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Traveling wave patterns formed at the oscillatory onset of convection in binary mixtures 
with free slip and permeable horizontal boundary conditions are theoretically derived 
by means of an order parameter equation for the case of large aspect ratio systems 
with circular and rectangular geometry. We obtain in addition to 'Zipper states' the 
so called 'confined states', which so far has been observed only experimentally. Our 
present study of traveling wave patterns in circular systems, which are the first theoretical 
investigations in this respect, exhibit a characteristic change of behaviour. Close to onset 
the waves travel in radial direction towards the sidewalls. For higher Rayleigh-numbers 
the waves are confined to the circular boundary traveling in azimuthal direction. The 
occurrence of this transition should be confirmed experimentally. 

1. Introduction 

If a fluid is heated from below, at a critical tempera- 
ture gradient convection sets in and results in a sta- 
tionary regular pattern as is well known from the 
Rayleigh-B6nard experiment [1]. In contrast, fluid 
patterns generated in binary mixtures can be either 
stationary or oscillatory, depending on the value of 
the separation ratio 7(, which is related to the concen- 
tration ratio of the two mixed fluids [2]. Currently, 
great effort is devoted to the investigation of the oscil- 
latory instability of convection in binary fluid mix- 
tures [3-8] as a prototype of an oscillatory instability 
in a large aspect ratio system since it exhibits a great 
variety of interesting spatio-temporal patterns already 
close to onset of convection. In narrow fluid contain- 
ers running convection waves in various forms of 
traveling roll structures are obtained [5, 6]. Fluid pat- 
terns consisting of separate regions with waves run- 
ning in different directions have been found. Addi- 
tionally, quasiperiodic fluid motions occur in form 
of the so-called blinking state [8] consisting of two 
wave trains running towards the vertical ends of the 
container. Thereby, the intensities of the wave trains 
vary periodically in time. Confined states have been 
observed where the traveling wave motion exists only 

in a localized region in the container [8]. Recent ex- 
periments have been performed with binary mixtures 
in an annular container. The rolls align radially and 
travel in an azimuthal diection [7]. Here, also con- 
fined convection has been observed. 

Numerical simulations of the evolution equation 
for the spatially slowly varying envelopes of the waves 
[9] as well as the generalized Ginzburg-Landau equa- 
tion for an order parameter directly related to the 
temperature and concentration fields [10] have re- 
vealed similar behaviour. Direct numerical simula- 
tions of the basic hydrodynamic equations for the 
two dimensional problem have been performed as 
well [11]. Experiments in large rectangular and cy- 
lindrical vessels exhibit still more complicated spatio- 
temporal behaviour [3, 12], because of the large 
number of linearly unstable modes present already 
close to onset of convection. A theoretical description 
of spatially slow deformations of traveling waves con- 
sisting of nearly aligned rolls have been performed 
by investigating the evolution equations for the spa- 
tially slowly varying envelope function of the waves 
[13, 14]. The numerical simulation of these evolution 
equations shows spatial patterns similar to the experi- 
mentally [12] investigated 'Zipper state'. Defects and 
grain boundaries between regions with different orien- 
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tations of the traveling waves influence the spatio- 
temporal pattern and are expected El4, 21] to enforce 
the emergence of three dimensional turbulence. 

The evolution equations for the envelope func- 
tions (see e.g. [9, 13, 14]) can not be applied to the 
description of patterns with defects and grain bound- 
aries between regions with traveling waves having dif- 
ferent orientations. In order to deal with such prob- 
lems, where direct numerical simulations are extreme- 
ly time-consuming due to the fact that the flow is 
actually three dimensional, we derived the order pa- 
rameter equation [10] 

t~ ~(x, t)=(0 e+ 2o-;~1 A +22 A 2) ~(x, t) 

+ S~I dxl dx2 dx 3 A ( x - x  1, x - x 2 ,  x - x 3 )  

�9 ~ (x l ,  t) ~(x2, t) ~*(x3,  t) (1) 

for the complex order parameter field ~ (x, t) which, 
for the case of convection in binary mixtures, is direct- 
ly related to the temperature and concentration field 
in a horizontal two-dimensional plane inside the fluid. 
We mention that the order parameter field ~(x, t) 
needs not be spatially slowly varying. The order pa- 
rameter equation (1) is the extension of the equation 
previously used by Hohenberg and Swift [15], and 
M. Bestehorn and H. Haken [16] for the description 
of the nonoscillatory onset of convection in simple 
fluids to the case of an oscillatory instability. It has 
also been derived independently by Kawasaki and 
Ohta [22], but they further reduce the order parame- 
ter equation to evolution equations for envelope func- 
tions for the amplitudes of left and right traveling 
waves which are only valid if the convective rolls are 
aligned nearly parallel. 

In this paper, we briefly indicate how the integro- 
differential equation (1) for the order parameter can 
be reduced to a partial differential equation: It will 
turn out that the nonlocal term in (1) may be well 
approximated by a local one resulting in an order 
parameter equation which is derived below for the 
first time. We determine all coefficients of this GGLE 
for free, permeable or perfect boundary conditions 
at the upper and lower side of the fluid. We present 
numerical solutions of the two-dimensional GGLE 
for large rectangular as well as cylindrical containers 
describing a three-dimensional fluid motion in a large 
aspect ratio system. In addition to patterns exhibiting 
the 'Zipper state' we obtain, for the first time, con- 
fined states, which have up to now only been observed 
experimentally. Our calculations for a cylindrical ge- 
ometry, which are the first theoretical investigations 
of traveling waves in circular geometries, show, close 
to threshold, waves traveling in radial direction from 

the center to the sidewall of the cell. For larger values 
of the Rayleigh number, we find a transition to pat- 
terns consisting of traveling rolls perpendicular to the 
sidewall and moving in azimuthal direction. The tran- 
sition between these two modes of convection is relat- 
ed with an optimization of the Nusselt number, e.g. 
the heat transport between the two horizontal plates. 
It would be interesting to confirm the occurrence of 
this qualitative change of behaviour experimentally. 

2. Generalized Ginzburg-Landau-equation 

The density of a binary mixture depends on both tem- 
perature as well as on concentration. Due to the Sor- 
et-effect a local flux of the concentration is induced 
by a local temperature gradient. As is well-known, 
the behaviour of the fluid mixture is described by 
the following four dimensionless parameters: The 
Rayleigh number R, the separation ratio ~ the Lewis 
number L and the Prandtl number P (see e.g. [2]). 
For sake of simplicity we shall consider the case of 
infinite Prandtl-number. Then, the behaviour is math- 
ematically given by the following set of equations for 
the velocity field v(r, t), the temperature field O(r, t), 
the pressure P(r, t), and the concentration C(r, t): 

A v(r, 0 + %  R(O(r, t ) -TC(r ,  t ) ) -grad e(r, t)=O 

0t O(r, t)+ [-v(r, t)grad] O(r, t)=v3(r, t)+A O(r, t) (2) 

0t C(r, t)+ Iv(r, t) grad] C(r, t) 

= -v3(r, t)+LA C(r, t)+LA O(r, t) 

div v(r, t) = 0. 

We assume free boundary conditions for the velocity 
field v(r, t) and fixed concentration on the upper and 
lower plates. It is well established that oscillatory con- 
vection sets in for values of T smaller than - L  z. 

In a previous paper [10] we described how to 
derive the GGLE (1) from the basic hydrodynamic 
equations (2). The nonlocality of the nonlinear inter- 
action term renders a numerical treatment rather time 
consuming, even in the 2--D case. However, a suit- 
able local approximation becomes possible as we shall 
briefly indicate in the following. For the nonlinear 
equations (2) we make the ansatz: 

0o 

V~(r, O= ~ d~fi(z, A) ~i ~bl(x, t) exp(ico l t)+ c.c., 
l = 1  

i=x, y 

IO(r, t) = • A) 
[C(r, t) g=l [h~(z, A) 

~z(x, t) exp(i col t) + c.c. 

(3) 



where A denotes the two-dimensional Laplacian. The 
operators f, g, and h are defined by the linearized 
problem (2) and the horizontal boundary conditions 
in accordance with the general derivation of the gen- 
eralized Ginzburg-Landau-equations given in 
Chaps. 7 of [17, 18]. We mention that for perfect 
boundary conditions the z-dependence of these opera- 
tors can be expressed as sin(re/z). In the following, 
the unstable modes are denoted by l= 1. Since all 
other modes are enslaved by these modes close to 
instability, 4 l(x, t) will be the order parameter of the 
system. The complex order parameter ~l(X, t) de- 
scribes the spatio-temporal patterns in the horizontal 
plane. We note that the order parameter field need 
not be spatially slowly varying. It describes the cellu- 
lar structure as well as the large scale structures of 
the patterns in a horizontal plane. 

We now make the assumption that the unstable 
modes q01 couple most strongly to stable modes ~0 s 
which are slowly varying in x. More precisely, this 
assumption is equivalent to the approximation 

(v(r, t) VO(r, t))-~v(r,  t) V(O(r, t ) - ( O ( r ,  t))) 

(v(r, t) VC(r, t))-~v(r, t) V(C(r, t ) - (C( r ,  t))) (4) 

where the brackets indicate a spatial average over 
the horizontal plane of the fluid layer. This approxi- 
mation and the adiabatic approximation allow us to 
express the slaved modes by the order parameter: 

�9 s(x, t )=a  I V~l(x, t)12+b I ~l(x, 812 
+c(V~l(x,  0) 2 +dqS~ (x, t) 2. (5) 

The constants a, b, c, and d can be determined explici- 
tely from the basic equations in a well-known manner 
(see Chap. 7 of [18]). We finally arrive at the general- 
ized Ginzburg-Landau-equation for 4~1(x, t). (Here 
and in the following we suppress the index 1 at the 
order parameter 45.) 

8 t ~b(X, t)= (r e +20--)~ 1 A +22 A 2) ~(x, t) 

- ~ ( x ,  t)I ~(x, t )12-#~(x,  t)I V~b(x, 012 

-- 7 ~b * (x, t) (V ~b (x, t)) 2. (6) 

We computed the coupling coefficients ~, fi, and y 
for perfect boundary conditions. We mention that 
there exists a relation between these coefficients and 
the coefficients A, B obtained from the generalized 
Ginzburg-Landau-equations (see Eq. (3) of [10]) for 
the case of an instability with modes with a single 
wave number kc. They read: 

A=~+fik#-7k# 
B = 3 ~ + f l  2 2 (7) k~ +yk~. 
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Fig. 1. The nonlinear coupling coefficients C1 (@ and C2(r as func- 
tions of the angle 4~ calculated from the basic hydrodynamic laws 
(solid lines) and their approximate values using the nonlinearity 
of (6) (dotted lines) 

The numerical results presented in the next two sec- 
tions are based on the values for ~, #, and 7 for perfect 
boundary conditions. The corresponding expressions 
for A and B can be found in [10]. 

The approximation made in (6) for the slow spatial 
variation of ~s can be justified in the following way: 
we compared the angular dependence of the coupling 
strength of two plane waves with a certain direction 
of propagation with that which can be obtained by 
means of amplitude equations. If we restrict ourselves 
on I k l = I kc [, the amplitude equations can be cast into 
the form: 

2Tr 

8, r t)=2(k 2) r t ) -  ~ d~b Ca (q~) ((k, t)[r 012 
o 

-- ~ d r  C2(r r  t)* r 1, t) r  t). 
o 

(8) 

The angle r is defined as the angle between the wave 
vectors k and kj with absolute value kc. ~(k) denotes 
the slowly varying amplitude function of a plane wave 
with wave-vector k. We have calculated the functions 
C1 (qS) and C2 (r from the basic hydrodynamic equa- 
tions for convection in binary mixtures using again 
free/free horizontal boundary conditions for the ve- 
locity field. The results compared to those obtained 
from the GGLE (6) are shown in Fig. 1. We obtain 
a sufficiently good approximation especially for the 
vicinity of r = 0, q5 = ~. Therefore, Eq. (6) reflects the 
interaction between traveling waves (r = 0) and stand- 
ing waves (r = 70 exactly. 

Furthermore, the nonlinear interaction between 
waves with different orientations is sufficiently well 
reproduced without any qualitative difference. It is 
obvious that the inclusion of nonlinear terms of the 



268 

t t oJJ 
38.85 59.85 40.85 41.85 42.85 

Fig. 2. Trave l ing  wave  pa t t e rns  in a r ec t angu la r  con ta ine r  wi th  aspect  ra t io  36:18 : 1. (Separa t ion  ra t io  ~ = - 0.5, e = 0.035) 

form �9 Oxi ~ ~ 0x, 0~ ~* may be used to improve the 
approximation of the angular dependence in (6). 

The order parameter equation (6) describes the 
spatio-temporal evolution of a scalar field which is 
directly related to the hydrodynamic variables. There- 
fore it is straightforward to specify boundary condi- 
tions. If we require vanishing velocity components 
on the sidewalls as well as vanishing disturbances of 
the linear temperature and concentration profiles, Eq. 
(3) yields: 

�9 (x, t)=n V~b(x, t)=0. (9) 

The boundary conditions (6) are correct up to the 
order of e 1/2, where e is the reduced Rayleigh number 
(R --Rc)/Rc. 

We mention that experiments with realistic 
boundary conditions yield, for small values of ~ a 
slightly subcritical bifurcation. In the present case of 
free/free horizontal boundary conditions the bifurca- 
tion turns out to be supercritical, which is a result 
of the finite size of the container in horizontal direc- 
tions. As is well-known periodic boundary conditions 
in horizontal directions do not, in the approximation 
of the nonlinear terms up to third order in the ampli- 
tudes, lead to a saturation of the traveling waves (the 
real part of the coefficient A of (3) of [10] vanishes). 
This result however, turns out to be irrelevant for 
finite size containers since the effects of the vertical 
boundaries are not restricted to a small boundary 
layer but effects the amplitude of the unstable modes 
considerably also in the bulk, as can be seen in Fig. 3 
of [10]. In our opinion the question of a sub- or 
supercritical transition is not of major importance 
with respect to the problem of pattern formation. It 
seems to be more important to find an accurate de- 
scription of the nonlinear interaction between waves 
with different orientations. This has been achieved 
by the order parameter equation above given for free/ 
free horizontal boundary conditions. 

3. Numerical results 

In order to investigate the spatio-temporal behaviour 
of a fluid described by (6), we applied a semi-implicit 
one-step forward time integration method. The rect- 
angular geometry was approximated by a rectangular 
mesh with 64 x 128 grid points. The circular geometry 
was approximated by a quadratic mesh with 
128 x 128 grid points. For a radius of 18, this corre- 
sponds to about 10 meshpoints per critical wave- 
length which gives a reasonable spatial resolution. 
The inversion of the linear differential operator in 
(6) was achieved by a fast Fourier-transform. The 
nonlinearities were computed in the configuration 
space using a finite difference scheme. The boundary 
problem results in an inhomogeneous set of linear 
equations at each time step, which was solved by an 
iteration method. The time step in the scaling of (6) 
was choosen with 0.03, the program was implemented 
on a DEC-VAX 8300 and needs about 25 s process 
time per time-step for the quadratic mesh. This gives 
us the possibility to calculate relatively long evolu- 
tion-series with an appropriate time resolution in a 
reasonable CPU-time. 

In the case of rectangular fluid containers the rolls 
of the traveling waves are nearly aligned perpendicu- 
lar to the larger side of the container. Waves traveling 
to the left are located at the left hand side and waves 
traveling to the right at the opposite side. In contrast 
to the nonoscillatory B6nard-problem [16, 19] the 
rolls need not be perpendicular to the boundary since 
the waves can be reflected. For small values of the 
reduced Rayleigh number e (see Fig. 2) the spatial 
structure along the rolls is only slightly disturbed, 
but, nevertheless, there are periods where the spatial 
patterns exhibit the Zipper state (see Fig. 2, e.g. the 
pattern at t = 34.85). For higher values of e the travel- 
ing waves show the tendency to be confined to local- 
ized regions (see Fig. 3). The existence of confined 
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Fig. 3. Traveling wave patterns in a rectangular container with aspect ratio 36:18:1. (Separation ratio ~ = -0.5,  e = 0.05) 

states is a major result of the experimental investiga- 
tions of oscillatory convection in binary fluids [3-7]. 

The calculations for circular geometries were 
started with two different initial conditions at t =  0: 
First, we used a random-dot  pattern (RD), second 
an initial pattern of concentric rolls (CR) with wave- 
length 2 = 2 re/[ kc l, where kc has the value of the critical 
wave-vector for perfect boundary conditions. The sep- 
aration ratio and the Lewis number were fixed at 
7 '=  -0 .5 ,  L = 0  for all runs, ~ was varied in the range 
from 0.025 to 0.05. Due to the finite geometry of the 
container, convection does not set in at e--0 but at 
a small positive value, which decreases with increasing 
aspect ratio. From a linear analysis (see Sect. 4) we 
calculated the shift of onset as e~=0.024. This shift 
was confirmed by the numerics. Directly above es the 
patterns for RD-condit ion become strongly time-de- 
pendent and consist of modes with a weak angular 
dependence (low values of m, see Fig. 6, part 4). The 
direction of propagation of the wave is dominated 
by a more or less concentric movement from the 
center to the sidewalls (Fig. 4a). This holds also for 
a CR-initial condition. Here, initially the concentric 
arrangement of the rolls is conserved for times long 
compared to the vertical diffusion-time (Fig. 4b), al- 
though additional oscillations connected with a non- 
axisymmetric spatial deformation are superimposed 
on the regular concentric traveling wave rolls. In the 
center of the circular container, the fluid patterns con- 
sist of standing waves with frequency co~. Close to 
the sidewall the rolls exhibit more and more traveling- 
wave character. It is quite interesting to note that 
different initial conditions may lead, at the same 
values of the control parameters, to coherent patterns 
(CR-initial condition) and to irregular spatial patterns 
(RD-initial condition). Although it can not be decided 
wether the two apparently different behaviours still 
last for very long times we see that defects generated 
by the RD-initial conditions prohibit, at least for a 

very long time, the fluid to settle down to the more 
coherent spatial structures obtained for CR-initial 
conditions. The importance of defects for the genera- 
tion of spatially irregular patterns has been empha- 
sized by P. Coullet et al. [14, 21]. 

A quite different behaviour occurs for slightly 
larger e: At e > 0.027, the waves start to travel in azi- 
muthal direction with a slightly lower frequency than 
the critical one and the rolls have the tendency to 
align perpendicularly to the boundary. The fluid in 
the center remains nearly at rest (Fig. 5 a, RD-condi- 
tion), a pattern which is reminiscent of the confined 
states. Wave trains with a spiral structure occur close 
to the center traveling towards the outer boundary. 
To demonstrate that the rotating pattern with spiral 
structure for somewhat larger e is independent from 
the initial conditions, we repeated the last run for 
the CR-initial values. The result is shown in Fig. 5b. 
We mention that the direction of rotation is purely 
random and established by symmetry breaking. 

4. Mode analysis for oscillatory convection 
in circular geometries 

In order to gain deeper insight into the qualitative 
transition between radially and spirally traveling 
waves reported in the last section, it is necessary to 
make a more detailed investigation of the order pa- 
rameter equation (6) for a circular geometry with the 
boundary conditions (9). The eigenfunctions of the 
linear operator in cylindrical coordinates can be rep- 
resented as 

tim(r, 4)) = A( t )  [a I Bm(k 1 r) + a2 B, , (kz  r)] 

�9 e x p ( i ( m , ~  + coct)). (10) 

Here, Bm are the Bessel-functions of the first kind 
of the m-th order. The sign of m defines the direction 
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Fig. 4 a  and b. T e m p o r a l  evo lu t ion  of t r ave l ing  wave pa t t e rn  in a c i rcular  box  wi th  d iamete r  36. (Separa t ion  ra t io  0 =  - 0 . 5 ,  e=0.025).  
a RD- in i t i a l  cond i t ions :  The pa t t e rns  consis t  of several  wave  t ra ins  r unn ing  t owards  the boundary .  The  spa t ia l  pa t t e rn  is i r regular ,  b 
CR- in i t i a l  cond i t ions :  The pa t t e rn  consis ts  of wave  t ra ins  r unn ing  towards  the boundary .  The  pa t t e rn  is spa t ia l ly  coheren t  

of propagation in azimuthal direction of the pattern. 
For positive m, the pattern rotates clockwise and the 
corresponding amplitude will be denoted with AR(t). 
AL(t) describes a counterclockwise rotation for m <0. 
The values of k~ and at in (12) are fixed by the bound- 
ary conditions and the following characteristic poly- 
nomial: 

2 0 + 2 1  k2  + j,2 k 4 = A .  ( 1 1 )  

In order to compute ki and the eigenvalues A which 
belong to ~ = 0 in Eq. (6) we applied a complex regula- 

falsi-method. The real part of A reflects the shift of 
the critical point due to the finite geometries and de- 
pends therefore on the radius R of the container. Fig- 
ure 6 shows six basic fluid patterns for several positive 
values of m (mode 0-32). Since (~c>0, they rotate 
clockwise. The modes with large values of m describe 
fluid motions more and more confined to the circular 
boundary. Due to the large aspect ratio of the geome- 
try the modes have roughly the same linear growth 
rate and nonlinear mode selection becomes significant 
for the process of pattern formation. A degeneracy 
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Fig. 5a and b. Temporal evolution of traveling wave pattern in a circular box with diameter 36. (Separation ratio ~t=-0.5, e=0.03). 
a RD-initial conditions: The final pattern consists of convective motions confined to the circular boundary. The waves travel in azimuthal 
direction, b CR-initial conditions: The final state is independent from initial conditions 

originates due to the 0(2) symmetry of the circular 
geometry. If we assume that only the modes with m 
and - m  are excited, then the resulting amplitude 
equations take the form 

d t AL(t ) = [3 e + A] AL(t ) 

+ [~ [AL(t)[2 ~_/~ [AR(t)[2] AL(t ) 

dt AR (t) = [b e + A ] A R  (t) 

+[~I]AR(t)[2+B[AL(t)]2]AR(t)  (12) 

where AL, AR denote the amplitudes of the clockwise 
and counterclockwise rotating patterns. The coeffi- 
cients A and/~ can be calculated in a straightforward 
manner by inserting (10) in (6). It turns out that the 
absolute value of Re(.4) is always larger than that 
of Re(/~). Linear stability analysis of (12) shows that 
under this condition a coexistence of A L and A R be- 
comes impossible, i.e. a superposition of clockwise 
and counterclockwise rotating patterns forming a 
standing wave pattern in azimuthal direction does 
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Mode: 0 Mode: 4 Mode: 8 
Eigenvalue: - 0 . 1 8  + 14.88i Eigenvolue: - 0 . 1 8  + 14.83i Eigenvalue: - 0 . 1 8  + 14.68i 
Re(A): -0.39E-02 Re(A): -0.17E-02 Re(~.): -0.13E-02 
Re(B): -0.78E-02 Re(B): -0.58E-02 Re(B): -0.54E-02 
Nussel f -number :  69. Nusse l f -number :  152. Nusse l f -number :  203. 

Mode: 12 Mode: 20 Mode: 32 
Eigenvalue: - 0 . 1 9  + 14.41i Eioenvalue: - 0 . 2 0  + 14.31i Eigenvalue: - 0 . 2 0  + 14.45i 
Re(,~): -0.IOE-02 Re(k,): -0.71E-03 Re(,~): -0.69E-03 
Re(13): - 0 . 5 2 E - 0 2  Re(l~): - 0 . 5 5 E - 0 2  Re(f3): - 0 . 9 8 E - 0 2  
Nusse l t -number :  233. Nussel l ' -number:  296. Nusse l t -number :  275. 

Fig. 6. Convective patterns corresponding to the eigenmodes of the linear operator of (6) for different values of m with the corresponding 
eigenvalue and the nonlinear coupling coefficients 4,/~ and the corresponding Nusselt number (e = 0.05) 

not occur. Therefore, the pattern will rotate with the 
amplitude 

[ALR[ 2 -  fie+Re(A) (13) 
' Re(A) 

and the angular velocity 

Why does the transition between radially and spirally 
traveling waves observed in part 3 occur for increas- 
ing e? A possible explanation lies in the behaviour 
of the heat flux through the fluid layer by the selected 
mode. In order to examine the contribution of convec- 
tion to the heat flux we calculated the Nusselt 
numbers corresponding to the modes (10) with the 
amplitudes (13) as a function of e. The Nusselt number 
is given by 

R 

Nu , ,=  1 +2~z ~ rdr [rlm(g , ~b)J 2. (15) 
0 

It increases linearly with e. It turns out that the in- 
crease of Num of those modes with a smaller e-shift 
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Fig. 7. The Nusselt numbers for modes with several values of m 
as functions of the reduced Rayleigh number e 

(modes with small absolute values of m) is smaller 
than the increase of the heat flux of the modes which 
become unstable at larger e (modes with larger abso- 
lute values of m). Figure 7 demonstrates the depen- 
dence of the Nusselt numbers on e for the basic pat- 
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terns shown in Fig. 6. We conclude that the qualita- 
tive change between radially and azimuthally travel- 
ing wave patterns is related to the optimization of 
the heat flux from the following facts: The numerically 
obtained patterns are, close to onset apparently 
formed by modes with small absolute values of m 
(see especially Fig. 4 a). The confined patterns at larger 
values of the Rayleigh number consist of modes with 
large absolute values of m. The patterns are therefore 
mainly determined by these modes, which maximize 
the heat transport. 

6. Conclusion 

In the present paper we used the generalized Ginz- 
burg-Landau-equation for an order parameter de- 
rived from the 3 D hydrodynamic basic equations in 
order to describe the spatio-temporal behaviour of 
a binary mixture in the oscillatory regime. Results, 
which are, to the best of our knowledge, presented 
here for the first time, are the following: a) The gener- 
alized Ginzburg-Landau equation (1) has been shown 
to take, in a well defined approximation, the form 
of (6) for the case of convection in binary mixtures 
with free/free and permeable horizontal boundary 
conditions. We integrated the generalized Ginzburg- 
Landau equation for rectangular as well as circular 
geometries with large aspect ratios, b) In the case 
of rectangular containers we found, in addition to 
patterns exhibiting the 'Zipper state', confined states, 
which have so far only been observed experimentally. 
c) In the case of large circular containers we found 
a qualitative change in the behaviour of the fluid pat- 
terns. Close to threshold the patterns consist of travel- 
ing waves, which move in a more or less concentric 
way from the center of the fluid container to the side- 
wall. Above the transition, the pattern changes to 
rolls aligned perpendicular to the sidewalls and run- 
ning in azimuthal direction with a somewhat lower 
frequency than the critical one. d) By a normal mode 
analysis of (6) we have shown by a calculation of 
the corresponding Nusselt numbers that the observed 
transition optimizes the contribution of convection 
to the heat flux between the horizontal plates. 

In conclusion we point out that the present inves- 
tigations of the onset of oscillatory convection in bi- 
nary mixtures by means of an order parameter equa- 
tion has allowed us to calculate three-dimensional 
traveling wave patterns in large aspect ratio systems. 
The patterns are quite similar to patterns which have 
already been obtained experimentally (however in 
systems with different boundary conditions). Addi- 
tionally, in large circular containers we found a char- 
acteristic transition between radially traveling waves 

(low Rayleigh numbers) and waves confined to the 
outer boundary traveling in azimuthal direction. It 
would be interesting to verify this transition experi- 
mentally and to study the impact of rigid/rigid and 
impermeable horizontal boundary conditions on this 
transition. 

From the theoretical point of view, it would be 
interesting to include terms in the GGLE which be- 
come important if the Prandtl number is very low, 
say P ~ 1. The GGLE for this region has to be ex- 
tended by adding an equation for the generation of 
a horizontal vorticity field as first discussed for pure 
fluids by Siggia et al. [20]. That extension should al- 
low a better comparison with experiments in He-mix- 
tures or in gases. 
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