. The problem of fluctuation corrections to the leading (Landau-like) 
critical behaviour is briefly discussed, and evidence given for a specific-heat singularity 
of the form 11- T/T~I 1/2, superimposed on its leading jump. 

I. Introduction 

One of the key insights of the modern theory of 
critical phenomena (see e.g. [1]) is the existence of a 
marginal dimensionality d*: nontrivial critical ex- 
ponents e, fi, 7, v, ... (of the specific heat C, order 
parameter m, susceptibility Z, correlation length 

. . . .  ) occur only for system dimensionality d<d*, 
due to strong fluctuation influence, wile for d>d* 
they have the values predicted from simple Landau 
theory [2]. While there fluctuation effects, which are 
neglected in Landau theory, thus do not affect the 
critical exponents of the leading singularities near 
the critical temperature T~, they still are expected to 
govern the next-to-leading singular terms, and thus 
yield important corrections to scaling [3-5]. 
For Ising systems, d*=4  and thus situations with 
d>d* are clearly not relevant experimentally. But 
checking the question whether one understands the 
systems with d>d* theoretically has some bearing 
on the theory of critical phenomena in general. For 
example, for d>d* the hyperscaling relation dv=2 

t Present and permanent address 

- e  is no longer valid. Since the possibility has been 
raised that there might be a slight violation of this 
hyperscaling relation even for d = 3  [6, 7], it is in- 
teresting to study systems with d > d* when this vio- 
lation definitively occurs, as a testing ground. A 
particular interesting consequence of the failure of 
hyperscaling is the fact that also finite size scaling in 
its standard form [8, 9] then does not hold [-10-14, 
6]: the question then must be asked whether there is 
then a modified form of finite size scaling [11, 12, 
14]. 
Apart from their theoretical interest, these questions 
may also be interesting experimentally for other sys- 
tems where the marginal dimensionality d* is lower. 
For uniaxial ferroelectrics and dipolar magnets, d* 
= 3 and the leading critical behaviour is identical to 
that of a four-dimensional short-range Ising system 
[15-17]; for certain second-order elastic structural 
transitions one indeed may have d*=2.5 [18] and 
thus the case d>d* may be physically realized [18, 
19]. Other problems where d may exceed d* are 
certain kinetic models, such as the so-called "true 
self-avoiding walk" which has d* = 2  [20]. Finally, a 
situation with a large value of d* (d*=6) but a 
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violation of hyperscaling is likely to occur in systems 
with quenched random fields: various arguments 
predict that the universal critical properties of the 
impure system in d dimensions are identical to those 
of the corresponding pure system in d' dimensions, 
with either [21] d ' = d - 2  or [22] d'=d-2+tl(d ' ) ,  r 1 
being the critical exponent describing the decay of 
the correlation function at criticality. If such a shift 
of effective dimensionality occurs, the hyperscaling 
relation could be modified to d'v = 2-oz. 
The present work is devoted to a study of the five- 
dimensional nearest-neighbour Ising model. The aim 
of this work is to show that the numerical data are 
indeed nicely consistent with the critical behaviour 
expected on the general theoretical grounds men- 
tioned above. So evidence for both the Landau be- 
haviour of the leading terms and a non-Landau be- 
haviour of the subleading terms (such as an anomaly 
A C ocll -T/T~I ~/2 in the specific heat) will be present- 
ed. Particular attention will be paid to an analysis of 
finite size effects, since the nature of finite size scal- 
ing for d>d* has been a subject of extensive, and 
sometimes controversial, discussions [11, 12, 14, 23]. 
In fact, preliminary results of the present investi- 
gation where the so-called renormalized coupling 
constant was analyzed [14] have contributed to set- 
tle this issue. The present paper thus tries to eluci- 
date more completely how to do finite size scaling 
above four dimensions. 
In Sect. II we shall describe the "raw data" of this 
Monte Carlo investigation while Sect. III will present 
a discussion of critical properties. Sect. IV then pre- 
sents a detailed finite size scaling analysis, and Sect. 
V summarizes our conclusions. 

II. Monte Carlo Results for the Thermal Properties 
of Finite Five-Dimensional Ising Lattices 

Standard Monte Carlo calculations [24] have been 
performed for the Ising Hamiltonian in zero mag- 
netic field and exchange interaction J, 

= - J  ~ S, Sj, S, = _+ 1 (1) 
<i,j> 

where i labels the sites of a hypercubic five-dimen- 
sional lattice with linear dimensions L =  3, 4, 5, 6, 7 
and periodic boundary conditions in all lattice direc- 
tions. The symbol ( i , j )  indicates that the sum runs 
over nearest-neighbour pairs once. Typically, for each 
size about 15-30 temperatures kBT/J in the vicinity 
of the bulk critical temperature (tanh(J/k~T~)= 
0.113427_+0.000007 [5], i.e. kBTJJ~8.77 ) were 
studied. While for the smaller systems the equilibra- 
tion time was chosen 6000 Monte Carlo steps (MCS) 

per spin and the subsequent t0000MCS/spin were 
kept for data analysis, close to T c as well as for the 
larger systems all times were chosen 3-4 times as 
large, and in a few cases runs were repeated with 
other random numbers and averaged together, in 
order to obtain appropriate statistical accuracy. This 
statistical effort (rather than any storage limitations) 
prevented us to go to systems larger than Nm,x=7 s 
=16807. Previous work (except Ref. 14) on this 
model was restricted to one size (L=6)  only and 
nothing but the magnetization was presented [25]; 
as will become clear from our analysis this previous 
study could not significantly address the questions 
about the critical behaviour of the model (moreover, 
the critical temperature kBTJJ=8.70 chosen in Ref. 
25 is nearly one percent too low). 
Quantities calculated in our study include the ab- 
solute value of the magnetization (N = L s) 

1 
<ISI>L=~<I~Si]), (2) 

the mean square magnetization 

1 2 (s2)=~((~s,) ) (3) 

the fourth moment of the magnetization distribution 

4 1 4 
( S ) L = N T ( ( ~ S i ) i  >' (4) 

the internal energy per spin U = ( ~ ) / N  and the 
specific heat per spin calculated from energy fluc- 
tuations 

C/kB = (< ~,,2 ) _ < ~ ) 2 ) / ( N [ k  B T]2).  (5) 

Also the susceptibility per spin is obtained from Eqs. 
(2), (3) via a fluctuation relation 

)~= N( < S2) L--(lSl) 2)/(k~ r); (6a) 

while this relation is particularly useful for T <  T~, 
one may use for T > T~ the alternative relation 

)( = N f Sa) L/(kB T). (6b) 

Of course, the quantities C, X, )( defined above also 
will have an explicit size-dependence. Finally, Eqs. 
(3), (4) allow to compute the so-called renormalized 
coupling constant gL [12-14] 

gL = -- 3 + ( S4) L/ ( S 2) 21 (7) 

The numerical results for these quantities are pre- 
sented in Figs. 1-6. The estimate for the critical tern- 
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Fig. 1. Magnetization (}S[) L of finite five-dimensional Ising sys- 
tems plotted versus temperature. Various linear dimensions are 
shown by different symbols as indicated. Arrow shows the critical 
temperature found from extrapolation of the high temperature 
series expansions [-5, 26]. Curves are only drawn to guide the eye 
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Fig. 2. Mean square magnetization (S2)L plotted vs. temperature. 
For further explanations see Fig. 1 
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Fig. 3. Susceptibil i ty per spin Z plot ted vs. temperature. Ar rows 
indicate the position of the susceptibility maximum 
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Fig. 4. Renormalized coupling constant gL plotted vs. temperature 



16 K. Binder: Five-Dimensional Ising Model 

i 

l i.Oi 

2 5  

08 

2.0 

1.5 

[0  

0.5 

08 

0 

kaT/J ~8.8 

i L i 

0 025 005 0.075 
L-s/2 

x 5 P ' ck  ~ "  

V 6 / 0.0. 0 
x~ x -o 

...• ~ o . ( i s l ~ 2  
~o{extrapolated) 

1 

2.5 

cs 

b i 

2.0 

1.5 

1.0 

0.5 

[] 

o 4 

x 5 

v 6 

75 8.0 8.5 9.0 
k e T / J  

Fig. 5. Internal energy per spin plotted vs. temperature. At T >  T~ 
also the energy extrapolated to the thermodynamic limit, L =  o% 
is included. The insert shows how this extrapolation is performed, 
choosing as an example the temperature k~T/J=8.8. Using the 
data of Fig. 1, the "order-parameter-contribution" to the energy 5 
<lSI) 2 is shown for comparison 
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Fig. 6. Specific heat per spin plotted vs. temperature 

perature shown, is that of the high temperature se- 
ries expansions [5, 26]. The curves for <lSI)g and 
(Sz)L show the "finite-size-tails" above T~ as usual. 
Both the peaks of the susceptibility and of the spe- 
cific heat are shifted towards lower temperature with 
decreasing system sizes. From all these data on the 
magnetization, susceptibility and specific heat it 
would be difficult to accurately estimate the bulk 
critical temperature directly, as it also happens for 
lower-dimensional systems [13]. Again one finds 
that the "renormalized coupling" gL is most useful for 
finding directly the critical temperature (as in the 
lower dimensional case [133). The behaviour of gL 
for both low and high temperatures is trivial [13]: 
For L ~ o o  and T<T~ we must have (S2)L~m 2, 
where m is the spontaneous magnetization, and simi- 
larly (S4)r---,m4: hence (S4)L,~(SZ)~ and thus gL= 
- 2 .  In the paramagnetic regime, on the other hand, 
the magnetization distribution is Gaussian and 

hence ( S 4 ) L ~ 3 ( S a ) ~  for L ~ o o ,  and hence g~-~0 
for T > T  c Thus a nontrivial behaviour of gr is 
found for each L only for this temperature regime 
over which the transition from the disordered to the 
ordered state is smeared out. As a consequence, it 
was pointed out in Ref. 13 that one can find an 
estimate Tc(L,E ) for the bulk value of T c from the 
intersection of two curves gL and gu; since the tem- 
perature width over which this rounding occurs 
must shrink to zero as L or E tend to infinity we 
must have lim Tc(L , E ) =  T~, for any fixed E. What  is 

L ~  co 

seen in Fig. 4 is that within the desired accuracy of 
AT/T~IO -3 all curves gL actually intersect in the 
same point, and hence yield an estimate for T~ even 
without any extrapolation to L ~ o o ,  to that ac- 
curacy. It  is gratifying that this estimate, 
kBTc/J~-,8.77, precisely coincides with the result of 
the high temperature series extrapolation mentioned 
above [5, 26]. 
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Fig. 7. Inverse susceptibility plotted vs. tem- 
perature. Both data for Z [Eq. (6a) and Z' Eq. 
(6b)] are shown. Dash-dotted line indicates 
the behaviour predicted by the Bethe-Peierls- 
approximation [Eqs. (9), (10) with 
kBTfJ/d,~8.96~ [27 I. Also the molecular field- 
estimate of the critical temperature is 
shown. The broken curve for T > T~ is due to 
the series expansion [5], Eq. (11), while the 
analoguous broken curve for T< T~ is freely 
drawn through the points to guide the eye. 
Full straight lines are expected asymptotic 
laws (Eqs. (9)) with the high temperature 
series estimates for T~ and F+ (using F_ =F+/2) 
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While in lower dimensionality the internal energy 
often exhibits relatively little size-dependence, in the 
present case the size-dependence is rather pronoun- 
ced. Thus it was necessary to perform an extrapola- 
tion to the thermodynamic limit in the temperature 
regime 0.99 T~ < T < 1.1 T~; as indicated this extrapo- 
lation was performed graphically by plotting the en- 
ergy vs. L-5/2. The choice of this particular exponent 
is dictated by the finite size scaling considerations 
described in Sect. IV. As expected, the variation of U 
with this variable is found to be linear. It is seen 
that one finds a kink-like singularity of the energy at 
T c. This behaviour, of course, again is not unexpect- 
ed: if molecular-field theory were valid, the internal 
energy would be simple expressed in terms of the 
magnetization as U = - 5 J m  2 (for a nearest-neigh- 
bour Ising model in five dimensions). Thus a curve 
displaying this part  of the energy simply induced by 
the order parameter  is included in Fig. 5. The total 
internal energy includes also a fluctuation part, not 
included by the molecular field approximation, 
which has a rather smooth temperature variation 
throughout the critical region. This fluctuation con- 
tribution is responsible for the nonzero internal en- 
ergy at and above T~. We estimate the internal en- 
ergy at criticality as 

Uc/J = - 0.67 _ 0.01. (8) 

This fluctuation contribution also is responsible for 
the fact that the specific heat maximum is considera- 
bly enhanced in comparison with the value which 
would be predicted by the molecular field approxi- 
mation, which would be Cmax/k B = 3/2, see Fig. 6. 

III. Critical Behaviour 

We now turn to an analysis of the critical properties 
of the system. Since one expects Landau theory to 
be valid, the bulk susceptibility Zb should behave for 
L ~  oe approximately close to T~ as follows 

kBTzb,.~F+(1 -To~T) -1, 
k s TZb ~ F ( 1  - TJT) -  1, 

T--+T+ ; 
(9) 

T--, T~- 

with F_=F§ (also for amplitude ratios such as 
F_/F§ the Landau predictions should be valid). The 
behaviour of (9) suggests to plot the inverse suscepti- 
bility vs. temperature and this is done in Fig. 7. We 
have also included the critical temperature predicted 
by the molecular field approximation (kBTcMFA/j 
= 2 d =  10) and the Bethe-Peierls-approximation [-27] 
{k s T~BP/J = 2/ln (2d/(2d - 2)) ~ 8.96}, which both are 
significently off. While in the molecular field approx- 
imation the amplitude F+ in Eq. (9) simply is F+ = 1, 
in the Bethe-Peierls approximation we have [27, 28] 

F + - d 2 _ 2 / l n  2f--~d2 ~ 1 1 2  ( _ ) �9 �9 ( lO) 

The high temperature series analysis [5] reveals that 
the amplitude F+ is even more enhanced, F§ ~ 1.295, 
and there is also a singular correction term 
{v - tanh (Y/k 8 T)} 

kBTzb= 1.311(1 --V/Vr -1 --0.48(1 --V/Vc) -1/2, V<V c 

(11) 
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Equation (11) is included in Fig. 7 and it is seen to 
be reasonably consistent with the Monte Carlo data 
for Z' Eq. (6b); above T c the Monte Carlo data for Z 
[Eq.(6a)] are still far from the asymptotic regime 
where Z becomes independent of size, and hence can 
not be used to infer anything about the  critical be- 
haviour directly. Very close to T~ also the data for Z' 
start to deviate from (11) but at the same time start 
to become distinctly size-dependent, and hence this 
deviation is clearly a finite size effect. It is also seen 
that the leading term in (11) alone would describe Z 
accurately, within our statistical errors, only up to 
temperatures about kBT/J,,~9.0, i.e. for [1-T/T~t  
<0.025, while outside of that temperature region the 
singular correction term already becomes numeri- 
cally important. A similar correction seems to exist 
below T~, where the data for Z (in the regime k B T/J 
<8.5 where the size-dependence for L > 6  is smaller 
than the statistical error) fall above the asymptotic 
straight line in Fig. 7. Of course, data for much 
larger sizes and better statistical accuracy would be 
required to actually show more convincingly that 
the leading correction to the Landau behaviour, Eq. 
(9), has the singular form shown in (11). 
A more convincing evidence for singular corrections 
comes from an examination of the specific heat data, 
Fig. 6, where for d > 4 one expects a behaviour of the 
form [5] 

C =  Cmax-const  ll - T/T~l (~-4)/2, T-~ T~-, (12) 

and a similar behaviour (with a different leading 
term) above T~. For d--5 Eq. (12) would imply a 
square root-like anomaly, and this is in fact con- 
sistent with the data. Unfortunately, it is not possi- 
ble to estimate the leading term Cma x with high 
accuracy (Fig. 8); trying various extrapolations we 
only can say that 

Cmax/k  B = 2.3 + 0.3. (13) 

However, using this estimate in Fig. 6 to obtain the 
subleading contribution A C =  Cma x -  C we find that 
the data for A C are indeed consistent with a varia- 
tion A C o o ( i - T / T o )  1/2 over a wide temperature re- 
gime (Fig. 9). Since the data for A C shown in this 
log-log plot are not so close to To, this conclusion is 
not so much affected by the uncertainty in the pre- 
cise value of Cma x. 
Finally, we turn to the critical behaviour of the 
magnetization, which also is displayed in Fig. 9. In 
principle, both {S2>L and {]S]> 2 are equally well 
suited for an extrapolation towards L-* o% but Fig. 9 
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Fig. 8. Maximum value of the specific heat Cm, . plotted vs. L- 5/a 
(upper part) and plotted vs. L -1 (lower part). Straight lines in- 
dicate various possible extrapolations 
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shows that the finite size effects for <[S[)[ are some- 
what smaller than those for <S2)L, and hence the 
convergence to the thermodynamic limit is some- 
what more rapid for <[S[)2L than for <$2)c . But both 
sets of data seem to be consistent with a behaviour 
of the bulk spontaneous magnetization m b 

m2 =B2(1 -TITs),  T~Tr B2 ~4.4__0.2. (14) 

In molecular field theory, B 2= 3 and hence we again 
find that the actual amplitude is somewhat enhanced 
[29]. 
From Fig. 9 it is seen that the deviations from (14) 
occur for (1-T/T~)>~0.04. In order to analyze these 
deviations we also plot the quantity Am=[([S])  L 
-B(1-T/T~)~/21. The data seem to imply Amoc(1 
-TITs)  3/2, which means that the correction terms 
are regular 

m b = B(1 - T/T~) ~/2 {1 + B'(1 - T/T~) +.. .}. (15) 

Of course, it is possible that there exists a singular 
correction (A m proportional to ( 1 -  TITs) ~ yielding a 
term B"(1-T/T~) 1/2 in Eq. (15)) for the magneti- 
zation as well as it seems to exist for susceptibility 
(Eq. (11)) and specific heat (Eq. (12)), but then its 
amplitude B" is probably much smaller than the 
amplitude B'. While the available data are not for 
large enough sizes to probe the region extremely 
close to Tr which would be necessary to convinc- 
ingly clarify the nature of these correction terms, 
they do show that pronounced correction effects to 
the leading Landau-like critical behaviour do exist 
in this five-dimensional Ising model. 

IV. Finite Size Scaling 

In Ref. 14 it was suggested that the free energy 
density for d > d* satisfies a scaling hypothesis where 
a dangerous irrelevant variable [30, 11] u must be 
taken into account: 

fL= L - a f  (t UT, h UH, ulZ u) (16) 

where  t = TIT  c - 1 ,  h is the  m a g n e t i c  field, a n d  YT, Yg, 
y, are renormalization group exponents (yr = 1/V, Ytt 
=(7+fl)/V). The variable u is irrelevant, y ,<0 ,  but 
dangerous since f ( x , y , z )  is singular for z~0 ,  i.e. in 
this limit Eq. (16) is replaced by 

fL= L-a*f (t LY*,h LY*~), (17) 

where d*, y*, and y* are a new set of exponents, and 
where consistency with the bulk critical behaviour in 
the thermodynamic limit requires 

d* d* (7 +/~) 
Y * - y + 2 f l '  Y*-  y+2f l  (18) 

Since the renormalized coupling constant gL can be 
written as [14] 

gL = (a ~f,./a h4)/[Ld(a2fL/a h2) a] ]h= O" (19) 

Equation (17) also implies [14] 

g~ = L~*-dg,(tC'~). (20) 

The value of d* and hence of y* (Eq. (18)) has been 
controversal [12, 14, 23]. In Ref. 14 the relation d* 
= d was derived, however, which in turn implies 

y* = d/(7 + 2fl). (21) 

Since Eq. (17) can be interpreted as saying that L 
scales with a length I, 

l oc  t -  l lY*T = t -  <~ + 2 f l ) / d  (22) 

we conclude the following: if the hyperscaling re- 
lation d v =y  + 2/? is valid, the length l defined in (22) 
would simply be proportional to the correlation 
length ~ (and hence not be an independent new 
length at all). Conversely, if hyperscaling is invalid, 
the exponent 1/y* differs from v, and the thermody- 
namic length I has a temperature dependence dif- 
ferent from the correlation length. Note that for 
d>d*,  where this happens, the divergence of I is 
weaker than the divergence of 4. Under these cir- 
cumstances, the statement embodied in (16)-(22), 
that L scales with the thermodynamic length l rather 
than with 4, may look surprising. Thus we also 
quote a somewhat less formal argument [14] to 
support (21): the probability distribution of the mag- 
netization s in a finite cube of linear dimension L for 
T < T  c ~and L large enough tends to a sum of two 
Gaussians, centered around the bulk spontaneous 
magnetization + rob, 

La/2 
PL(S )=2 /2nkBTZ  b { e-(s-mb)2La/2kBTzb 

-1- e--(s +rnb)zL a/2kBT zb }. (23) 

In Eq. (23), thermodynamic fluctuation theory [2] 
links the widths of these distributions to the bulk 
susceptibility Xb- Hence the arguments of the experi- 
mental functions can be cast into the form 

(s l t l -P~B) 2 ]t[2~+~L d - ( s l t l - p ~ s ) 2  (L/1) ~ (24) 
2F-  2F 

where l is given by (22). Hence Eq. (23) requires 
indeed that the variable t L y~" must appear in the free 
energy fL and its derivatives (which also can be 
constructed as moments of the distribution PL(S)), at 
least for L ~ .  The assumption equivalent to (16) 
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then is that the variable L/l is the only combination 
in which the variables t, L enter. This assumption, of 
course, is nontrivial, and probably it is only true for 
periodic boundary conditions. In the case of free 
boundary conditions, there must be surface correc- 
tions fs to the bulk free energy fb, i.e. 

fL L~-T2~ fb (t, h) + L- lfs (t, h). (25) 

But Eq. (17) implies, if there were a correction pro- 
portional to L-1 

fL L ~ '  tT+;~fb{t-('+~)h} 

+ L -  1 t(~+ 2/~- 1/r~.)fs{t-(~+p)h}" (26) 

As a consequence the surface free energy would van- 
ish at T~ with a critical exponent 2 -cq=(7+2 /~  
-1lye). However, the Landau theory for semiinfinite 

geometry shows that the surface free energy vanishes 
with an exponent 2 - ~, = (y + 2/~-  v) [31]. Therefore, 
we conclude that (16)-(24) are not applicable for 
d>d* in the case of free surfaces [14]. 
In the following we analyze our Monte Carlo data 
in the light of this scaling analysis (extending Ref. 14 
where the data on the renormalized coupling con- 
stant were already presented and analyzed). A key 
consequence of (17)-(22) is that any possible de- 
finitions for a shift of the effective critical tempera- 
ture T~(L) of the fnite system lead to 

Tc(L)-T~=AT~ocL-Y~'=L -5/2 (d=5). (27) 

In Fig. 10 this behaviour is verified both for the sus- 
ceptibility Z and the specific heat, defining T~(L) 
from the temperature where the maxima of these 
quantities occur. Note that these maxima do not 

0.05 

002 

010} 

0.005 i 

10 
L 

5 

% 

X 

1 
10 20 50 100 200 

L5/2 

0.1 

0.05 

o I 0102 

0.01 

0.005 ~ 

5 

ope  = - 1 

J 

i i 

10 20 50 100 
L5/2 

2O0 

tn 

X 

008 

006 

0,04 

0.02 

o 

0 
-5 

i i i 

-25 0 25 5 
( ~ - l l L  s/2 

i . 

75 

Fig. 10. Log-log plat o f  the relative shift of the 
critical temperature v~. L s/2 for the susceptibility 
(upper left part) and specific heat (upper 
right part), and of the maximum susceptibility 
Zm~x (lower left part) and specific heat (lower 
right part). AIso the value of )( at the bulk T~ is 
included (Eq. (6b), lower left part of this figure). 
Straight lines indicate the respective power 
laws 

Fig. 11. Scaling plot of the susceptibility, z J L  -5/z is 
being plotted vs. (T /T~-  1)L 512, for various values 
of L (symbols have same meaning as in Fig, 3). 
Curves are drawn through the data for L =  3 and L 
= 7 to guide the eye 
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Fig. 12. Scaling plot of the magnetizat ion 
square ( S 2 ) L  5/2 vs. (T/T~-I)L 5/2, for 
various values of L. Curves are only drawn 
to guide the eye 
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occur at the same temperatures, indicating the fact 
that there is no uniquely defined Tc(L), as expected. 
The analysis of the height of these maxima is some- 
what less convincing: while ZmaxOCL s/2 with very 
good accuracy, Ld(S2)r, ro seems to indicate an ex- 
ponent 10 % too high, and the same is true for Cma x 
(actually we expect that Cmax(L--+ oo) tends to a finite 
constant, see Fig. 8 and Eqs. (12), (13)). 
Of course, not only should the peak position and 
height of Z scale with the expected power laws, but 
Eq. (17) also implies, for 7= 1, 

z U~= ~(t IZ~) (28) 

where y}=5 /2  in d=5 .  Equation (28) is checked in 
Fig. 11, using the bulk value of T~ due to the series 
expansion [5], i.e., there are no adjustable parame- 
ters. While the data for L = 3 , 4  seem to fall off the 
scaling function, the data for L =  5, 7 already seem to 
scale rather well. Of course, since correction terms 
to the relations (16)-(22) are expected, it is no sur- 
prise that in Fig. 11 systematic deviations from a col- 
lapse of the data on a simple curve must occur. The 
same story is told by the data for ($2),  Fig. 12: 
While the data for L = 3 , 4  are distinctly off the 
asymptotic curve for T<T~, the data for L = 5  are 
only slightly off, and the data for L=6 ,  7 yield an 
identical curve. For  (T/T~-I)LS/2< - 1 ,  this curve is 
essentially the straight line, Eq. (14), giving further 
credence to the estimated amplitude factor B 
there. 
The most convincing evidence for the predicted fi- 
nite size scaling behaviour comes from a study of gL 
(which was presented earlier already in Ref. 14). As 

is evident from Fig. 13, basically all sizes from L =  3 
up to L = 7  coincide on the same scaling function. 

4 S a 2 The fact that gL = - 3 + ( S  )L/( )L scales better 
than (S2)L or (S2)g-(ISI)~ do is probably due to 
a fortunate (at least approximate) cancellation of 
corrections to finite size scaling when one takes this 
ratio. 
In Ref. 14 it was pointed out that one can in fact 
explain Fig. 13 in the spirit of Eq. (23): writing for 
PL(s) a Landau-like form 

PL(s)ocexp[--La(ctLs2 +us~)], tL= t -AL  -el2, (29) 

symbol L ~ T ~  
-05 [] 3 
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-4  -2  0 2 e. 6, ( 2 _ i ~  L ~ ' ~  

T c ]  

Fig. 13. The data for gL shown Fig. 4 plotted vs. the scaling 
variable (T/T~-I)L 5/2, for various values of L. The solid line is 
obtained from (31) 
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where c, A and u are constants and rescaling s 
according to the substitution 

= (uLe) l/4s (30) 

one finds 

PL (~) oc exp [ -- a (L a/2 t - b) ~2 _ ~4], (31) 

where a=c/u 1/2, ab=A.  The solid curve is obtained 
from calculating the second and fourth moment of 
Eq. (31), choosing b=0.37, a=0.56 [-14]. It evidently 
fits the data well [32]. 
Finally, Fig. 14 shows that a plot of gc versus (L/~) 2 

ocL2 ( T - - l ) ,  the standard finite size scaling vari- 

able, is much less successful. As expected, there is no 
data collapsing with this choice of variables, and 
particularly, the data for L = 5 , 6 , 7  still systemati- 
cally deviate from each other. In this representation, 
gL converges for L--* oo against a step function at T c 
as the original data do (Fig. 4); of course, the slope 
at T c increases only rather slowly now (proportional 
to an exponent 5/4 of the chosen variable, (L2) 5/4 
=L5/2). 

V. Conclusions 

In this paper both the bulk critical behaviour and 
finite size scaling for the five-dimensional Ising mod- 
el were analyzed, using Monte Carlo data for sys- 
tems in the size range N = 3 5 = 2 4 3  to N = 7 5  
=16807. Of course, due to these very small linear 
dimensions the regime very close to criticality was 
not accessible to study. Although with more sophis- 

ticated programs on vector computers or special 
purpose Monte Carlo processors one could go to 
considerably larger values of N, in terms of the 
linear dimension L it would mean at best an in- 
crease of a factor of two or three for this high- 
dimensional system; thus one still would somewhat 
suffer from the same problems. Nevertheless, such an 
extension of the present work would be very desir- 
able. 
In spite of this intrinsic limitation we feel that useful 
results have been obtained, involving the known 
critical exponents of Landau theory for the leading 
terms, and focusing on the singular correction terms 
to this behaviour, as well as on finite size scaling. 
Above T~ the estimated susceptibility agrees quanti- 
tatively with the series extrapolation due to Gutt- 
mann, Eq. (11); a corresponding square-root singu- 
larity was also identified for the specific heat, where 
such a term is expected on general theoretical 
grounds, but has not yet been studied by series expan- 
sions. While correction terms clearly are also rather 
important for the magnetization, the data seem to 
favor a less singular correction, Eq. (15). 
The present analysis of finite size effects of this mod- 
el confirms the conclusion of [14], that the shift of 
the effective critical temperature ATc=T~(L)-L  
ocL-Y) = L  -5/2, rather than the standard relation A T~ 
ocL-1/~(=L -2 in this model). Thus both rounding 
and shifting of critical singularities in this model do 
not occur when L is comparable to the correlation 
length, but rather when L is comparable to the 
(smaller) "thermodynamic length" loci1 - T/Tcl- 1lye.. 
We hope that the present analysis may also be use- 
ful for other problems where either d exceeds the 
marginal dimensionality d*, or hyperscaling is vio- 
lated because of other reasons. 
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This work has strongly profited from stimulating and fruitful 
discussions and correspondence with A.P. Young, M. Nauenberg 
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