Mh. Math. 108, 165—182 (1989) v f
Mot 108,165 Mathematik

© by Springer-Verlag 1989

Frobenius Subgroups of Free Products
of Prosolvable Groups

By
Wolfgang N. Herfort, Wien, and Luis Ribes, Ottawa
(Received 22 September 1988, in revised form 17 April 1989)

Abstract. In this paper we establish the existence of profinite Frobenius sub-
groups in a free prosolvable product 4 [ B of two finite groups 4 and B. In this way
the classification of solvable subgroups of free profinite groups is completed.

1. Introduction

Let € be a class of finite groups closed under the operations of
taking subgroups, quotients and extensions (e.g., the class of all finite
groups). Let A4 and B be finite groups in €, and let G = 4 1] B be their
free pro-%-product, i.e., G is the coproduct of 4 and Bin the category
of pro-é-groups. In [8] a description of the possible structure of a
solvable subgroup H of G is given; if H is infinite, it must be of one
of the following types: (i) H ~ Z, x Z,, where zand o are sets of prime
numbers, Z, ~ [] Zp, and Zp is the additive group of p-adic integers;

pEﬂ

(i) H~ Z, x C,, where 2ex, C, is the group of order 2, and it acts
on Z, by inversion, ie., H is the dihedral pro-z-group; (iii)
H=~ 7,xC, where C is a finite cyclic group whose order is not
divisible by the primes in =, and the action of C on Z,, is elementwise
fixed-point-free, i.e., H is a profinite Frobenius group with cyclic
kernel and cyclic complement. In addition, it is proved in [8] that the
groups of types (i) and (ii) actually arise as subgroups of free
pro-C-products.

Our first result is a description of the profinite Frobenius
subgroups of a free product (Theorem 3.1 and Corollary 3.3). For the
group G above the only infinite profinite Frobenius groups are
solvable of the form Z_ x C, as in (iii) above.

The main purpose of this paper is to show that the groups of type
(111) described above, do also arise as subgroups of free products of
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finite groups (Theorem 5.5), in fact we prove that if H ~ 7, x Cis as
in (ii1), then H is contained in any free prosolvable product G = A1 B
where A and B are finite solvable groups, C is a subgroup of 4 and
B is non-trivial. It turns out that this is equivalent to showing that
every element ¢ of 4 normalizes an infinite procyclic subgroup of G.
In contrast to this result, note that if I' = 4 * B is the free product of
A and B as abstract groups, and 1 # ce 4 is an element of order
different from 2, then ¢ cannot normalize an infinite cyclic subgroup
of I': otherwise, ¢ would centralize an infinite cyclic subgroup of I,
and this is not possible in a free product.

The basic result of the paper is actually about finite solvable
groups (Theorem 4.2): If C is a cyclic group of automorphisms of a
finite solvable group F, N is a C-invariant normal subgroup of F'such
that F/N is cyclic, and the induced action of C on F/N is without
non-trivial fixed points, then there exists a C-invariant cyclic
subgroup Z of F with ZN = F, and C acts on Z without non-trivial
fixed points.

2. Notation

Generally, we use the notation of [19] and {15]. By ¥ we mean a
full class of finite groups, i.e., a non-empty class of finite groups such
that (i) if Ge ¥, and H is a subgroup of G then He %, (ii) if Ge ¥ and
H is a homomorphic image of G then He%, (i) 1if
1- K- G- H—1is an exact sequence of groups and K, He %,
then Ge¥%. In this paper we are mainly interested in the case when 4
is the class of all finite solvable groups. A pro-¢-group is a projective
limit of groups in %. All homomorphisms of pro-$-groups are
assumed to be continuous; all subgroups of a pro-#-group are
assumed to be closed. If G is a group, H < G will indicate that H is
a subgroup of G; and H < G, that H is a proper subgroup of G. By
G = K x H we mean that the group G is a semidirect product of the
normal subgroup K and the subgroup H. If G is a pro-%-group, 7(G)
denotes the set of prime numbers dividing the order of G, i.e., the set
of prime numbers dividing the orders of all finite quotients of G; and
d(G) denotes the smallest cardinality of a set of generators of G
converging to 1 (cf. [15], p. 60). For a prime number p, ZP denotes the
additive group of p-adic integers. If x is a set of primes, then we put
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7, = [Lm > if 7 is the set of all prime numbers, we set 7= Z,E.
Finally, a cyclic group of order » is denoted by C,.

3. Frobenius Subgroups of Free Products

Recall that a profinite Frobenius group H is a profinite group of
the form H = K x T, where T (a proper non-trivial subgroup of H)
acts on K eclementwise fixed-point-free (i.e., for 1# teT and
1 # ke K, one has [t, k] # 1), and the sets of primes = (K) and = (T) are
disjoint (cf. [2]); K is the so called kernel of the Frobenius group, and
T a complement. In this section we describe which profinite
Frobenius groups could arise as subgroups of a free product of
profinite groups. We show that such groups, if not contained in a
conjugate of a free factor, must be solvable of the form 7. x C, where
7. is the kernel and C is finite cyclic. As we will see in Th. 5.5, such
groups Z,, x C, can always be embedded in a free prosolvable product
of appropriate finite solvable groups.

Theorem 3.1. Let A,,. .., A, be finite groupsin 6, G = A,11...114,
their free pro-€-product, and let H be a profinite Frobenius subgroup
of G. If H is finite, then it is conjugate to a subgroup of one of the groups
Aj; and if H is infinite, then H ~ 7. x C where C is a finite cyclic group
whose order is not divisible by the primes in =, and C acts on Z,
elementwise fixed-point-free.

Proof. If H is finite, then by Th.2 in [6], H is a conjugate of a
subgroup of some A4,. Assume then that H is infinite; say that
H= K xT, where K is the kernel of the Frobenius group, and
T(# {1}, H) a complement. By Th. 3.6 and Cor. 3.7 in [2], Tis a finite
group and K is a nilpotent profinite group. Hence K is the direct
product of its p-Sylow subgroups, K = ] K,,, where K, is the p-Sylow
subgroup of K, and p runs though the set of prime numbers. Consider
the cartesian subgroup L of the free product G, i.e., the kernel of the
homomorphism G — 4, x ... x A, that sends 4, to 4, identically for
each i, then L is a normal subgroup of finite index of G, and
LA = {1}, foreach i = 1,...,n therefore L is a frec pro-4-group
(cf. [3], Th. 5.5). Since the index of L in G is finite and K is an infinite
group, it follows that there is some prime number ¢ such that K, is
infinite. By Prop.2.1 in [8], either K, = Z or K, ~ 7, % C, (the
dihedral pro-2-group). However, the second alternatwe cannot occur:
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if K, ~ Z, x C,, then the kernel subgroup R~ ZZA of K wogld be
normalized by the elements of T, and since Aut(Z,)) ~ C,x Z, (cf.
[18], p.17), and 24| T}, one would have that T centralizes some
non-trivial elements of K, a contradiction. So K, ~ Zq. Now, in the
free product G, no element of finite order can have an infinite
centralizer (as can be easily deduced from Th. 2 in [6]); and therefore
if p # g, K, must be torsion-free, if p # ¢; thus, by Prop.2.1 in [8],
K,= {1} or K, ~ Z, for all prime numbers p. L.e., K~ Z,, where n is
the set of prime numbers p for which X, #{1}. Finallx, consider the
homomorphism ¢: T— Aut(K)) ~ Aut(£) =~ C,_,;x Z, (note that
2¢n), induced by conjugation. If 1 # t€ T'and ¢ (¢) = 1, then ¢ would
centralize the infinite group Zq, but this is not possible as we have
pointed out above, since ¢ is of finite order, thus ¢ is an injection, and
T is a subgroup of C,_;, and so cyclic. [

Next we extend the above result to a general free pro-¢-product
G= ]7(1 A, of pro-C-groups 4,, indexed by a topological space X in

the sense of [4], [13], [14] or [3]. It is not difficult to prove that G is a
projective limit of pro-é-groups G = lim G, over a directed set I with

canonical epimorphisms y;: G — G, for i€ I, and v;;: G;— G, for i > j,
such that (1) each G, is a free pro-é-product G; = [] G, of a finite
number of finite groups G;, €€, (2) for every iel and every x€ X,
y;(4,) < Gy, for some ke{l,...,n}; (3) if i = j (in 1), then y;; maps
every G, into some G;;. See [16] for an explicit proof.

Lemma 3.2. Let G = || A, be a free pro-€-product of pro-6-groups
A, in the sense of [4], [13], [3] or [14], and let H be a subgroup of G. Then
H is a conjugate of a subgroup of one of the free factors A, of G if and
only if the group H, = v;(H) is finite for each i€ I, where v, is the map
defined above.

Proof. Since v,;(A4,) is finite for each i, if H is conjugate to a
subgroup of some A,,y;(H) will also be finite for each iel
Conversely, assume that for every i€ I, the group H, is finite, then we
may assume that each H, s {1}, by taking a cofinal subset of I if
necessary. Then H, is conjugate to a subgroup of a unique free factor
Gixp Of G; (cf. Th.2, [6]). Define X; = {x€ G;| H < G;y}; then X;is
obviously non-empty, and we assert that it is a compact set. For, let



Frobenius Subgroups of Free Product of Prosolvable Groups 169

1# he H, and let o: G,— G; be the continuous mapping given by
x— *; then

0" (G) = {x€ G| "€ Gy} = X,

where the last equality follows from Th. 2 in [6]; hence X; is closed in
G,, and so compact. Since y;;(X}) = X;, we have a projective system
(X;,v;); and since each X, is compact and non-empty, lim X; is

non-empty. Let yelimX,. Then H,=limH'Y <limG,,= 4,
where A, is one of the free factors of G, as desired. [J

Corollary 3.3. Let G=1]]A, be a free pro-€-product of
pro-6-groups A, in the sense of [4], [13], [14] or [3]. Let H be a profinite
Frobenius subgroup of G. Then either H is conjugate to a subgroup of
one of the free factors A, or H is of the form H ~ Z, % C, where C is
a finite cyclic group that acts on Z, elementwise fixed-point-free, and
7 is some set of primes.

Proof. Put H; = y;(H), for ie I. Assume first that H, is finite for
each ie I, then by Lemma 3.2, H is conjugate to a subgroup of some
A,. Hence, suppose that H, is infinite for some k€ I; then we may
assume that for all ie I, H, is infinite, by choosing a cofinal subset of
I if necessary. Say H = K x T, where K is the kernel of H as a
Frobenius group, and T a complement. Since 7 is finite, we may
assume that T = T, = y,(T), by taking a cofinal subset of I if
necessary. Similarly, we may assume that y,;(K) # {1}, for all ie L
Then y;(H) = K, x T; is a profinite Frobenius group, with kernel
K, = y;(K) (cf. [2], Lemma 1.3). By Th.3.1, K; ~ ZH, and 7, is cyclic.
Thus K = lim K, ~ Z,, and T is cyclic, as desired. (I

4. Lifting Frobenius Groups

Lemma 4.1. Let S = Q x T be a finite Frobenius group with cyclic
kernel Q = (q) and cyclic complement T = (f). Say t~'qt = q* for
some natural number o, and let § and y be the orders of Q and T,
respectively. Let V be a finite dimensional vector space over a field F
(ifchar F = p > 0, we assume in addition that p 4 ). Let 9: S — GL (V)
be an irreducible representation of S on V. We think of the elements of
GL (V) as matrices with respect to a fixed basis of V. Then

12 Monatshefte fir Mathematik, Bd. 108/2—3
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(1) The eigenvalues of o0(q) in the algebraic closure F of F, are
primitive p-th roots of unity.

() If ¢ is an eigenvalue of o(q), then &,2% ", ...t are all
distinct.

(iii) There is an invertible matrix A over F such that A= o (q) A
is a diagonal block matrix diag(B,,...,B), where B;=
= diag (¢, IHl,...,C,IH,)“;'_1, the (/s are eigenvalues of ¢(q), and I,
represents an identity matrix of degree p.

(iv) A 'o(f) A = M P, where P is block permutation matrix of the
form

0 .01

1 .0 0
P=1 0 .0 01,

0-0 ... 1 0

M is a diagonal block matrix M = diag(M, ..., M ), and the square
matrices I, M;, B; have the same size.

(V) Ker(Z+oe(®) +0(®)*+ ... + () H=Im(e() = D).
Proof. (i) For d| 8, define ¥V, = {ve V| (o(g9)? — 1) v = 0}. Then V,

is an S-invariant subspace of V, for wveV,; implies
@'~ De@v)=e@P@@’~Dv=0,ic, ¢(g)ve ¥, and also,

@' —De(v=0(®(e(@* - Dv=
=oW@* " +e@“ P+ ... +e(@'+ N(e(9)? - Dv =0,
i.e., o (H)ve V,. Since g is irreducible, it follows that V;=0or V,= V.
Finally, if in addition d # 8, we must have V, = 0, since ¢ is faithful,
hence if d # 8, o(g)? — I is invertible. Now, one has

Xﬂ - 1 = l—[ qu(X')a

dip
where y,(X) is the d-th cyclotomic polynomial over F, i.e., the
product n (X — &), where ¢ runs through the primitive d-th roots of
1 in F (this is valid even if charF=p, since ptp). Then

0=0(g9)’ —1=]]wvile(g)- Since as observed above, y,(e(g)) is
djf
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invertible if d < g, we deduce that y,(¢(g)) = 0. Le., the minimal
polynomial of ¢ (¢) divides v, (X), and thus the eigenvalues of ¢ (¢) are
primitive g-th roots of unity as desired.

(i) Let £ be an eigenvalue of ¢(g). If ¢ Y=, 0< j <, then
« — «'is a multiple of g. It follows that for every eigenvalue £ of ¢ (q)
one has & = &, Since o(q) is diagonalizable, we get o(9)* = 0(¢9)%;
i.e., ¢" = ¢”. But since T acts on Q fixed point free, we obtain i = j.

(i) Since o(g) and ¢(g*) are conjugate, they have the same
eigenvalues, and clearly, if ¢ is an eigenvalue, { and {* have the same
multiplicity. Let ¢, ..., {, be representatives of the different orbits in
the set of eigenvalues of ¢(g) under the action of T (the action is
¢t = ¢%). Let p; be the multiplicity of ¢;. Put

B :=diag (¢, 1, ..., ;,1,), and B:= B .

Note that then B:=diag(B,,..., B,) and ¢(g) are conjugate. Finally,
choose a matrix 4 such that 4 'o(q) 4 = B.

(iv) Set Li=A""9(1)4. Then L~'BL= B*=diag(B,,B;,....B,, B)).
Consider the block permutation matrix P as defined above. Then
L 'BL=P 'BP.Put M:=LP~!, so that BM = MB. Since B is
diagonal and the entries in B; and B, (i # j) are different by part (ii),
it follows that M = diag(M,, ..., M) where M, is a square matrix of
the same size as B, (i=1,...,y).

(v) From the proof of (iv) we have L = M P. By part (iv),
statement (v) is equivalent to Ker(I+ L+ L*+ ...+ L") =
= Im (L — I). Note first that

0 0 ... 0 M
M, 0 ... 0 0

L= O Mz. 0 0 s
0 0 ... M 0
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0 0.. 0 MM, 0
0 0 0 0 MM,
L2= M2M1 0 “os 0 0 0 5
0 0 .. M_M_, 0 0 -

I= L')’ = diag(MyMy__l “an Ml!' .oy MV—IM}/——-Z' “. My) It fOllOWS that
MM, .M,=ILand Li=T+ L+ L*+...+ L "'=

I MM,_ ..M, MM_,..M .. M,
M, : I MM,.. M, .. MM,
M,_ M, ..M M, M, _,. . .M, M_M_,. M .. I

It is immediate that the rank of L is u (= degree of M,), and
therefore dim(KerZ) = (y — 1)u. On the other hand, from the
identity (L—-NL=L"—-1=0, we obtain KerL=2Im(L 1.
Therefore to finish the proof it suffices to show that
Rank (L — I) = (y — 1) 4, which is obvious. [l

Theorem 4.2. Let G = F x C be a finite solvable group, which is the
semidirect product of a cyclic subgroup C and a normal subgroup F. Let
N be a subgroup of F which is normal in G and such that F|N is cyclic.
Assume that the induced action of C on F|N is efpf (elementwise fixed
point free; ie., if x# 1 is in C, and y is F with yN # N, then
(y N)* # y N). Then F contains a cyclic subgroup D such that:

(1) D is normalized by C, and C acts on D efpf, ie., DC is a
Frobenius group with Frobenius kernel D and complement C;

(ii) =(D) = =n(F/N); and

(i) DN=F.

Proof. The proof of the theorem is by contradiction. If the theorem
is false, consider a group G as above for which the conclusion of the
theorem fails, and such that | N| is minimal, and among those, | G|
is minimal; we refer to such a group G, as a “minimal
counterexample”. Note that then N # 1. We shall establish a series of
claims that will lead to a final contradiction.
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Claim 1. N is a minimal normal subgroup of G. For,let 1 # M < N,
with M normal in G. Then G/M, F/M, N/M, and C M/ M =~ C satisfy
the hypotheses of the theorem. Therefore, since | N/M | < | N|, there
exists D, < Fcontaining M, such that D,/ M is cyclic, D, is normalized
by C, the action of C on D,/M is efpf, n(D,/M) = n(F/N) and
D, N = F.Since | M| < | N|, we can again apply the theorem to C, D,
and M, to get a cyclic subgroup D of D, such that C normalizes D,
C acts efpf on D, n(D) = n(D,/M) = an(F|/N), and DM = D and
hence D N = D, N = F. This means that G is not a counterexample,
contradicting our hypotheses. Thus N is minimal normal in G, as
claimed.

Claim 2. N is an elementary abelian p-group, for some prime number
p. This is a well-known fact for minimal normal subgroups of finite
solvable groups.

Claim 3. p divides the order of G/N. Suppose not. Then by
Schur—Zassenhaus’ lemma (cf. [17], 9.3.6), there exist a Hall
subgroup L, of G, with G = N xL,. Since G is solvable and | C|
divides | L, |, there is some ge G with C < L% Put L:= L% Then
G=NxL, and L~ G/N is a Frobenius group with isolated
subgroup C. Note that the Frobenius kernel of L is a normal
subgroup D of L isomorphic to F/N. We will prove now that D < F.
Note F=FnG=Fn(NL)= N(FnL). Since D and FnL are
Hall subgroups of L of the same order, they are conjugate, and hence
D=FnL since FnL is normal in L. So D is a subgroup of F
satisfying the conclusions of the theorem, and hence G is not a
counterexample. A contradiction. Thus pen (G/N), as desired.

Claim 4. The prime p divides | C|. Suppose not. Then, by claim 3,
p must divide | F/N|. Let P be the unique p-Sylow subgroup of F.
Since P is characteristic in F, it is normal in G. Denote by P* the
Frattini subgroup of P. We will consider two cases.

Case 1. P* N # 1. Since N is a minimal normal subgroup of M,
P*N N = N, and so N < P* Then P/P* is a subquotient of F/N, and
therefore it is cylic. It follows that P is cyclic. By Schur—Zassenhaus’
lemma there is a complement Q of P in F. The action of Q on F by
conjugation, induces an action on F/N that is trivial since F/N is
cyclic. So the induced action on F/P*, and hence on P/P*, is also
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trivial. Therefore Q acts trivially on P via conjugation (cf. [9], Satz
3.18, p. 275). This means that F = P x Q, and Q is characteristic in F.
Consequently, Q < G, @ is cyclic, and since C acts efpf on F/N, the
action of C on Q is also efpf. Since C acts efpf on P/N, it must act efpf
on P/P* (cf. [17], 12.6.6), and thus on P (cf. [9], Satz 3.18, p.275).
Hence C acts efpf on the cyclic group F, and therefore G is not a
counterexample. A contradiction.

Case 2. P*nN=1. By Schur—Zassenhaus’ lemma we may
choose a complement R of P in G, and replacing it by a conjugate if
necessary, we will assume that C < R. The action of R on P by
conjugation induces an action of R on P/P*. Note that N P*/P* is an
F, R-submodule of the F,R-module P/P* (F, is the field with p
elements), and so by Maschke’s theorem (cf. [9], Satz 17.7, p. 123),
there is an R-invariant subgroup U of P such that U > P* and U/P*
is a complement of N P*/P* in P/P*. Since U/P* ~ P/N P* and P/N
is cyclic, then U/P* is cyclic. Say U = (u, P*), with ue U, and v’ € P*.
Then P = (u, P*, N). Observe that U is a normal subgroup of G. We
now have two possibilities, either (u, P*) " N # 1 or {u, P*) " N = 1.
The first alternative implies that N < (u, P*), for N is minimal normal
in G; then P = (u, P*), and hence P is cyclic; but since by assumption
N#1 and P*n N =1, we deduce P* =1, so that | P| = p; this,
however, is not possible since P > N # 1. Therefore, we are left with
the other alternative, (u, P*) " N = 1. It then follows that U = (u, P*)
is cyclic, since P/N is cyclic, and also that P = Ux N. Observe that
F=FnG=FnPR=P(FnR).Set Q:=Fn R Then Qis normal
in R. We then have that C normalizes the cyclic group UQ =~ F/N,
and C acts on it efpf, since UQ N N = 1. Moreover, UQ N = F. Thus
G is not a counterexample, against our assumption. Therefore, p
divides | C| as asserted.

Claim 5. The centralizer E:= C;(N) of N in G is N. Since G/N 1s
a Frobenius group with Frobenius kernel F/N and E < G, one has
that either E/N < F/N or E/N > F/N (cf. [9], Satz 8.16, p. 506). Since
N is.a normal Hall subgroup of F, there exists a subgroup Q of Fwith
F = N x Q. Remark that Q ~ F/Niscyclic. If E/N > F/N,ie., E= F,
then F = N x Q; consequently D:= Q satisfies conditions (i), (ii) and
(iii) of the theorem, and hence G is not a counterexample. Thus
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E < F. Note that C;(N) = Cp(N) = Nx Cy(N). Then, to prove that
E = N, it suffices to show that M:= Cy(N) = 1. Remark that M is
normal in G. Consider the group G:=G/M = (F/M) x(C M/M). If
M # 1, then N:= NM/M < F:= F/M. Moreover, G/N ~ G/NM is
Frobenius with (cyclic) kernel F/N ~ F/N M (cf. [17], 12.6.6). Since
|N|=|N|and |G| < |G|, Gisnota counterexample to the theorem.
Hence there exists a cyclic subgroup D < F on which C:= CM/M
operates efpf, DN = F and = (D) = = (F/N). Let D be a preimage of
D under the canonical map F— F/M. Clearly C normalizes D. Note
that a(D) = a(FINM) ua(M)= =(Q), so that DN N=1, and
hence D is cyclic. Also C acts efpf on D, and D N = F. Thus G would
not be a counterexample. Therefore M = 1, as desired.

Claim 6. G= N xS, where S is a Frobenius group with kernel
isomorphic to F/N. By a result of Baer, since N is a minimal normal
subgroup of a solvable group G, there exists a subgroup S of G such
that G=Cz(N)S and SNN=1 (cf. [9], p.688). By claim 5,
Cs(N)=N, and so G=NS. Obviously S~ G/N, which by
assumption is a Frobenius group with kernel F/N.

Claim 7. The representation via conjugation of S on the F,-vector
space N, is irreducible and faithful. The representation is irreducible
since N is minimal normal in G. And it is faithful since C4(N) = 1,
according to claim 5.

After establishing these series of claims, we are in a position to
finalize the proof of the theorem. Set Q:=Fn S. Then F= N xQ,
and Q is the kernel of S as a Frobenius group. Say S = Q x T where
T ~ Ciscyclic. Note that N C and N T are Hall subgroups of G of the
same order, and hence they are conjugate. Say N C = (N T)%, with
ge G. Substituting S by S8, we may assume that NC= NT. Let
C=(x). Then x = tn, for some ne N and teT. Clearly () = T.
Denote by y the order of 7. Then

=2 eI el

l=x'=(ny=0n""n"". .nin=n""n"".. n'n.

Now, according to claim 7, the hypotheses of Lemma 4.1 hold (N
plays the role of V.) Thus by part (v) of Lemma 4.1, there exists some
meN such that n=¢"mim~'. Then x=tn=1tt"'mim'=
=mtm~'. Therefore C = (x) = m () m = m~' Tm normalizes the
cyclic group D:=m ™' Qm < F which satisfies the conditions (i), (ii)
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and (iii) of the theorem. Thus G cannot be a counterexample, and the
theorem is proved. [

Next we shall extend Theorem 4.2 to the case when Fis an infinite
prosolvable group. We need first some auxiliary results that may be
well-known to specialists, but for which there is no easily accessible
reference.

Lemma 4.3. Let G be a profinite group, H an open subgroup of G,
and let {U;| i€ I} be a collection of open normal subgroups of G. Assume
that (\ U, < H. Then, there exists a finite subset J of I such that

iel
N U< H
jeJ
Proof. Otherwise, consider the closed subsets of G, G — H and

(\ U, for all finite subsets K of 1. Since we may assume that H # G,
keK

those sets have the finite intersection property, and therefore, since G

is compact, (G — H) n (ﬂ U) # 0, ([10], p. 136), a contradiction. (]
jedJ

Lemma 4.4. Let G be a profinite group, and let {U,|i€l} be a

collection of open normal subgroups of G such that for every finite

subset J of I, there exists some re I with U, = (\U,. Let H= (| U,

jed iel
and let K be any closed subgroup of G. Then () U;K = HK.
iel
Proof. Since H K is the intersection of all the open subgroups of G
containing H K ([15], p. 11), it suffices to prove that ("} U;K < V for
iel
every open subgroup V of G containing H K. By Lemma 4.3 and our
hypothesis, there is some rel such that U,< V. It follows that
A UK<V. O
iel
Proposition 4.5, Let G = F x C be a prosolvable group which is a
semidirect product of a finite cyclic group C and a normal prosolvable
group F. Assume that there exists a normal subgroup N of G such that
FIN ~ 7, for a certain set of primes =, and the induced action of C on
FIN by conjugation is efpf. Then F contains a cyclic subgroup Z ~ 7,
such that ZN = F, C normalizes Z, and the action of C on Z by
conjugation is efpf.
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Proof. First we make two remarks. Note that it suffices to find a
subgroup Z ~ Z, of F which is normalized by C and such that
Z N = F. This is so since on such a group Z, the group C will act
automatically efpf: Z/ZNN=ZN/N~ F/N~ Z, ~ Z; therefore
from the structure of procyclic groups ([15], p. 56)onehas Zn N = 1;
hence if 1 # xeC, zeZ and x~!zx = z, one has ze N since C acts
efpf on F/N by hypothesis, and thus z = 1. Our second remark is that
one may assume that F, and hence G, is (topologically) finitely
generated. For let fe Fbe such that f N is a generator of F/N; consider
the group G:=(C,f*|xe C) and let F:=(f*|xeC) and N:=FAN.
Then N is normal in G, and N< F< G < G with G=FxC,
F/N ~ 7, and the action of C on F/N is efpf. If there exists some
Z < F normalized by C, Z~ 7, and ZN=F, then ZN=F.
Therefore from now on we will assume that G is topologically finitely
generated.

Next we prove the following assertion. Let M be an open normal
subgroup of G contained in F; then there exists a procyclic subgroup
Zy of F, such that M Z,, is normalized by C, M Z,N = F and
7 (Z,y) = «n(F/M N). To prove this claim, consider the exact sequence

1> MN/M— FIM—FMN-1.

Then C M/M = C acts by conjugation efpf on the finite cyclic group
(FIM)/(NM|M) ~ F/N M (cf. [2], Th.3.6 and Cor. 1.4). Hence, by
Theorem 4.2, there exists a subgroup R of F containing M such that
R/M is C-invariant and procyclic, RN =F, and n(R/M)=
= n(F/M N). Let r M generate R/M and such that =((r)) = =(R/ M),
and put Z,,:=(#). It is plain that Z,, satisfies the conditions required
in the assertion.

Now consider a sequence of open normal subgroups
F>M;>M,>... of G such that [} M,=1. By the above

assertion, for each i there exists some procyclic subgroup Z, of F such
that Z; M, is C-invariant, #(Z) = n(F/NM)), and Z,M;N = F. Let z,
be a generator of Z;. Since G is a compact metric space, taking a
subsequence of (z;) if necessary, we may assume that limz, = z, for
some element ze F. Set Z:=(z). Then for each keN, there is some
I(k)eN with ziezM, if I=1(k), and so zZM,<ZM, if
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[> max{k,I(k)}. Hence F=Z MN<ZM/N<F, and thus
Z M, F = F,V keN Therefore F= (| ZM,N = Z N, by Lemma 4.4.
k

To see that Z is C-invariant, note that x~'z,xe Z,M, < ZM, if
xeC, > max{k,I(k)}; therefore x 'zx =limx~'zxeZM,, for
every keN; hence x ' zxe () ZM, = Z, by Lemma 4.4.

k

Let Z, be the =-Hall subgroup of Z. Clearly Z_ is also C-invariant,
and Z N = F. Hence we will assume from now on that Z = Z_. To
see that Z ~ Z_, it remains to prove only that Z is torsion-free. Now,
since Z/ZNN~ ZN/N = F/N =~ Z,, we have Z ~ 2, ® t(Z) where
t(Z) is the torsion part of Z. Since = (¢(Z)) < = and Z is cyclic, one
must have that ¢(Z) is trivial, i.e., Z is torsion-free. [J

5. Frobenius Subgroups of Free Prosolvable Products

In this section we show that every Frobenius profinite group with
cyclic kernel and cyclic complement can be realized as a subgroup of
a free prosolvable product of finite solvable groups.

Lemma 5.1. Let A and B be non-trivial pro-6-groups with
|A| + |B| =5, and let G = A1l B be their free pro-€-product. Then
for every natural number n, there exists an open subgroup H of G
containing A such that d(H) = n.

Proof. Let U and V be open normal subgroups of 4 and B
respectively. Consider the canonical epimorphism ¢:G =
= AUl B— T = A/U1l B/V,if His an open subgroup of T containing
A/U, then ¢ ' (H) is open in G and contains 4. Thus to prove the
lemma, we may assume that 4 and B are finite.

Let K be the cartesian subgroup of G, i.e., the kernel of the
homomorphism G— Ax B that sends 4 to 4, and B to B,
respectively. Since K is an open normal subgroup of G and
KnAd=KnB= {1}, K is free pro-C by the Kurosh subgroup
theorem; moreover the rank of Kis (| 4| — 1) (| B} — 1) = 2 (cf. [1]):
in fact K is free pro-C on the basis {[a,b]|1 # ac A, 1 # be B} ascan
be easily deduced from the analogous result for free products of
abstract groups (cf., e.g., [11], p. 196). Let K’ denote the derived group
of the cartesian subgroup K of G. Since K’ has infinite index in K, it
follows that K’ is not finitely generated, i.c., d(K') = oo (cf. [12],
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Th. 3.5). Therefore d(K'A) = o0, since K has finite index in KA.
Hence there is an open normal subgroup U of G with
d(KAU/U)=n, and so d(KAU) > n. Thus set H:=KAU. [J

Lemma 5.2. Let A, B be finite groups in € and let G = A11 B be their
free pro-€-product. Then G contains a subgroup of the form
H= A2, with Z,= H Z,, where p ranges over the primes that
divide the order of some group in €.

Proof. Let n/2 > d:=max{d(U)|U< A or U< B}. By Lemma
4.1, there exists some open subgroup L< G with L> A4 and
d(L) = n. By the Kurosh subgroup theorem (which is valid for L) one
has (cf. [1])

L=U4A DU DIE

where F'is a certain free pro-% group, and s and ¢ range through sets
of representatives of the double cosets of 4 and L in G, and of B and
L in G. We may assume that the representative of the double coset
ALis 1, and hence 4 = AN L is one of the free factors of L in the
above decomposition. If F# 1, we are done, since F is a free
pro-%-product of copies of Z,, and so A 1] Z, is naturally contained
in G. Hence assume that F = 1. Next note that

dL) <Y dAnD) + Y dB' nL)<(1|+(J])o,

where I (respectively J) denote the set of those indexes i (respectively
J) with A°n L # 1 (respectively B’ n L # 1). Since n was chosen so
that n > 24, one has | I| + | J| > 2. Therefore G contains a subgroup
of the form R = A1l 4,11 4,, where A, and A, are non-trivial finite
groups. Let K be the cartesian subgroup of R, and consider the open
subgroup M:= A K of R. Again by Kurosh,

M=(IEIA“NI‘I)H(IEIAfﬁMU([yIA§ﬁMH¢, *)
with @ a free pro-#-group whose rank is (cf. [1])
d(@)=1—|RIM|+ (I R/M| - |A\NR/M|) + (I R/IM| ~
—1ANR/IM|) + (I R/M| ~ | A\ RIMY),

where 4\ R/M denotes the set of double cosets of G with respect to
the subgroups A, M; etc. Since M is normal in R and M > A, one
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deduces that |A\ R/IM|=|R/IM|, | A\ RIM|=|4,|, | A,\RIM|=
=|A4,], and therefore d(@)=1+|4,||4,| — |4, — |4, =
= (4,] — 1)(4,| — 1) = 1. Since 4 < M, we may assume that A4 is
one of the free factors of M in the expression (*). It then follows that
A1l Z, is naturally embedded in M, and thus in G. O

Next we proof a generalization of a result of D. HARAN and
A.LuBoTzZKY ([5], Proposition 4).

Lemma 5.3. Let 4 be a full class of finite groups, A and B
pro-6-groups, and A" and B’ closed subgroups of A and B respectively.
Then the free pro-€~-product G' = A’'11 B’ is canonically embedded in
G = A1l B.

Proof. Since G = lim((4/U)1I(B/V)), with U and V ranging

through the open normal subgroups of 4 and B respectively, we may
assume that 4 and B are finite (in %). Consider the commutative
diagram

1 > K = G=AllB - AxB - 1

1 2l 4
1 - K - G=A41B - AxB - 1
”

with exact rows (p sends A4, B identically to A4, B respectively, and
similarly for ¢"). Recall that K (the cartesian subgroup of G = 411 B)
is freely generated by the elements of the form [a, b] fora # 1 # b, and
similarly for K. The map g is induced by the inclusions 4"~ 4 and
B <> B, and « and y are given by «([d,0']) =[d,b] and
y(a',b") = (a',b"). Clearly « and y are monomorphisms. Thus j is also
a monomorphism. [J

Corollary 5.4. If G, A, B, A', B' are as above, the closed subgroup H
of G generated by A’ and B' is A'11 B'; moreover HN A = A’, and
HnB=RFH.

Proof. The first assertion follows immediately from the above
lemma. For the second assertion, note first that by a standard limit
argument, the diagram in the proof of Lemma 5.3 is still valid even
if the groups A and B are not finite. Now if xe Hn A4, then
p(x)ep(H nA= A", ie., x€ A, since ¢ is the identity on 4. OJ
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Theorem 5.5. Let A, B be finite solvable groups. Assume that C is
a cyclic subgroup of A, o # 0 is a set of primes such that o Nz (C) = 0,
pen(C) and if qe o then p|(q — 1). Consider the prosolvable product
G = All; B of the groups A and B, and let K be its cartesian subgroup.
Then K contains a procyclic subgroup Z such that o = n(Z) and Z is
normalized by C. Moreover, the action of C on Z by conjugation is
elementwise fixed-point-free (efpf), i.e., H= Z C = Z x Cis a profinite
Frobenius group with kernel Z and complement C.

Proof. 1t suffices to prove the first statement, for if the elements
1 # xeC and 1 # ye Z commute, then every element of the infinite
subgroup () of Z generated by y also commutes with x; however the
centralizer in G of a non-trivial element of 4 must be contained in 4
(cf. [6], Th. 2), and hence must be finite.

By Lemma 5.2, G contains a subgroup A4[l;L, where L~ 7.
Hence by Lemma 5.3, G contains a subgroup H = L]11;C. Recall that
for a prime number ¢ # 2, Aut (Z )= C,_;x Z (cf., [18], D 17); so if
geo and pen (C), there are non-trivial actions C - Aut (Z A and in
fact any two of them define 1somorphlc semldxrect products Z xCys
moreover since the action of C, on Z is efpf, Z xC,is a proﬁmte
Frobenius group (cf. [2], Th. 3. 6) it follows that there is a (unique)
profinite Frobenius group I" = L x C with kernel L and complement
C. Let ¢: H— I' be the homomorphism that sends L to L identically,
and C to C identically, and let N:= Ker (). Denote by F the normal
subgroup of H generated by L. Then N < F, and the action of C on
F/N ~ 7, induced by conjugation within H, is efpf. Therefore by
Proposition 4.5, there exists a subgroup Z; of Fnormalized by C, such
that Z, ~ 7,. Put Z:= Z, n K. Then Z is still normalized by C, and
Z =~ 7,, since Z has finite index in Z,. OJ
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