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Abstract. In this paper we establish the existence of profinite Frobenius sub- 
groups in a free prosolvable product A LIB of two finite groups A and B. In this way 
the classification of solvable subgroups of free profinite groups is completed. 

1. Introduction 

Let cg be a class of  finite groups closed under  the operat ions of  
taking subgroups,  quotients  and extensions (e.g., the class of  all finite 
groups). Let A and B be finite groups in cs and let G = ALI B be their 
free pro-rg-product,  i.e., G is the coproduc t  of  A and B in the category 
of  pro-Cg-groups. In [8] a description of  the possible structure of  a 
solvable subgroup H of  G is given; if H is infinite, it mus t  be of  one 
of  the following types: (i) H ~ 2~ x 2+, where :~ and a are sets of  prime 
numbers ,  2~ ~ 1-I 2v, and 2 v is the additive group of  p-adic integers; 

(ii) H ~ 2~ x C 2, where 2 ~ ~, C 2 is the group of  order 2, and it acts 
on 2~ by inversion, i.e., H is the dihedral  pro-n-group;  (iii) 
H ~ 2 ,  x C, where C is a finite cyclic group whose order is not  
divisible by the primes in x, and the action of  C on 2~ is elementwise 
fixed-point-free, i.e., H is a profinite Frobenius  group with cyclic 
kernel and cyclic complement .  In addition, it is proved in [8] that  the 
groups of  types (i) and (ii) actually arise as subgroups of  free 
pro-C-products .  

Our  first result is a description of  the profinite Frobenius  
subgroups of  a free p roduc t  (Theorem 3.1 and Corollary 3.3). For  the 
group G above the only infinite profinite Frobenius  groups are 
solvable of  the form 2~ >~ C, as in (iii) above. 

The main  purpose  of  this paper  is to show that  the groups of  type 
(iii) described above, do also arise as subgroups of  free products  of  
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finite groups (Theorem 5.5), in fact we prove that  if H ~ Z,  • C is as 
in (iii), then  H i s  conta ined in any free prosolvable p roduc t  G = ALI B 
where A and B are finite solvable groups,  C is a subgroup of  A and 
B is non-trivial. It turns out  that  this is equivalent to showing that  
every element c of  A normalizes an infinite procyclic subgroup of  G. 
In contrast  to this result, note  that  if P = A * B is the free p roduc t  of  
A and B as abstract  groups,  and  1 r c e A is an element of  order 
different f rom 2, then c cannot  normalize an infinite cyclic subgroup 
of  P: otherwise, c would  centralize an infinite cyclic subgroup of  F, 
and this is not  possible in a free product .  

The basic result of  the paper  is actually about  finite solvable 
groups (Theorem 4.2): I f  C is a cyclic group of  au tomorph isms  of  a 
finite solvable group F, N is a C-invariant normal  subgroup of  F such 
that  FIN is cyclic, and the induced action of  C on FIN is wi thout  
non-tr ivial  fixed points,  then there exists a C-invariant cyclic 
subgroup Z of  F with Z N = F, and C acts on Z wi thout  non-trivial 
fixed points.  

2. Notation 

Generally, we use the no ta t ion  of  [19] and [15]. By cg we mean  a 
full class of  finite groups, i.e., a non-empty  class of  finite groups such 
that  (i) if G e cg, and H is a subgroup of G then H e  cg; (ii) if G e cg and 
H is a h o m o m o r p h i c  image of  G then HsCg; (iii) if 
1 ~ K--, G --* H ~ I is an exact sequence of  groups and K, H e  off, 
then G e cg. In this paper  we are mainly interested in the case when cg 
is the class of  all finite solvable groups. A pro-Cg-group is a projective 
limit of  groups in cg. All h o m o m o r p h i s m s  of  p ro -%groups  are 
assumed to be cont inuous;  all subgroups of  a pro-Cg-group are 
assumed to be closed. I f  G is a group,  H ~< G will indicate that  H is 
a subgroup of  G; and H < G, that  H is a proper  subgroup of  G. By 
G = K • H we mean  that  the group G is a semidirect p roduc t  of  the 
normal  subgroup K and the subgroup H. I f  G is a p ro -%group ,  ~ (G) 
denotes the set of  prime numbers  dividing the order  of  G, i.e., the set 
of  prime numbers  dividing the orders of  all finite quotients  of  G; and 
d(G) denotes the smallest cardinality of  a set of  generators of  G 
converging to 1 (cf. [15], p. 60). For  a prime n u m b e r p ,  2p denotes the 
additive group o fp -ad ic  integers. I f  z~ is a set of  primes, then we put  
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2~ = H p ~  2p; if ~ is the set of  all pr ime numbers ,  we set 2 = 2~. 
Finally, a cyclic group of  order  n is denoted by C,. 

3. Frobenius Subgroups of Free Products 

Recall that  a profinite Frobenius  group H is a profinite group of  
the form H -- K x T, where T (a proper  non-trivial subgroup of  H) 
acts on K elementwise fixed-point-free (i.e., for 1 =~ t ~ T  and 
1 ~ k~  K, one has [t, k] ~ 1), and the sets of  primes z~(K) and z~(T) are 
disjoint (cf. [2]); K is the so called kernel of  the Frobenius  group,  and 
T a complement .  In this section we describe which profinite 
Frobenius  groups could arise as subgroups of  a free product  of  
profinite groups. We show that  such groups, if not  contained in a 
conjugate of  a free factor, mus t  be solvable of  the form 2~ • C, where 
2~ is the kernel and C is finite cyclic. As we will see in Th. 5.5, such 
groups 2~ • C, can always be embedded  in a free prosolvable product  
of  appropria te  finite solvable groups. 

Theorem 3.1. Let A1, . . ., A~ be finite groups in cg, G = A l I_[ . . . [I An 
their free pro-%product, and let H be a profinite Frobenius subgroup 
o f  G. I f  H is finite, then it is conjugate to a subgroup o f  one o f  the groups 
Ai; and i f  H is infinite, then H ~ 2 2 • C where C is a f n i t e  cyclic group 
whose order is not divisible by the primes in ~, and C acts on 2~ 
elementwise fixed-point-free. 

Proof  If  H is finite, then by Th. 2 in [6], H is a conjugate of  a 
subgroup of  some A t. Assume then that  H is infinite; say that  
H = K x T, where K is the kernel of  the Frobenius  group,  and 
T ( r  {1}, H) a complement .  By Th. 3.6 and Cor. 3.7 in [2], Tis  a finite 
group and K is a ni lpotent  profinite group. Hence K is the direct 
p roduc t  of  its p-Sylow subgroups,  K = l-[ Kp, where Kp is the p-Sylow 
subgroup of  K, a n d p  runs though  the set of  pr ime numbers .  Consider  
the cartesian subgroup L of  the free product  G, i.e., the kernel of  the 
h o m o m o r p h i s m  G ---, A~ x . . .  x A, that  sends At to A t identically for 
each i, then L is a normal  subgroup of  finite index of  G, and 
L c~ A t = {1}, for each i = 1 , . . . ,  n; therefore L is a free p r o - % g r o u p  
(cf. [3], Th. 5.5). Since the index of  L in G is finite and Kis  an infinite 
group,  it follows that  there is some prime number  q such that  Kq is 
infinite. By Prop. 2.1 in [8], either Kq = 2q or Kq ~ 2 2 x C2 (the 
dihedral  pro-2-group).  However,  the second alternative cannot  occur: 
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if Kq ,~ 22 x C2, then the kernel subgroup R ~ 2~ 2 of  K would be 
normalized by the elements of  T; and since Aut  (22) ~ C2 x ~-2 (cf. 
[18], p. 17), and 2WITI ,  one would have that T centralizes some 
non-trivial elements of  K, a contradiction. So Kq "~ 2q. Now, in the 
free product  G, no element of  finite order can have an infinite 
centralizer (as can be easily deduced from Th. 2 in [6]); and therefore 
if p ~ q, Kp must be torsion-free, if p # q; thus, by Prop. 2.1 in [8], 
Kp = { 1 } o r  Kp ~ •p for all prime numbers p. I.e., K ~ Z=, where z~ is 
the set of  prime numbers p for which Kp r { 1}. Finally, consider the 
homomorphism ~: T--* Aut(Kq) ~ Aut(2[q) ~ Cq_l x 2~q (note  that 
2 r  0, induced by conjugation. If  I # te  T a n d  9(t) = 1, then t would 
centralize the infinite group 2q, but this is not possible as we have 
pointed out above, since t is of  finite order, thus ~0 is an injection, and 
T is a subgroup of  Cq_ 1, and so cyclic. [] 

Next we extend the above result to a general free pro-qf-product 
G = I_I Ax of  pro-C-groups Ax, indexed by a topological space X in 

X 

the sense of [4], [13], [14] or [3]. It is not difficult to prove that G is a 
projective limit of  pro-~-groups G = lim Gi over a directed set I with 

e -  

canonical epimorphisms w;: G ~ G~ for i e / ,  and ~%: Gi -+ Gj for i ~> j, 
such that (1) each G~ is a free pro-Cg-product G~ = H G~k of a finite 
number  of  finite groups GjkEcg; (2) for every i e I  and every x e X ,  
~i(Ax) <~ Gik for some kE {1, . . . ,  n3; (3) if i >~ j ( in / ) ,  then ~;j maps 
every Gik into some Gjl. See [16] for an explicit proof. 

Lemma 3.2. Let G = H Ax be a free pro-Cg-product of  prof,-groups 
Ax in the sense of[4], [13], [3] or [14], and let H be a subgroup of  G. Then 
H is a conjugate o f  a subgroup of  one of  the free factors A~ of  G if  and 
only if the group H i = wg(H) is finite for each ie I, where ~o i is the map 
defined above. 

Proof. Since ~0i(Ax) is finite for each i, if H is conjugate to a 
subgroup of some Ax,~0i(/-/) will also be finite for each i eL  
Conversely, assume that for every ie  I, the group H,. is finite, then we 
may assume that each Hi r { 1 }, by taking a cofinal subset of I if 
necessary. Then H~ is conjugate to a subgroup of  a unique free factor 
Gik(O of G; (cf. Th. 2, [6]). Define Xi = {xe G;I H x ~< Gik(0}; then Xi is 
obviously non-empty, and we assert that it is a compact  set. For, let 
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1 ~ h E H, and let q: G i--* G i be the cont inuous  mapp ing  given by 
x ~ hX; then 

- l (GO { x ~ Gel h x e Gik <,~} Xi, 

where the last equality follows f rom Th. 2 in [6]; hence Xi is closed in 
Gi, and so compact .  Since Wij (X~) c Xj., we have a projective system 
(X~, ~0ij); and since each X~ is compact  and non-empty,  lim Xi is 

non-empty.  Let y ~ l i m X / .  Then Hy=l imHy ' (Y~l imG~k(o=A~,  

where Ax is one of  the free factors of  G, as desired. [] 

Corollary 3.3. Let G = I_I A~ be a free pro-OK-product of  
pro~Cg-groups A~ in the sense of[4], [13], [14] or [3]. Let H be a profinite 
Frobenius subgroup of  G. Then either H is conjugate to a subgroup of  
one of  the free factors Ax, or H is of  the form H ,~ ~ >~ C, where C is 
a finite cyclic group that acts on ~_~ elementwise fixed-point-free, and 
z~ is some set of  primes. 

Proof. Put  Hi = VJ~(H), for i sL  Assume first that  H; is finite for 
each i t  1; then by L e m m a  3.2, H is conjugate to a subgroup of  some 
Ax. Hence, suppose that  Hk is infinite for some k E I; then we may  
assume that  for all i e / ,  Hi is infinite, by choosing a cofinal subset of  
1 if necessary. Say H = K x T, where K is the kernel of  H as a 
Frobenius  group,  and T a complement .  Since T is finite, we may  
assume that  T ~  T~= w;(T), by taking a cofinal subset of  I if 
necessary. Similarly, we may  assume that  V,i(K)r {1}, for all i eL  
Then w i ( H ) =  Ki >~ T~ is a profinite Frobenius  group,  with kernel 
K i = ~pi (g)  (cf. [2], L e m m a  1.3). By Th. 3.1, K; ~ ~ , ,  and T 1 is cyclic. 
Thus  K = lira K~ ~ 2~, and T is cyclic, as desired. [] 

4. Lifting Frobenius Groups 

Lemma 4.1. Let S = Q >~ T be a finite Frobenius group with cyclic 
kernel Q =  <q) and cyclic complement T = ( t ) .  Say t - l q t =  q~ for 
some natural number ~, and let fl and y be the orders of  Q and T, 
respectively. Let V be a finite dimensional vector space over afield F 
( / fchar  F = p > 0, we assume in addition that p X fl). Let 9: S ~ G L  (V) 
be an irreducible representation of  S on V. We think of  the elements of  
GL(V )  as matrices with respect to a fixed basis of  V. Then 
12 Monatshefte ffir Mathematik, Bd. 108/2--3 
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(i) The eigenvalues of  ~ (q) in the algebraic closure P of  F, are 
primitive/3-th roots o f  unity. 

(ii) I f  ~ is an eigenvalue of  q(q), then ~, ~ ,  ~2 , . . . ,  ~ _ ,  are all 
distinct. 

(iii) There is an invertible matrix A over fi" such that A - lO  (q)A 
is a diagonal block matrix diag(B1, . . . ,By) ,  where Bj = 

diag (~-~/~,, ~'-' . . . .  ,~tI,,) , the r are eigenvalues of  q(q), and I~ 
represents an identity matrix o f  degree #. 

(iv) A - l q  ( t)A = M P, where P is block permutation matrix of  the 
form 

[ 0  0 . . .  0 I~ 

i I 0 . . . 0  0 

P = / 0  I . . .  0 0 , 

\ 0 0 . . . I  0 

M is a diagonal block matrix M = diag (M 1 . . . .  , Mr), and the square 
matrices I, Mj, Bj have the same size. 

(v) K e r ( I +  e(t) + ~(t) 2 + . . .  + ~(t) ~-1) = Im(~( t )  - / ) .  

Proof. (i) For  d]/3, define Vd = {V~ V[ (q(q)d_ 1)V = 0}. Then  Vd 
is an S-invariant  subspace of  V, for v~ V d implies 
(e (q)d _ / )  (q (q) v) = q (q) (p (q)d _ / )  v = 0, i.e., q (q) v6 Va; and also, 

(~ (q)a _ / )  ~ (t) v = e (t) (~ (q)~d _ / )  v = 

= O (t)[q(q)(~-~)a+ e (q) (~-2)a -t- �9 �9 �9 + q(q)a+ 1] (e (q)a_ I)v  = O, 

i.e., e( t )vE Va. Since q is irreducible, it follows that  Va = 0 or Vd = V. 
Finally, if in addi t ion d :~/3, we must  have V a = 0, since q is faithful, 
hence if d ~/3, O (q)a _ I is invertible. Now,  one has 

- 1 = I - [  
dlfl 

where ~d(X) is the d-th cyclotomic polynomial  over F, i.e., the 
p roduc t  I--[ ( X -  ~), where ~ runs th rough  the primitive d-th roots of  
1 in P (this is valid even if char  F = p ,  since p,~/3). Then  
0 = q ( q ) ~ - 1  = l-I~Pd(q(q)). Since as observed above, ~a(q(q)) is 
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invertible if d </~, we deduce that ~oe(o(q) ) = 0. I.e., the minimal 
polynomial of 0 (q) divides ~ (X), and thus the eigenvalues of ~ (q) are 
primitive/~-th roots of  unity as desired. 

(ii) Let ~ be an eigenvalue of  ~ (q). If/ '~' = ~', 0 ~< i,j < y, then 
0~ j - ~g is a multiple of  g. It follows that for every eigenvalue ~ of Q (q) 
one has ~ r  ~=J. Since ~ (q) is diagonalizable, we get ~ (q ) r  ~ (q)~'i 
i.e., qt,= q~,. But since T acts on Q fixed point free, we obtain i = j .  

(iii) Since o(q) and o(q=) are conjugate, they have the same 
eigenvalues, and clearly, if ~ is an eigenvalue, r and ,~ have the same 
multiplicity. Let ~1,---, ~t be representatives of the different orbits in 
the set of eigenvalues of ~ (q) under the action of T (the action is 
~t = g=). Let ~. be the multiplicity of ~. Put 

�9 . . ,  _ 9 1  �9 B~,= diag(~lI~,, ~lI,),  and B/== ~'-' 

Note that then B== diag (B1,. . . ,  By) and ~ (q) are conjugate. Finally, 
choose a matrix A such that A l (q)A = B. 

(iv) Set L==A-le(t)A. Then L-1BL= B~= diag(B2,B3,...,By,B O. 
Consider the block permutation matrix P as defined above�9 Then 
L - 1 B L  = P-1BP.  Put M==LP -~, so that B M =  MB. Since B is 
diagonal and the entries in B i and Bj (i ~ j) are different by part (ii), 
it follows that M = diag (M1, �9 �9 My) where Mi is a square matrix of 
the same size as B~ (i = 1 , . . . ,  y). 

(v) F rom the proof  of (iv) we have L = MP. By part (iv), 
statement (v) is equivalent to Ker  (I + L + L 2 + . . . .  + L y-l) = 
= Im (L - / ) .  Note first that 

L = 

0 0 . . .  0 M y \  

M 1 0 . . .  0 0 / 

0 M 2 . . .  0 O J ,  

o olii o- 
1 2 "  
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L 2 
tM 0 ... 0 MyMy_, 0 0 . . .  0 0 M1M 

MI 0 . . .  0 0 0 

\ "0" 0 . . .  Mr_, Mr_ 2 0 0 -i 

I = L y = diag (M r M r_ ~... M , , . . . ,  M r_ , My_ 2... My). It follows that 
M, M 2 . . . M  r = I , a n d  / 7 , , = I + L + L  2 + . . . + L  y - ' =  

I . . .  

m 1 I M 1 My... M 3 ..- M rMr t l  . 

My ,M;'2..M2 M3 iii 
It is immediate that the rank o f / ,  is/~ (,= degree of M~), and 

therefore d i m ( K e r / , ) =  (7 ' -  1)~. On the other hand, from the 
identity (L - / ) /2 ,  = L ~ - I = 0, we obtain Ker/7, ~ Im (L - / ) .  
Therefore to finish the proof it suffices to show that 
Rank (L - / ) / >  (7, - 1)/~, which is obvious. [] 

Theorem 4.2. Let G = F x C be a finite solvable group, which is the 
semidirect product o f  a cyclic subgroup C and a normal subgroup F. Let 
N be a subgroup o f F  which is normal in G and such that FIN is cyclic. 
Assume that the induced action o f  C on FIN is efpf  (elementwise f ixed 
point free; i.e., i f  x v ~1 is in C, and y is F with y N r  then 
(y N) x ~ y iV). Then F contains a cyclic subgroup D such that: 

(i) D is normalized by C, and C acts on D efpf, i.e., D C is a 
Frobenius group with Frobenius kernel D and complement C," 

(ii) z~ (D) = z~ (F/N); and 
(iii) D N =  F. 

Proof. The proof of the theorem is by contradiction. If the theorem 
is false, consider a group G as above for which the conclusion of the 
theorem fails, and such that I NI is minimal, and among those, [ G] 
is minimal; we refer to such a group G, as a "minimal 
counterexample". Note that then N r 1. We shall establish a series of 
claims that will lead to a final contradiction. 
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Claim 1. N is a minimal normal subgroup of G. For, let i ~ M < N, 
with M normal  in G. Then G/M, F/M, N/M, and C M/M ~ C satisfy 

the hypotheses of  the theorem. Therefore, since I N/M t < I N l, there 
exists D 1 ~< Fconta in ing  M, such that Dl/Mis cyclic, D1 is normalized 
by C, the action of  C on DI/M is efpf, :r(D~/M) = ~z(F/N) and 
D~ N = F. Since I M[ < J N I, we can again apply the theorem to C, D~ 
and M, to get a cyclic subgroup D of  D 1 such that C normalizes D, 
C acts efpf on D, n(O) = n(D~/M) = z~(F/N), and D M =  De and 
hence D N = D~ N = F. This means that G is not  a counterexample, 
contradicting our hypotheses. Thus N is minimal normal  in G, as 
claimed. 

Claim 2. N is an elementary abelian p~group, for some prime number 
p. This is a well-known fact for minimal normal  subgroups of  finite 
solvable groups. 

Claim 3. p divides the order of G/N. Suppose not. Then by 
Schur--Zassenhaus '  lemma (cf. [17], 9.3.6), there exist a Hall 
subgroup L 1 of G, with G = N x L~. Since G is solvable and ] C I 
divides ILl 1, there is some gEG with C<~ L~ g. Put L,=L~ g. Then 
G = N x L ,  and L ~  G/N is a Frobenius group with isolated 
subgroup C. Note  that the Frobenius kernel of  L is a normal 
subgroup D of  L isomorphic to FIN. We will prove now that D ~< F. 
Note F =  F n  G = F n ( N L )  = N(FnL) .  Since D and F n L  are 
Hall subgroups of  L of  the same order, they are conjugate, and hence 
D = F c ~ L  since F n L  is normal  in L. So D is a subgroup of  F 
satisfying the conclusions of  the theorem, and hence G is not  a 
counterexample. A contradiction. Thus p ~ ~ (G/N), as desired. 

Claim 4. The prime p divides [ C I. Suppose not. Then, by claim 3, 
p must  divide I F/NI. Let P be the unique p-Sylow subgroup of  F. 
Since P is characteristic in F, it is normal  in G. Denote by P* the 
Frattini subgroup of  P. We will consider two cases. 

Case 1. P* c~ N ~a 1. Since N is a minimal normal  subgroup of  M, 
P* n N = N, and so N ~< P*. Then. P/P* is a subquotient of  FIN, and 
therefore it is cylic. It follows that P is cyclic. By Schur---Zassenhaus' 
lemma there is a complement  Q of  P in F. The action of  Q on F by 
conjugation, induces an action on FIN that is trivial since F/N is 
cyclic. So the induced action on F/P*, and hence on P/P*, is also 
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trivial. Therefore Q acts trivially on P via conjugat ion (cf. [9], Satz 
3.18, p. 275). This means that  F = P x Q, and Q is characteristic in F. 
Consequently,  Q <1 G, Q is cyclic, and since C acts efpf  on F/N, the 
action of  C on Q is also efpf. Since C acts efpf on P/N, it mus t  act efpf 
on P/P* (cf. [17], 12.6.6), and thus on P (cf. [9], Satz 3.18, p. 275). 
Hence C acts efpf  on the cyclic group F, and therefore G is not  a 
counterexample.  A contradict ion.  

Case 2. P * n  N = 1. By Schur - -Zassenhaus '  1emma we may  
choose a complement  R of  P in G, and replacing it by a conjugate if 
necessary, we will assume that  C ~< R. The action of  R on P by 
conjugat ion  induces an action of  R on P/P*. Note  that  NP*/P* is an 
Fp R-submodule  of  the Fp R-module  P/P* (Fp is the field with p 
elements), and so by Maschke 's  theorem (cf. [9], Satz 17.7, p. 123), 
there is an R-invariant  subgroup U of  P such that  U ~> P* and U/P* 
is a complement  of  NP*/P* in P/P*. Since U/P* ,~ P/NP* and PIN 
is cyclic, then U/P* is cyclic. Say U = (u, P*), with u e  U, and uPe P*. 
Then  P = (u, P*, N). Observe that  U is a normal  subgroup of  G. We 
now have two possibilities, either (u, P*) c~ N v a 1 or (u, P*) n N = 1. 
The first alternative implies that  N ~< (u, P*), for N i s  minimal  normal  
in G; then P = (u, P*), and hence P is cyclic; but  since by assumpt ion  
N ~  1 and P*c~N= 1, we deduce P * =  1, so that  I P I - - P ;  this, 
however,  is not  possible since P > N ~ 1. Therefore,  we are left with 
the other alternative, (u, P*) n N = 1. It  then follows that  U = (u, P*) 
is cyclic, since PIN is cyclic, and also that  P = U x N. Observe that  
F= F n G  = F n P R  = P(FnR) .  Set Q , = F n R .  Then  Qis  normal  
in R. We then have that  C normalizes the cyclic group U Q ~ F/N, 
and C acts on it efpf, since U Q n N = 1. Moreover ,  U Q N = F. Thus  
G is not  a counterexample,  against our  assumption.  Therefore, p 
divides [C[ as asserted. 

Claim 5. The centralizer E,-= C G (N) of N in G is N. Since GIN is 
a Frobenius  group with Frobenius  kernel FIN and E <] G, one has 
that  either E/N < FIN or E/N >1 FIN (cf. [9], Satz 8.16, p. 506). Since 
N is a normal  Hall subgroup of  F, there exists a subgroup Q of  F with 
F = N ~ Q. Remark  that  Q ~ FINis cyclic. I fE/N >t F/N, i.e., E >~ F, 
then F = N x Q; consequently D := Q satisfies condit ions (i), (ii) and 
(iii) of  the theorem,  and hence G is not  a counterexample.  Thus  
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E < F. Note  that CG(N) = CF(N ) = N x  Co(N ). Then, to prove that 
E = N, it suffices to show that M , =  Co_ (N) = 1. Remark that M is 
normal  in G. Consider the group G..= G/M = (F/M) ~ (CM/M) .  If  
M # 1, then N'..= N M / M  < F== F/M. Moreover,  (~/N r ~ G / N M  is 
Frobenius with (cyclic) kernel F/N r ~ F / N M  (cf. [17], 12.6.6). Since 

I N l = r N[ and I (~ I < I G t, G is not  a counterexample to the theorem. 
Hence there exists a cyclic subgroup /3  ~< P on which (J..= C M / M  
operates efpf, D N = fi' and ~ (/3) = ~ (P/]~/). Let D be a preimage of  
/3 under the canonical map F ~ F/M. Clearly C normalizes D. Note 
that ~(D) = ~ ( F / N M )  w ~ ( M )  = ~(Q), so that D c ~ N =  1, and 
hence D is cyclic. Also C acts efpf on D, and D N = F. Thus G would 
not  be a counterexample. Therefore M = 1, as desired. 

Claim 6. G = N • S, where S is a Frobenius group with kernel 
isomorphic to F/N. By a result of  Baer, since N is a minimal normal  
subgroup of  a solvable group G, there exists a subgroup S of  G such 
that G = CG(N)S and S c a N =  1 (cf. [9], p. 688). By claim 5, 
CG(N)=  N, and so G =  N S .  Obviously S ~  G/N, which by 
assumption is a Frobenius group with kernel FIN. 

Claim 7. The representation via conjugation o f  S on the Fp-vector 
space N, is irreducible and faithful. The representation is irreducible 
since N is minimal normal  in G. And it is faithful since Cs (N) = 1, 
according to claim 5. 

After establishing these series of  claims, we are in a position to 
finalize the proof  of  the theorem. Set Q . . = F n  S. Then F =  N :~ Q, 
and Q is the kernel of  S as a Frobenius group. Say S = Q x T where 
T ~ C is cyclic. Note that N C and N T are Hall subgroups of  G of  the 
same order, and hence they are conjugate. Say N C = (N T)g, with 
g e G .  Substituting S by S g, we may assume that N C  = N T .  Let 
C = (x). Then x = tn, for some n E N  and t e  T. Clearly (t) = T. 
Denote  by 7 the order of  t. Then 

1 = x ~ = (tn) ~ = t~ntY-~n t~ 5 . . .n t  n = nt.~-1nt.~-2...ntn" 

Now, according to claim 7, the hypotheses of  Lemma 4.1 hold (N 
plays the role of  V.) Thus by part  (v) of  Lemma 4.1, there exists some 
m e N  such that  n = t - l m t m  -~. Then x = t n =  t t - ~ m t m - l =  
= m tm  -1. Therefore C = (x) = m -1 ( t )m = m -1 T m  normalizes the 
cyclic group D == m - 1 Q m ~< F which satisfies the conditions (i), (ii) 
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and (iii) of  the theorem. Thus G cannot be a counterexample, and the 
theorem is proved. [] 

Next we shall extend Theorem 4.2 to the case when F is an infinite 
prosolvable group. We need first some auxiliary results that may be 
well-known to specialists, but for which there is no easily accessible 
reference. 

Lemma 4.3. Let G be a profinite group, H an open subgroup of  G, 
and let { g~ l i e 1} be a collection of  open normal subgroups of  G. Assume 
that ~ U,. <~ H. Then, there exists a fn i te  subset J of  I such that 

i~ I  

Ovj< H 
j E J  

Proof. Otherwise, consider the closed subsets of  G, G - H and 
(~ Uk for all finite subsets K o f / .  Since we may assume that H -r G, 

k ~ K  

those sets have the finite intersection property, and therefore, since G 
is compact,  (G - / - / )  n ( ~  Uj) r 0, ([101, p. 136), a contradiction. [] 

j e J  

Lemma 4.4. Let G be a profinite group, and let {U~l i~1} be a 
collection of  open normal subgroups of  G such that for every fn i te  
subset J of  I, there exists some r ~ I with U, c ()  Uj. Let H = ~ U~, 

j e J  i~ I  

and let K be any closed subgroup of  G. Then (~ UiK= HK.  
i~ I  

Proof Since H K  is the intersection of all the open subgroups of  G 
containing HK([15], p. 11), it suffices to prove that 0 Ui K <~ V for 

i~ I  

every open subgroup V of G containing HK.  By Lemma 4.3 and our 
hypothesis, there is some rE I such that U, <~ V. It follows that 
(-] Ui K <~ V. [2 
iEI 

Proposition 4.5. Let G = F x C be a prosolvable group which is a 
semidirect product of  a finite cyclic group C and a normal prosolvable 
group F. Assume that there exists a normal subgroup N of  G such that 
FIN ~ ~_~for a certain set of  primes ~, and the induced action of C on 
FIN by conjugation is efpf. Then F contains a cyclic subgroup Z ~ ~_~ 
such that Z N = F, C normalizes Z, and the action of  C on Z by 
conjugation is efpf. 
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Proof. First we make two remarks. Note that it suffices to find a 
subgroup Z ~ 2~ of  F which is normalized by C and such that 
Z N = F. This is so since on such a group Z, the group C will act 
automatically efpf: Z / Z  n N = Z N / N  ~ FIN ~ 2~ ~ Z; therefore 
f rom the structure ofprocycl ic  groups ([15], p. 56) one has Z n N = I; 
hence if I ~ x e C, z E Z and x -  1 z x = z, one has z e N since C acts 
efpf on F/N  by hypothesis, and thus z = 1. Our second remark is that 
one may  assume that F, and hence G, is (topologically) finitely 
generated. For  l e t f e  F b e  such t h a t f N i s  a generator ofF~N; consider 
the group G..=<C, f X [ x ~ C )  and let F..= (fxl xE C) and _N..= F n N .  
Then N is normal  in (~, and R < F < G < G  with ( ~ = _ P x C ,  
F/fir ~ 2 .  and the action of  C on F/N is efpf. If  there exists some 
2 < _ P  normalized by C, 2 ~  2~. and 2 N =  F, then 2 N =  F. 
Therefore from now on we will assume that G is topologically finitely 
generated. 

Next we prove the following assertion. Let M be an open normal 
subgroup of  G contained in F; then there exists a procyclic subgroup 
Z M of  F, such that M Z  M is normalized by C, M Z M N  = F and 
z~ (ZM) = ~ (F /M N). To prove this claim, consider the exact sequence 

1 -+ M N / M  ~ F / M - ~  F / M N  ~ 1. 

Then C M / M  ~ C acts by conjugation efpf on the finite cyclic group 
(F /M) / (NM/M)  ~ F / N M  (cf. [2], Th. 3.6 and Cot. 1.4). Hence, by 
Theorem 4.2, there exists a subgroup R of  F containing M such that 
R I M  is C-invariant and procyclic, R N =  F, and ~ ( R / M ) =  
= z~(F/MN). Let r M g e n e r a t e  R / M a n d  such that ~(<r)) = ~(R/M),  
and put ZM..= <r). It is plain that Z M satisfies the conditions required 
in the assertion. 

Now consider a sequence of  open normal subgroups 
F > M  1 > M 2 > . . .  o f  G such that 0 i M i = l .  By the above 

assertion, for each i there exists some procyclic subgroup Z i of  F such 
that Z/M~ is C-invariant, ~ (Z,.) = ~ (F/NM~), and Zi M~ N = F. Let z~ 
be a generator of  Z i. Since G is a compact  metric space, taking a 
subsequence of  (zi) if necessary, we may  assume that lira z~ = z, for 
some element z e F. Set Z..= (z>. Then for each k E N, there is some 
/ ( k ) e N  with z t ~ z M  k if  l>~l(k), and so z l M I < ~ Z M  k if 
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l>1 max{k , l (k )} .  Hence F =  ZtMtN<~ ZMkN<~ F, and thus 
Z M k F = F, u k E N. Therefore F = 0 Z Mk N = Z N, by L e m m a  4.4. 

k 
To  see that  Z is C-invariant,  note  that  x -  1 z~ x e Zt Mz ~< Z Mk if 

x e C ,  l>~ max{k, l (k)};  therefore x - l z x  = l i m x - l z l x e Z M k ,  for 
every k e N ;  hence x -1 z x e  0 Z M k  = Z, by L e m m a  4.4. 

k 
Let Z~ be the ~z-Hall subgroup of  Z. Clearly Z~ is also C-invariant, 

and Z ,  N = F. Hence we will assume f rom now on that  Z = Z~. To 
see that  Z ~ 2~, it remains to prove only that  Z is torsion-free. Now,  
since Z / Z  c~ N ~ Z N / N  = FIN ~ 2, ,  we have Z ~ 2~ | t (Z) where 
t (Z) is the tors ion par t  of  Z. Since ~ (t (Z)) c ~ and Z is cyclic, one 
mus t  have that  t (Z) is trivial, i.e., Z is torsion-free. [] 

5. Frobenius Subgroups of Free Prosolvable Products 

In this section we show that  every Frobenius  pro finite group with 
cyclic kernel and cyclic complement  can be realized as a subgroup of  
a free prosolvable p roduc t  of  finite solvable groups. 

Lemma 5.1. Let A and B be non-trivial pro-Cg-groups with 

I A [ + I B[ >1 5, and let G = ALI B be their free pro~%product. Then 
for every natural number n, there exists an open subgroup H of  G 
containing A such that d(H) >1 n. 

Proof. Let U and V be open normal  subgroups of  A and B 
respectively. Consider  the canonical  ep imorphism ~0: G = 
= A L I B  ---, T = A/U[I  B/V, if H i s  an open subgroup of  Tconta in ing  
A/U, then ~v -I (H) is open  in G and contains A. Thus  to prove the 
lemma,  we may  assume that  A and B are finite. 

Let K be the cartesian subgroup of  G, i.e., the kernel of  the 
h o m o m o r p h i s m  G ~ A x B  that  sends A to A, and B to B, 
respectively. Since K is an open normal  subgroup of  G and 
K n A  = Kc~B-= {1}, K is free p ro -C  by the Kurosh  subgroup 
theorem; moreover  the rank  of  K is (1A I - 1) ([ B I - 1) >~ 2 (cf. [1]): 
in fact Kis  free p ro-C on the basis {[a, b] I 1 r a e A ,  1 ~ be B} as can 
be easily deduced f rom the analogous result for free products  of  
abstract  groups (cf., e.g., [11], p. 196). Let K' denote  the derived group 
of  the cartesian subgroup K of  G. Since K' has infinite index in K, it 
follows that  K' is not  finitely generated, i.e., d ( K ' ) =  oe (cf. [12], 
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Th. 3.5). Therefore d(K'A) = oe, since K' has finite index in K'A. 
Hence there is an open normal  subgroup U of  G with 

d(ICA U/U) >t n, and so d(ICA U) >~ n. Thus set H.-= K'A U. [] 

Lemma 5,2. Let A, B be finite groups in cg and let G = A H B be their 
free pro-Cd-product. Then G contains a subgroup of  the form 
H = A H 24, with 24 = 1--[ 2p, where p ranges over the primes that 

divide the order of  some group in cg. 

Proof. Let hi2 > O..= max {d(U) I U ~< A or U ~< B}. By Lemma 
4.1, there exists some open subgroup L~< G with LI> A and 
d(L) >~ n. By the Kurosh subgroup theorem (which is valid for L) one 
has (cf. [1]) 

L =  (H AS c~ L) II (H B' n L) H F, 

where F is a certain free p ro -~  group, and s and t range through sets 
of  representatives of  the double cosets of  A and L in G, and of  B and 
L in G. We may assume that the representative of  the double coset 
A L is 1, and hence A = A n L is one of  the free factors of  L in the 
above decomposition. If  F va 1, we are done, since F is a free 
pro-Cg-product of  copies of  24, and so A [I 2~ is naturally contained 
in G. Hence assume that F = I. Next note that 

d(L) <~ ~ d(A ~ n L) + ~ d(Bt n L) <<_ (III + i dl) d, 
s t 

where I (respectively d) denote the set of  those indexes i (respectively 
j) with A s n L # 1 (respectively B t n L # 1). Since n was chosen so 
that n > 2 b, one has ]II + J J r > 2. Therefore G contains a subgroup 
of  the form R = A iLl A1 H A2, where A 1 and A2 are non-trivial finite 
groups. Let K be the cartesian subgroup of  R, and consider the open 
subgroup M , =  A K of  R. Again by Kurosh,  

M = (H A~ n ~ I_I (H A~l n M) H (H A~ c~ M) H ~, (*) 
o~ ,6 7 

with ~b a free pro-C~-group whose rank is (cf. [1]) 

d(qO = I - I R/MI + (I R/MI - I A \ R / M I )  + (I R/MI - 

- I A I \ R / M O  + (I R / M I  - I A 2 \ R / M I ) ,  

where A \ R / M  denotes the set of  double cosets of  G with respect to 
the subgroups A, M; etc. Since M is normal  in R and M 1> A, one 
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deduces that [ A \  R/MI = [R/M[, I A I \  R/MI = [A21, [ A 2 \  R / M  I = 
= l A l ] ,  and therefore d ( ~ b ) = I + L A l l l A 2 I - I A 2 1 - I A ~ I =  
= (I Aj] - 1) (1A21 - 1) ~> 1. Since A ~< M, we may  assume that  A is 
one of  the free factors of  M in the expression (*). It then follows that  
A I I  2e  is naturally embedded  in M, and thus in G. [] 

Next  we p roo f  a generalization of  a result of  D. HAgAN and 
A. LUBOTZKY ([5], Proposi t ion 4). 

Lemma 5.3. Let cg be a full  class o f  finite groups, A and B 
pro-Cg-groups, and A' and B" elosed subgroups o f  A and B respectively. 
Then the free pro-Cg-produet G' = A' [I B" is canonically embedded in 
G =  AI_IB. 

Proof  Since G = lira ((A/U) II (B/V)), with U and V ranging 

th rough  the open  normal  subgroups  of  A and B respectively, we may  
assume that  A and B are finite (in cg). Consider  the commuta t ive  
d iagram 

1 ~ K ~ G = A L I B  

sT 

1 ~ K' --* G ' = A ' I j B '  

9 

A x B  ~ 1 

~ A ' x B ' ~  I 
u 

with exact rows (~ sends A, B identically to A, B respectively, and 
similarly for ~'). Recall that  K (the cartesian subgroup of  G = A H B) 
is freely generated by the elements of  the fo rm [a, b] for a # 1 r b, and 
similarly for K'. The m a p  fl is induced by the inclusions A' ~ A and 
B ' ~ B ,  and ~ and 7 are given by ~ ( [a ' , b ' ] )=  [a',b'] and 
7 (a', b') = (a', b'). Clearly ~ and 7 are monomorph i sms .  Thus  fl is also 
a monomorph i sm .  [] 

Corollary 5.4. I f  G, A, B, A', B' are as above, the closed subgroup H 
o f  G generated by A" and B' is A' I1 B'; moreover H ~ A -~ A', and 
H c ~ B =  B'. 

Proof  The first assertion follows immediately f rom the above 
lemma. For  the second assertion, note  first that  by a s tandard  limit 
argument ,  the d iagram in the p roo f  of  L e m m a  5.3 is still valid even 
if the groups A and B are not  finite. N o w  if x 6 H c ~ A ,  then 
~ ( x ) E ~ ( H )  c~A = A', i.e., x e A ,  since q)is the identity on A. [] 
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Theorem 5.5. Let  A, B be finite solvable groups. Assume that C & 
a cyclic subgroup o f  A, a # 0 is a set o f  primes such that ~r n Jz (C) = O, 
p ~ ~ (C) and i f  q ~ a then p I (q - 1). Consider the prosolvable product 
G = A IJ~ B o f  the groups A and B, and let K be its cartesian subgroiip. 
Then K contains a procyclic subgroup Z such that ~r = n (Z) and Z is 
normalized by C. Moreover, the action o f  C on Z by conjugation is 
elementwise fixed-point-free (efpjO, i.e., H = Z C = Z x C is a profinite 
Frobenius group with kernel Z and complement C. 

Proof. It suffices to prove the first statement,  for if the elements 
1 # x ~ C and 1 # y ~ Z commute ,  then every element of  the infinite 
subgroup (y) of  Z generated by y also commutes  with x; however the 
centralizer in G of  a non-trivial  element of  A mus t  be contained in A 
(cf. [6], Th. 2), and hence mus t  be finite. 

By L e m m a  5.2, G contains a subgroup A Ij~L, where L m )~. 
Hence by L e m m a  5.3, G contains a subgroup H = L I_ls C. Recall that  
for a prime number  q # 2, Au t  (~q) ~ Cq_ I x ~_q (cf., [18], p. 17); so if 
q e  a and p e x (C), there are non-trivial actions Cq ---, Aut  (2p), and in 
fact any two of  them define i somorphic  semidirect products  2~ e >~ Cq, 
moreover  since the action of  Cq on 2p is efpf, 2p x Cq is a profinite 
Frobenius  group (cf. [2], Th. 3.6), it follows that  there is a (unique) 
profinite Frobenius  g r o u p / '  = L >~ C with kernel L and complement  
C. Let q~: H--* F be the h o m o m o r p h i s m  that  sends L to L identically, 
and C to C identically, and let N , =  Ker (9). Denote  by F t h e  normal  
subgroup of  H generated by L. Then N < F, and the action of  C on 
F / N , ~  2~ induced by conjugat ion within H, is efpf. Therefore by 
Proposi t ion 4.5, there exists a subgroup Z1 of  Fnormal i zed  by C, such 
that  Z~ ~ 2~. Pu t  Z : =  Z 1 ('~ K. Then Z is still normalized by C, and 
Z ~ ~ ,  since Z has finite index in Z1. [] 
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