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Considered is the motion of a Brownian particle in a bistable potential exposed to 
an external periodic field. Our analysis is based on a systematic Fokker-Planck description 
of the non-stationary stochastic process. Besides general characteristics, such as the non- 
mixing property, we present full numerical solutions for probability distributions and 
the modulation induced rate enhancement. Moreover, approximation schemes for small 
and large frequencies are considered and their results are compared to the numerical 
data. 

1. Introduction 

Stochastic activation processes in metastable systems 
are of importance in a number of fields in physics. 
In his pioneering work, Kramers [11 studied the es- 
cape of a Brownian particle over a barrier. Kramers 
succeeded in solving the corresponding Fokker- 
Planck equation (FPE) for the escape rate in the case 
of large and small damping in the low-temperature 
limit. In the following years his results have been im- 
proved and extended to more general situations [21, 
including for instance memory effects. 

In many physical situations, there are additional 
periodic fields which assist the system in passing a 
potential barrier. In the case of an underdamped Van 
der Pol oscillator (linear force-field, nonlinear fric- 
tion), such a problem has been discussed in the con- 
text of noise induced phase slips in [3]. The linearly 
damped duffing oscillator (non-linear force field) driv- 
en by white noise and periodic forces has been studied 
by using numerical simulations in [4]; for the inverted 
double well potential similar calculations have been 
performed in [51. The main focus in [4] and [5] is 
on the power spectrum of the stochastic output signal, 
where the low-frequency part is related to the escape 
rates out of a region of attraction. The problem of 
the escape of an underdamped Brownian particle out 
of a metastable state with periodic forcing has been 
studied in terms of a low friction expansion of the 

Kramers equation by Carmely and Nitzan in [6]. 
They, however, had to introduce a finite coherence 
time in their external field, in order to avoid resonance 
between the external field and higher harmonics of 
the well oscillations. Also in [71, the effect of an exter- 
nal field with finite coherence time on a Brownian 
particle is discussed. A semiclassical study of the es- 
cape in a metastable potential is done by Larkin and 
Ovchinikov [8]; the transition from quantum- to clas- 
sical dissipation is discussed by Chow and Ambe- 
gaokar [9] in the weak damping limit. 

In this paper I consider the overdamped dynamics 
of a Brownian particle in an bistable potential ex- 
posed to an external periodic coherent field. Though 
there is no resonant interaction between the field and 
the internal degrees of freedom and thus no resonant- 
ly activated barrier crossing, this problem is of practi- 
cal interest for instance in connection with Josephson 
junctions [10] and in the context of " stochastic reson- 
ane [111 ". The stochastic resonance effect is the reso- 
nant increase of the signal/noise ratio of the output- 
signal in a bistable system modulated by periodic 
forces as a function of the noise strength. Moreover, 
this problem is of general theoretical interest with 
respect to the interplay between nonlinearity, noise 
and the external field. In an earlier letter [12] we 
have considered the asymptotic probability distribu- 
tions for large times, the dynamical susceptibilities 
and the correlation functions. This paper is mainly 
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devoted to the escape process out of a region of at- 
traction in an one dimensional bistable potential. This 
paper is organized as follows: 

In Sect. 2 the model and the basic concepts used 
in this paper are introduced. The equivalence of an 
one-dimensional description in terms of quasi-spec- 
tral properties and a two-dimensional description in 
terms of eigenvalues and eigenfunctions is shown. In 
Sect. 3, full numerical solutions for the asymptotic dis- 
tribution function and the transition rates, obtained 
by using a matrix continued fraction technique 1-13], 
are presented. Analytical approximations for the 
probability distributions and the transition rate at 
small and large field frequencies are discussed in 
Sect. 4. Finally in Sect. 5 the influence of an additional 
phase diffusion term on the spectral, dynamical and 
static properties is discussed. 

2. Basic concepts 

2.1. General theory 

Brownian motion is usually described in terms of 
Langevin equations.These equations are the Newton- 
ian equations of motion supplemented by a stochastic 
force ~(t) (noise), characterized by its statistical prop- 
erties. The noise simulates the interaction of the 
Brownian particle with its environment being in ther- 
modynamic equilibrium with the Brownian particle 
itself. Throughout this paper we assume Gaussian, 
delta correlated (white) noise ~(t) with zero mean. The 
external periodic field is modeled by a sineshaped 
modulation of the Langevin equation. For the under- 
lying potential we choose the archetype bistable po- 
tential 

V ( x )  = - 12 a x 2 + �88 b x 4. (2.1) 

having minima at xa,2= + _ 1 ~ ,  and a saddle point 
at x = 0. The barrier height is A V= a2/4 b. The Lange- 
vin equation governing the dynamics of our model 
reads 

2 = a x - b x  3 + A  sin(co o t +  q~)+ ~(t) 

(~(t) r = 2D6(t--  t') 
(r =0,  (2.2) 

where D is the noise strength, A the modulation 
strength and coo the modulation frequency. In (2.2) 
an additional random phase q5 has been introduced 
to take into account the generally unknown intial 
phase of the external field. As a first step we introduce 
dimensionless variables and parameters ~ = 
] / / ~ x , ( = a t ,  A=A]//b/aZ,~o=O)o/a and D=Db/a 2. 

Since this scaling is used throughout this paper we 
omit the bars from now on. In scaled variables, the 
Langevin equation (2.2) thus reads 

2 = x - - x  3 +A  sin(e) 0 t +qS)+ ~(t), (2.3) 

where the statistical properties of the noise r (t) are 
the same as in (2.2). Since (2.3) describes a nonstation- 
ary Markovian process the statistically equivalent one 
dimensional Fokker-Planck equation (FPE) reads 

8P(x, t) _ 8 ( x _ x 3 +  A sin(co ~ t +qS))P(x, t) 
8t 8x 

82 
+D 8x 2 P(x, t) 

( ) = 5 f o - A ~ x  sin(coo t+~b) P(x, t) (2.4) 

where the drift coefficient contains a time periodic 
part and where 

02 

~ * a O = -  ( X - - X 3 ) - + - D  8 X  2 �9 (2.5) 

The discrete time translation symmetry of the drift 
coefficient with the period T= 2 re/co o allows a Floquet 
- ansatz for the solution of (2.4), i.e. we seek for solu- 
tions of the form [12, 13] 

PU(x, t)= exp(-- #t) p,(x, t) 

pu(x, t) = pu(x, t+ T). (2.6) 

We term the quantities /~ quasi-eigenvalues and the 
complex functions p,(x, t) quasi-eigenfunctions. The 
general solution of (2.4) may be expressed as a super- 
position of {PU(x, t)}, which we assume to be com- 
plete. This procedure is in analogy to the quasi-energy 
concept in quantum mechanical systems [14] with 
a periodic driving. Expanding the periodic function 
p~ (x, t) into a Fourier series 

pu(x,t)= ~, p~,(x) exp(in(co o t+qS) (2.7) 
n = - o o  

and inserting (2.6) and (2.7) into the FPE (2.4) we 
find the infinite hierarchy of partial differential equa- 
tions for the complex functions pU,(x) 

Gq # 
(~q~o -- (i n co o -- #) 1) pun (x)-- } iA ~ x  (Pn +1 (X) 

- p . " _ ,  ( x ) )  = o .  (2.8) 

In order to obtain (2.8) one has to use the orthogona- 
lity of the trigonometric functions. 



An alternative concept for treating the nonstation- 
ary Markovian process (2.3) is to avoid the time de- 
pendent drift coefficient by extending the Langevin 
equation (2.3) to the two dimensional system 

2 = x -  x 3 + A s i n ( 0 )  + ~ (t) 

0 = COo, (2.9) 

being a stationary Markovian pair process in x and 
0. The additional phase variable 0 is a random vari- 
able due to its random initial condition 0(0)= ~b. The 
corresponding two dimensional time homogeneous 
Fokker-Planck equation reads 

~?t = Yo--A sin(0) --COo W(x, 0, t) 

= ~  w(~,  o, t). (2.to) 

In order to solve (2.10) we have to specify boundary 
conditions 

W(x--, + 0 % 0 , 0 = 0  

W(x, O, t)= W(x, 0+2~,  t). (2.11) 

The natural boundary conditions in x are appropriate 
for a confining potential (such as the quartic double 
well potential) and the periodic boundary conditions 
in 0 are chosen, since the random phase 0 is observ- 
able only modulo 2m Expanding W(x, O, t) into a 
Fourier series with respect to 0 

o o  

W(x, O, t)= ~ c,(x, t) exp(inO), (2.12) 
n =  - o o  

and inserting this expansion into (2.10) we obtain after 
some algebraic manipulations the infinite hierarchy 
of partial differential equations for the complex-va- 
lued functions c, (x), i.e. 

1 
G=(Sfo-inCOo 1) G(x, t ) - i A  2 t?x 

(c. +~ (x, t) - c._1 (x, t)). (2.13) 

Since the Fokker-Planck operator 5~s~ in (2.10) is 
time independent it has well defined eigenvalues and 
eigenfunctions, i.e. (2.10) has solutions of the form 
p(x, O) e x p ( - 2  t). For the coefficients the correspond- 
ing ansatz 
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leads to the linear infinite system of differential equa- 
tions for the complex coefficients k,(x) 

0 = ( S o  - -  (i n COo - -  2)  1) k .  ( x )  - i A  - - -  

�9 (k.  +~ ( x ) -  k . _ l  (x)). 

1 

2t?x 

(2.15) 

Since (2.14) and (2.8) are identical we can make the 
important conclusion [12]: The eigenvalues of the two 
dimensional FPE (2.10) are identical to the quasi-eigen- 
values of the one dimensional FPE (2.4) with time peri- 
odic drift coefficients�9 This conclusion allows to apply 
the well known spectral theorems for time indepen- 
dent Fokker-Planck operators [i5] to our time de- 
pendent problem by studying the extended two di- 
mensional FPE. Although two dimensional Fokker- 
Planck equations seem to be well understood for a 
number of particular systems [13], our FPE (2.10) 
requires much care concerning initial preparation ef- 
fects and ergodic properties. The origin of this compli- 
cations is a branch of purely imaginary eigenvalues 
of the Fokker-Planck operator in (2.10) which does 
not occur in standard Brownian motion problems, 
or Fokker-Planck equations for the laser [13]. This 
branch can be derived from the hermitian adjoint ei- 
genvalue equation corresponding to (2.10), i.e. 

~e;~ ~o. (~, 0) = - ;o. ~o. (x, 0) 

0 
5 ~  = ~r + A sin 0 ~-x + co o ~0" (2.16) 

The ansatz for x-independent left-eigenfunctions 

~o,(x, 0) = (po, (0) (2.17) 

leads to the ordinary eigenvalue problem 

COo 0 0  ~Oo.(0)= - 2 0 . 9 0 .  

(po, (0) = ~0o,(0 + 27c), (2.18) 

with the solution 

(po.(O)=exp(-inO) 
2o,=incoo n= +1, +2  ..... (2.19) 

A consequence of the existence of the branch of purely 
imaginary eigenvalues is the non-mixing property of 
the Fokker-Planck equation (2.10) as shown in the 
following. The dynamics of the x-integrated probabil- 
ity density 

c,(x, t)=k,(x) e x p ( - 2  t) (2.14) p(O, t)= S W(x, O, t) dx (2.20) 
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is given by the equation of motion 

8p(O, t) a 
8t - coo~p(O,t)  (2.21) 

which is obtained by formal integration of the FPE 
(2.10). The solution of (2.21) with the initial condition 
p(O, O) = h(O) reads 

p(O, t)= h(O- co o t). (2.22) 

The probability density p(O, t) does not approach a 
stationary distribution, unless one already starts with 
a uniform distribution in 0 (implying uniformly dis- 
tributed initial phases q~), i.e. 

1 
p (0, t = 0) = 27~" (2.23) 

This behavior is a direct consequence of the purely 
imaginary eigenvalues, since the positive real part of 
the eigenvalues of a Fokker-Planck equation is re- 
sponsible for the relaxation towards a steady state. 
The solution (2.22) of (2.21) describes a dispersion-free 
shift (modulo 2 it) of the initial distribution with veloc- 
ity co o . Hence, the solutions with respect to two non- 
overlapping initial distributions h(O) on [0,2re] do 
not mix in course of time, i.e. they do not overlap 
on [0, 2rt]. The FPE (2.10) is thus non-mixing on a 
functional subspace spanned up by the eigenfunctions 
corresponding to the purely imaginary eigenvalues 
[12]. 

2.2. Asymptotic probability distributions for large 
times 

Since the one dimensional Markovian process (2.2), 
described by the FPE (2.4) is with time-periodic drift 
component, an initial probability P(x, 0) does not de- 
cay to a stationary distribution. Instead, for large 
times P(x, t) approaches a periodic asymptotic proba- 
bility distribution P~(x, t), which is not unique, but 
depends on the initial phase r For a uniformly dis- 
tributed initial phase [12] the two dimensional proba- 
bility W(x, O, t) converges to a stationary distribution 
function W~t(x, O) which is determined by (2.10) with 
O W/at =O, i.e. 

O=(~g, Fo--AsinO~--~--coo~--~)VV, t(x,O). (2.24) 

Performing the variable transform 0 ~ s, with 

O=cooS+q~ 

We(x, s) = 2~ W~t(x, coo s + r (2.25) 

we find 

8 We(x' s) =( s176 s in(co~162 gVe(x' s)" (2.26) 

To be consistent with the periodic boundary condi- 
tions in (2.11) we require periodicity in s, i.e. 

Wr (x,s)= We (x, s + 2rc].COo/ (2.27) 

Equation (2.26) has the same form as the FPE (2.4) 
of the original one dimensional time dependent prob- 
lem. The variable s in (2.26) plays the role of the time. 
Since (2.26) requires periodic boundary conditions 
(2.27) in s, we conclude that the asymptotic solution 
of the FPE (2.4) P~{(x, t), which is periodic in t, is 
identical with rVO(x, t), i.e. 

P~](x, t)= l~e(x, t )=2~ W~t(x , co o t+r  (2.28) 

In other words, the stationary distribution of the two 
dimensional FPE (2.10) is, apart from a normalization 
constant identical, with the asymptotic probability of 
the one dimensional FPE (2.4), with 0 being interpret- 
ed as a scaled time. 

The phase averaged asymptotic distribution, de- 
fined by 

/ ~ s ( X ) = ~  o P~(x, t) dr  (2.29) 

is related to the 0-integrated two dimensional station- 
ary distribution, W~ (x, 0) by 

2Jz  

~s(x)= ~ W~t(x, COot+~b) d(o 
0 

2 ~  

= I W~t(x,O)dO=-VV~t(x)" 
0 

(2.30) 

In deriving (2.30) we have used (2.28) and the periodic- 
ity of W,t(x, O) in 0. In contrast to the asymptotic 
probability P~ (x, t) with given phase q~, the phase aver- 
aged distribution P~s(x) is not time dependent. Note, 
that this property holds only true for uniformly dis- 
tributed initial phases q~. 

At this point I want to emphasize that phase aver- 
aging does not restore the strong-mixing behavior (i.e. 
( x ( t )  x(O)> --~ (X> 2 for t -~ oo) of correlation functions, 
even not if we initially start with uniformly distributed 
phases ~b [16]. Correlation functions (more generally 
quantities depending on more than one time argu- 
ment) exhibit after phase averaging ever present un- 
damped periodic oscillations [123. This problem has 



recently lead to some confusion in the context of sto- 
chastic resonance, since the power - spectra of such 
processes contain 6-spikes [11 b, 12, 17]. 

2.3. Transition rates 

Since our potential is bistable the particle can escape 
from one region of attraction to the other. Without 
the time-periodic external field the transition rate be- 
tween the two regions of attraction is given for small 
noise strength D by one half of the smallest non-van- 
ishing eigenvalue of the Fokker-Planck operator s 0 
[13, t5]. This is a consequence of the fact that there 
is only one eigenvalue which converges exponentially 
to zero for increasing Arrhenius factor A V/D. The 
other eigenvalues are well separated from this smallest 
non-vanishing eigenvalue. Thus, this smallest non- 
vanishing eigenvalue determines the dynamics of a 
population for large times, and therefore the rate of 
escape. Within a saddle point approach this eigen- 
value is twice the Kramers rate and reads 

 o: oxp( 
with the barrier height A V= 0.25. 

With the time-periodic external field the two di- 
mensional Fokker-Planck operator in (2.10) cannot 
be transformed to a Hermitian operator. Thus the 
eigenvalues may generally be complex. In this case 
the smallest non-vanishing real part can be identified 
with the transition rate. At first glance this identifica- 
tion seems to be questionable for extremely small 
modulation frequencies (coo~Zo) since in this limit 
the largest time scale is not the escape time, but rather 
the periodic modulation of the potential. Based on 
numerical calculations presented below it turns out 
(i) that there are no other complex eigenvalues than 
those of the purely imaginary branch (vanishing real 
part) and (ii) that the real eigenvalues increase with 
decreasing frequency co o . Thus, the smallest non-van- 
ishing real eigenvalue is not connected dynamically 
to the purely periodic modulation of the potential 
but rather represents the enhanced thermal escape 
rate, even for vanishing small modulation frequencies. 

3. N u m e r i c a l  so lut ion  with  m a t r i x  cont inued fract ions  

3.1. General technique 

In order to calculate the eigenvalues, eigenfunctions 
and the stationary distribution, we have to solve (2.15) 
numerically. In a first step we expand the coefficients 
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k,(x) into the complete orthogonal set of Hermite 
functions {~b,(x)} 

k.(x)=po(x) Z cm~b.,(x), (3.1a) 
m = O  

0,,(x)= n!2,  l /~H, (ex )  e x p - - l o ~ z x 2  (3.1b) 

where H,(x) are the Hermite polynomials and the 
constant e is a arbitrary scaling parameter. The func- 
tion po(X) is a shape function, used to improve on 
the convergence of the matrix continued fraction tech- 
nique. Inserting (3.1 a) into (2.15) and using the ortho- 
gonality and recursion properties of Hermite-polyno- 
mials we finally obtain 

L m' -l- rn' m' 
Qm, m.(n) c .  + Q  . . . .  .cn+t-t-Q~n,  m, e,,_ 1=0, 

ra'=O 

(3.2) 

with the complex-valued matrices 

Q,..,.,(n)= L~o'm'-incoo 6.n.... + 26~..,. 

Q+,,,,,,,, - �89 iA B,,,,,,,, = - Q;,,,,,. (3.3) 

The matrices ~o"'  and B~,,,, are given explicitly in 
Appendix A. Introducing the column matrices 

_Cn~_.(cO, 1 2 3 . . ) r  (3.4) Cn ~ Cn ~ Cn . 

we finally obtain the tridiagonal vector recurrence re- 
lation 

Q,,(2) c,, + Q + _c,,+ 1 + Q-_c,,_ l = o (3.5) 

which forms the basis of our numerical investigations. 
Such vector recurrence relations can be solved (down- 
ward) in terms of matrix continued fractions [13]. 
Inserting the ansatz 

S,, _c,, = c,, + 1 (3.6) 

into (3.5) one readily finds the two-point recursion 
for S, 

Sn_ 1(,~)= - [Q~(2)+ Q+ sn(2)] -1 Q-,  

which can be solved iteratively for So, yielding 

So(,~)= 
1 

(3.7) 

.Q-. 
1 

Q~(A)-Q + Q-  
i 

Q2()~)- Q + Q-  
Q3(2) ... 

(3.8) 
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The fractions denote matrix inversions. Inserting (3.6) 
into (3.5) for n = 0  yields the determinantal condition 
for the eigenvalues 2 

det [Qo(2) + Q+ So(2) + (Q+ So (2"))*] = 0. (3.9) 

In deriving (3.9) we have used the identity _c,,(2) 
=-c*-m(2*). The complex valued eigenvalues are ob- 
tained from the complex-valued determinantal condi- 
tion (3.9) by using a two dimensional regula falsi. 
Note, however, that the purely imaginary eigenvalues 
20m= im co o cannot be found with (3.8) and (3.9). The 
reason is that the matrix inversion in (3.7) is not possi- 
ble for n=m, since the occurring matrix Q,,(2 
=im coo) + Q + S,,(2 =im coo) has a vanishing determi- 
nant [181. The same problem occurs in the calculation 
of the stationary distribution W~(x, 0) (2=0) for coo 
=0. For real eigenvalues 2 ,  the coefficients _c o are 
real (_c,(2r)=_C*_,(2~)) and (3.9) is simplified to 

det [Qo (23 + 2 Re (Q + S o (2,)) ] = 0. (3.10) 

The MCF technique is also useful for finding approxi- 
mations for the reduced one dimensional probability 
distributions. As shown in appendix B it is possible 
to derives an exact master-like equation for the phase 
averaged probability distribution. 

Finally I want to remark, that one can reduce 
the numerical computation times by making use of 
the particular symmetry of the eigenfunctions, valid 
for a symmetric potential V(x)= V(-x) 

�9 + (x, 0)= ~+ ( -x ,  0+n) 

�9 -(x, 0)= - ~ - ( - x ,  0+n). (3.11) 

The splitting into two symmetry classes follows from 
the fact that the symmetry operator 8: (x---,--x, 
0 ~ 0+ n) commutes with the Fokker-Planck opera- 
tor in (2.10). In the expansion of ~-+ (x, 0) into trigono- 
metric functions with respect to 0 and Hermite func- 
tions ~p,(x) with respect to x, only those terms 
~, (x) exp (im 0) with the correct symmetry have to be 
taken into account. This reduces the computation 
times by approximately a factor of 8. However, to 
keep this technical section as general as possible (al- 
lowing also asymmetric potentials) we don't use this 
particular symmetry. 

3.2. Asymptotic probability density for large times 

As shown in Sect. 2, the asymptotic probability den- 
sity is given by the stationary distribution of the two 
dimensional Fokker-Planck equation (2.10) being the 
eigenfunction corresponding to the vanishing eigen- 
value. In order to calculate this eigenfunction we have 

to compute all expansion coefficients {-c,}~=o from 
(3.5) with 2 = 0  (note that for real eigenvalues the ex- 
pansion coefficients obey the relation _Cn =_C*~), i.e. 

W~,(x, 0)= ~ c'~O,(x)+ ~ ~ 2(Reck") 
m = 0  m = 0  n = l  

�9 cos(n0) 4 , , , ( x ) -2 ( Im c2) sin(n0) Ore(X). 
(3.12) 

The stationary distribution in x, i.e. the phase aver- 
aged asymptotic distribution (see (2.30)) is given in 
terms of the coefficients {e~} by 

l?r S W~,(x,O) dO=2n c~O,,(x). 
0 m = 0  

(3.13) 

In a first step we have to determine the coefficient- 
vector _c o. Inserting (3.6) into (3.5) for n = 0  and using 
-cl =-c*-1 we find the solvable linear algebraic equation 
for -co 

[-Qo (0) + 2 Re(So(0) Q+)] _Co = 0, (3.14) 

where So(0) is given in terms of the infinite matrix 
continued fraction (3.8) for 2=0.  The other coeffi- 
cients may be determined from -co and the matrices 
S, (0), occurring in the downward iteration procedure 
(3.7) as intermediate results, by 

_c,=S,-1 S,-2 ... So Co. (3.15) 

The normalization of l~t(x ) and W~(x, 0) is given by 

N =  l~st(x) d x = 2 n  ~ c~mrm, (3.16) 
- - ~  m = O  

where r,, can be determined iteratively with 

r 0 ~ 2 ~  7~ 1/4 

/ Y ; + I  
(3.17) 

In Figs. i a-d the altitude charts of the stationary dis- 
tribution are shown for D = 0.1 and coo = 1 for increas- 
ing values of the modulation strength A. As shown 
in Sect. 2.2 the two-variable stationary distribution 
is identical to the asymptotic time dependent proba- 
bility P~(x, t) of the one dimensional FPE (2.4) if 0 
is interpreted as a scaled time. For small modulation 
strength A (Fig. la) the distribution is peaked near 
the potential minima x =  +_ 1 in the whole period 
0=0 . . . 2n ( t =0 . . .T ) .  Close to the line x = 0  we find 
craters in the distribution, i.e. regions which are 
avoided by the system. The most probable path of 
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Fig. l a -d .  The altitude charts of the stationary probability (3.15) of the two dimensional FPE (2.10) is plotted at ~Oo=1 and D=0.1  
for A=0 .1  (a), A=0 .5  (b), A=0 .75  (e) and A = I  (d). The lines are equidistant in each figure; +denotes  a max imum and - d e n o t e s  a 
min imum and a full circle denotes the position of a saddle point 

the system dynamics is along the line x ~ _+ 1, i.e. the 
system remains within one region of attraction. Note, 
however, that even in this case the system has to cross 
one of the saddle points (This kind of saddle points 
are denoted in the following by So). For increasing 
modulation strength A (Fig. 1 b) the lines of constant 
probability become more and more distorted towards 
the line x =0. For further increasing A (Fig. lc) the 
saddle points between the regions of attraction (this 
kind of saddle points are denoted in the following 

by $1) attain approximately the same probabilistic 
weight as the saddle points So, the escape process 
is now strongly enhanced by the modulation. For 
larger A-values (Fig. 1 d) it is more probable to escape 
from one region of attraction as compared to the so- 
journ in one well during one period�9 For further in- 
creasing modulation strength A, the topology of 
W~t(x, 0) changes. The saddle points So vanish at some 
value of A. When the saddle points So have vanished 
it is very improbable for the system to stay in the 
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region of attraction within one period; thus, the sys- 
tem follows the external modulation with a certain 
phase shift. 

Adiabatic probability distribution. For extremely small 
frequencies of the external field we can neglect the 
derivative of 0 with respect to time in (2.9), i.e. 
0 = const. The stochastic differential equation for x 

= X - -  X 3 .~_ A sin (0) + r (t) (3.18) 

contains the parameter 0. The stationary probability 
of (2.10) is given by 

W~d(x, 0) 
1 1 z 1 4 

(3.19a) 

The function l/V~a(x, O) with constant Z, however, can- 
not be interpreted as the asymptotic (large time) one 
dimensional probability in x, where 0 plays the role 
of a scaled time, since the integral over x is not inde- 
pendent of 0, i.e. the normalization is not conserved. 
The normalization Z is thus not a constant, but rather 
depends on 0. Factorizing Z into a 0-dependent and 
an 0-independent part, we find 

0) = ~ exp ( -- x4/(4 D) + x2/(2 D) W.d (x, 

+ A x/D sin(0)) 

~ 1 7 6  sin20 2 ~ "  1/]/~D)) -1 

(3.19b) 

where 

Zo = exp (1/(8 D)) (2D) 1/4 ~/~ (3.19 c) 

and ~,(x) denote parabolic cylinder functions. 
In our system there are three typical time scales, 

the modulation period TM= 2z/COo, the escape time 
T~ = 1/2o ~ exp (AV/D) and the period of the well oscil- 
lator Tw=~. The adiabatic approach is valid if 
TM is much larger than the escape time TE, i.e. 
co o ~ exp (-- A V/D). Thus for decreasing D the adiabat- 
ic approach (3.19) becomes worse. In Fig. 2, the adia- 
batic stationary probability (3.19) is plotted for 
D =0.1 and A =0.1. Although the qualitative agree- 
ment with the numerical result for o) o = 1 (Fig. 1 a) 
is quite good we notice that the sensitivity of the sys- 
tem against the periodic modulation is typically larger 
in the limit of vanishing driving frequency co o . 

Phase averaged probability distribution. The phase 
averaged stationary distribution (2.30) l~t(x) has 

- i  
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Fig. 2. The altitude charts of the adiabatic stationary probability 
(3.19b) for D=0.1 and A =0.1 

some interesting behavior with varying modulation 
frequency. In Fig. 3 a the numerically evaluated sta- 
tionary probability l~t(x ) is plotted for various values 
of the modulation strength A at a modulation fre- 
quency (Oo=10>>20 (Kramers rate (2.31)). For in- 
creasing A the distribution smears out and the maxi- 
ma are shifted toward the saddle point x = 0 .  This 
implies correctly (as shown in the next section) an 
increasing transition rate for increasing A. For large 
modulation strength, the maxima of the distribution 
tend both to zero and the distribution becomes un- 
imodal. This behavior again shows that for large A, 
the distribution is following the external modulation. 
The system does not feel much of the bistability of 
the potential. 

For an extremely small modulation frequency 
(no = 0.001 ~ 20, however, the effect of the modulation 
is to sharpen I~t(x) and to shift the maxima to larger 
values. Figure 3b shows l~t(x) for O)o=0.001 and 
some values of A. This behavior is in agreement with 
an adiabatic approach for the probability distribution 
presented in Sect. 4.2. In spite of the increase of the 
Arrhenius factor l~t(saddle)/l~t(well) of the phase 
averaged stationary probability density, the activa- 
tion rate increases with increasing modulation 
strength A. This feature is discussed further in 
Sect. 4.2, 

3.3. Transition rates, smallest non-vanishing eigenvalue 

With our MCF technique we can numerically deter- 
mine all eigenvalues (real and complex) of the two 
dimensional FPE (2.10). Performing the numerical 
calculations described in Sect. 3.1, we find apart from 
the purely imaginary branch only real eigenvalues. 
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Fig. 3a and b. The stationary, phase averaged probability (3.16) is 
shown for a large frequency ~Oo = 10 (a) and for a small frequency 
co o =0.001 (b) for various values of the modulation strength A. In 
both figures the noise strength was D = 0.1 

Those real branches start for A = 0 at the eigenvalues 
of L o and remain real for increasing A. We did not 
find any bifurcations of two real eigenvalues into a 
complex-valued eigenvalue, neither for small nor for 
large modulation frequencies. Thus, the smallest non- 
vanishing real eigenvalue represents the escape rate, 
we are interested in (see also Sect. 2.3 for remarks 
on the small frequency limit)�9 Figure 4 (solid lines) 
depict the rate enhancement 

~ r n i n  ( A ,  ( D o )  
,u(A, COo)- 1, (3.20) 

2o 

as a function of the modulation strength A for the 
modulation frequency, co o = 10 and the noise strength 
D = 0.1. Here 2rain denotes the smallest non-vanishing 
real eigenvalue (2.escape rate)�9 The rate enhancement 
increases with increasing modulation strength (ocA 2 

. 0 6  

D=0.1 / 

�9 04 

P 

, 0 2  

0 .  
0 .2  . 4  .6  .8  

A 
Fig. 4. The transition rate enhancement # (for a definition see (3.20)) 
obtained numerically (full lines) is compared with the result due 
to the averaging theory (dashed lines) (4.9) for o) 0 = 10 
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Fig. 5. The rate enhancement factor ~ (for a definition see (4.9)) 
is plotted as a function of the modulation frequency (#0 at D=0.1. 
The numerical curve (full line) connects the high frequency results 
due to the averaging theory (4.9) (dotted line) with the adiabatic 
approach (4.20) (dashed line) 

for small A). In Fig. 5 the rate-enhancement factor 
lc-I~/A 2 is plotted as a function of the modulation 
frequency. For  large frequencies the enhancement fac- 
tor vanishes ocl/co~. For decreasing frequencies, 1~ 
increases up to a finite value, which is reached approx- 
imately at COo~2~r2 o (Kramers rate of the unper- 
turbed system)�9 For further decreasing modulation 
frequency the rate remains constant (plateau)�9 In 
Fig. 5 we have also plotted the approximative results 
due to an averaging theory valid for large modulation 
frequencies (dotted line) and that of an approximate 
adiabatic rate theory for small frequencies (dashed 
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Fig. 6. The rate enhancement factor K (for a definition see (4.9)) 
obtained numerically is shown as a function of the noise strength 
D for co0=l  

Introducing the variable z=x+(A/coo)cos(co o t+q~), 
(4.1) reads 

~ = h  ( z - ~  cos(co o t + q~))) + ~(t). (4.2) 

For large frequencies COo the dynamics of the variable 
z is controlled by the noise ~ and is thus only a weak 
function of o9 o t + qS. The next step consists in averag- 
ing over the random phase (b (which for uniformly 
distributed q5 is equivalent with a time averaging over 
the period T =  2re/coo) by assuming z to be nearly con- 
stant within one period of oscillation. Thus, in a first 
approximation z takes on a fixed average value i, 
i.e. 

(f(z) g(cos(co o t+r (g(cos(co o t+ r  (4.3) 

and the averaged Langevin equation (4.2) has the 
form 

line). Both approximations are discussed in Sect. 4. 
In Fig. 6 the rate enhancement is plotted as a function 
of the noise strength D. The curve exhibits a mono- 
tonic increase for decreasing noise strength. 

~=(h(Z-~o cos(co o t +  ~b)))+ r (4.4) 

Performing the average over the random phase ~b in 
(4.4) yields in virtue of 

4. Theories for the activation rates and probability 
distributions 

In this section theoretical approximations for the 
modulation enhancement are presented and com- 
pared with the numerical results. 

( c o s  2 (coo t + 4 ) )  = �89 

( c o s  3 (coo t + ~ ) )  = 0 

the effective Langevin equation in f, i,e. 

- /  3AZ\ -3 z:zU- )-z +r 

(4.5) 

(4.6) 

4.1. Averaging theory for moderate to 
large frequencies 

Here we assume, that the modulation frequency is 
larger than all typical frequencies of the system. In 
the limit of infinite large frequencies the modulation 
effects vanish in overdamped systems, since the system 
does not allow for a infinite fast reaction. In other 
words, the linear response tends to zero ocA/co~. This 
fact allows the following averaging procedure which 
is similar to the Bogoliubov-averaging technique (see 
for instance in [3 a]) for underdamped nonlinear os- 
cillators. In a first step we start from the Langevin 
equation (2.3) which can be written in the form 

d I x +  A cos(coot+C/~)]=h(x)+~(t) 

h ( x )  = x - x 3. (4.1) 

The Langevin equation (2.3) is thus approximated by 
an effective Langevin equation, describing the over- 
damped stochastic motion in the averaged bistable 
potential 

1 1 q_3A2  2 
Vav(Z)=~z - ~  2co~} (4.7) 

Here the modulation parameters A, co o enter solely 
in the combination A/coo. An approach for the escape 
rate r is obtained by using the Kramers formula [1] 
valid for small noise strength D, i.e. 

r ( A ,  coo)='~(A, ~Oo)/2 
f 

= { V "  (0)[ V~'v' (Zmin) e x p  ] - -  ~ - - ;  (4.8) 

for the effective potential (4.7). Here Zmi n denotes the 
position of one of the potential minima. To be consis- 
tent with the averaging procedure we have to assume 



small values for A/coo. In leading order we finally 
obtain for the rate enhancement 

) P -  20 = ~ - 2 = ~:Th A2, (4.9) 

where ~CTh is independent of A. The enhancement 
increases with decreasing frequency and increases 
with increasing modulation strength. This behavior 
is in agreement with the numerical results of Sect. 3.3. 
In Fig. 4, (4.9) (dotted line) is compared with the nu- 
merical results for coo=10. As expected from the 
theory, we find good agreement for not too large 
values of A/co o . The agreement becomes still better 
for increasing frequency as seen in the table below, 
where we compare the numerical ~ values with the 
theoretical values (4.9) (see also Fig. 5). 

co o 1 10 50 

~c.~m 7.016 0.065 0.0025 

~cT~ 6.0 0.060 0.0024 

The A2-1aw in (4.9) is confirmed very well by the nu- 
merical investigations. The numerically calculated 
quantity /r has turned out to be constant to a high 
degree of accuracy for small values of A/co o . 

The averaging theory above also provides proba- 
bility distributions for the averaged variable ~. The 
stationary distribution of ~ corresponding to (4.6) 
reads 

W,v(f)= Z_ 1 exp { V,~)} ,  (4.10) 

with 

Z = ]//-~ (2 D) + 1/4 exp ((1 -- 3 A2/(2 coo2))2 ~ 

1 - 3 A2/(2 cooz)~,, 
: (4. 1 1) 

and ~ ( x )  being a parabolic cylinder function. The 
maxima of the averaged distribution are shifted to 
smaller values for increasing modulation strengths A, 
i.e. 

+ 1  i ] ,2= - - ~ - ~ ,  (4.12) 

531 

and the barrier height is reduced to 

1 3 A 2 
(4.13) AV, v(A, coo): 4 4 COo z" 

Shifts of the maxima, the reduction of the potential 
height, as well as the bimodal-monomodal transition 
are also obtained numerically for the phase averaged 
distribution/~(x) in Sect. 3.2. The agreement with the 
formulas above, however, is only qualitatively; the 
quantitative agreement is rather poor. This is not sur- 
prising, since the distribution of an averaged variable 
Z need not necessarily agree with the averaged distri- 
bution of the variable z. The transition rate, however, 
is approximated very well with the very same effective 
Langevin approach (4.6). On the other hand, if we 
compare the Kramers rate obtained from another hy- 
pothetic effective Langevin equation, where the un- 
derlying potential is derived from the exact phase 
averaged distribution, i.e. V,~(x)= - O  ln Pas(x), the 
agreement with the numerically evaluated escape rate 
is rather poor. Thereupon we can draw the following 
conclusion: The escape rate obtained from an effective 
Langevin equation, where the underlying potential is 
obtained from the exact phase averaged distribution 
~s(x) is not correct. The two-dimensional escape pro- 
cess is better approximated by the dynamics of the 
averaged variale Z. 

Moreover, from (4.12) one obtains a critical value 
for A, when the bimodal distribution Way(if) becomes 
monomodal 

Ac = COo ~/~. (4.14) 

For increasing frequencies the critical value of A also 
increases. This behavior is due to the decreasing sensi- 
tivity of the system for increasing modulation frequen- 
cies. The precise value of Ac in (4.14) can not be com- 
pared to that obtained numerically for the phase aver- 
aged probability distribution, since: (i) both distribu- 
tions (phase averaged distribution and distribution 
of the averaged variable) do not agree for the reasons 

explained above and (ii) the ratio At~coo = ~ is not 
small. Thus we are outside the region of support of 
the averaging theory. In contrast, the adiabatic poten- 
tial 

1 9 V~d(x ,O)=�88  (4.15) 

where 

2 ~ 1 ( A 2 s i n 2 0 ~ D ] n  
f(0)-- =o n~.V 4D2 ] ~ - n -  l/2 ( - -1 / l / /~ )  

(4.16) 

is only bimodal (during the whole period 2~z) for A 
< Ao = ~ [17], formally for all coo. 
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4.2. Adiabatic rate theory for very small frequencies 

For small frequencies our averaging technique in 
Sect. 4.1 is not valid. In the case of extremely small 
frequencies, i.e. coo ~ escape rate, we can construct an 
adiabatic rate theory. The adiabatic potential corre- 
sponding to the two dimensional stationary adiabatic 
probability distribution is given by (4.15). A different 
initial phase q~ of the field corresponds to a different 
value of 0. The idea consists in calculating the escape 
rate out of one potential well for fixed 0 and then 
to average over the uniformly distributed phase 0. 
The extrema of the adiabatic potential are given by 

xu= - A  sin O+O(A 3) 

A 
xs = 1 +~-  sin 0 -  A 2 sin20+ O(A3), (4.17) 

where x. is the position of the saddle point and x s 
is the position of a minimum of the potential. The 
barrier height is given for small A by 

AV~d(0)=I+ A sin O+3A 2 sinZ 0. (4.18) 

Note, that <AV(O)> o=l/4+ 3A2/8> AV(A=O)=l/4 
is on the average larger than the barrier height with 
A=0.  The 0-dependent Kramers rate is thus given 
by (see (4.8)) 

~ 2 ~ (  3 69 A2 sin2 0) r(A,O)= I + ~ A  s i n 0 - ~  

�9 e x p { - - ( 4 @ + ;  sin 0+4@A2 sin20)}. 

(4.19) 

Here, terms in the prefactor of order higher than A 2 
are neglected. For small modulation strength AID ~ 0 
and D ~ 0 (steepest decent approach) we can expand 
the exponent in (4.19). Averaging over 0 yields for 
the rate enhancement (3.23), (see also Ref. 10) 

<F(A,O)> =(_4~2 43D) AZ=tcadA z. # (A, co = O) = r (A = O) 1 1 

(4.20) 

Since corrections terms to the steepest decent approx- 
imation, used to derive the Kramers formula, contrib- 
ute to the terms of order D o (which occur after averag- 
ing (4.19)) we have canceled this term in order to 
keep consistently only the leading order contributions 
for small noise strength D. We again find a rate en- 
hancement, being proportional to A 2. At first glance 
this seems to be surprising, since the 0-dependent po- 
tential height A V(O) is on the average larger than the 

barrier in the absence of modulation. The average 
over the exponential function of A V, a(O ) weights 
smaller potential heights (for some values of 0) expon- 
entially higher than large barrier heights, leading to 
the rate enhancement. The prefactor ~aa is typically 
larger than ~:Th in the large-frequency regime. In Fig. 5 
~:ad is compared against the numerical results. The 
exact value for ~c approaches ~caa in (4.20) for vanishing 
frequencies (up to steepest descent errors) satisfactori- 
ly. Note, however, that the rate enhancement ap- 
proaches the adiabatic limit (4.20) only for very small 
modulation frequencies ~Oo< 2r~.(escape rate). 
For a modulation frequency which is comparable to 
the typical intra-well frequency (coo = 2) the rate en- 
hancement is well below its adiabatic value. Thus a 
rate theory [19] based on a two state master type 
equation approach with the transition rate taken from 
the adiabatic approach is questionable for modula- 
tion frequencies larger than the thermal hopping fre- 
quency. 

For the phase averaged probability distribution 
we can also find an adiabatic expression. The adiabat- 
ic stationary probability distribution is given by 
(3.19). Performing the 0-average, i.e. 

1 2~ 
/~a(x) = ~ W,a(x,O)dO (4.21) 

0 

we find in leading order in A 

_ 1 
(4.22) 

In order to derive (4.22) we have expanded the sum 
in the denominator in (3.19b) up to the order A 2. 
To perform the 0-integration we have used the expan- 
sion of exp(z sin 0) and exp(z cos 0) in terms of modi- 
fied Bessel functions I,(x). A consistent truncation 
of the resulting infinite series then yields (4.22). The 
averaged stationary probability/~a(x) shows maxima 
at 

A 2 
2 = I + ~ + O ( A  4) X1,2 (4.23) 

and a minimum at Xo=0. The barrier height of 
Usa(X)-- --D ln/~d(X) is increased due to the modula- 
tion, i.e. 

1 A z 
A U,a = ~ + ~-~ + 0 (A4). (4.23) 

The shift of the extrema and the increased barrier 
height are in qualitative agreement with the numerical 
results for the phase averaged distribution in Sect. 3.2. 



Although the barrier heights of the adiabatic poten- 
tial Uad(X) increase for increasing modulation 
strength, the activation rates also increase. Calculat- 
ing the Kramers rate within the effective potential 
U,d(x), we find a rate-depression p-=l--A2/(4D2)(1 
--2D). Just as in the high frequency case in Sect. 4.1 
we conclude, that the potential of the exact phase 
averaged distribution does not produce the correct 
transition rates. 

5. Comment  on external fields with finite coherence 
times 

In Sect. 2.1 we pointed out, that the coherently (per- 
fect periodic) modulated stochastic system are non 
mixing. The origin for this non-mixing property is 
the one dimensional dispersion free dynamics (2.18) 
of the x-integrated probability density (2.20). A realis- 
tic model, however, has to take into account a finite 
coherence time for the modulation mechanism, since 
no experimental setup produces a real single-fre- 
quency signal. In the case of a laser modulation for 
instance, the coherence times are well known and 
measurable. In order to include a coherence destroy- 
ing mechanism in our model, we add a fluctuating 
part to the frequency coo, modeled by a Gaussian 
white noise. The extended Langevin equations read 

J c = x - x  3 + A sin 0+  ~(t) 

0 = coo + ~s(t), (5.1) 

with 

(~ ( t ) )  = (~z( t ) )  = 0  

( ~(t) ~(t')) = 2D 6(t-- t'), 

~(t), ~f(t): Gaussian. 

(r  (t) ~f (t')) = 2 Q ~ (t - t') 

(5.2) 

The term 

t 

F ( t ) - A  sin O=A sin(co o t+~b+ ~ ~r (5.3) 

may be interpreted as a non-Gaussian colored noise 
with zero mean (due to @averaging) with the correla- 
tion function [6] 

(F(t)F(t ' ) )=A e exp ( -QI t - t 'D  cos(coo(t-t')). (5.4) 

From (5.4) we recognize that the frequency-noise 
strength Q has the physical meaning of an inverse 
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coherence time re, i.e. zc= 1/Q. The Fokker-Planck 
equation corresponding to (5.1) and (5.2) reads 

8W(x,O,t) ( ~_~ 8 
8 t = ~cf~ -- A sin 0-- co o 80 

1 8  2 
w(x,o,t) 

- ~ 2  + W(x, o, O. (5.5) 

The adjoint Fokker-Planck operator 

~ x  0 1 0 2 
A sin O + coo u v % 802 (5.6) 

has the x independent eigenfunctions gOo,(O), obeying 

coo ~ ; . ( 0 )+  1 ~&(o)=  - 20. ~Oo.(0) (5.7) 
"C c 

Using periodic boundary conditions, i.e. ~0o,(0) 
= (po,(0 + 2re), one finds 

~oo, (0) = c x p ( -  inO) 

20, =incoo+ l~n a (5.8) 
zc 

The additional phase diffusion term makes the former 
purely imaginary branch of eigenvalues complex with 
a finite real part. The Fokker-Planck equation (5.5) 
is therefore strongly mixing [15]. The probability dis- 
tributions P(x, t) and W(x, O, t) approach a steady 
state for any initial distribution. The correlation func- 
tion (x(t)x(t ')) which exhibits undamped oscillations 
[121 for infinite coherence times ( ~  oo) leading to 
6-spikes in the power spectrum, are now regularized 
for rc finite. Thus the power spectrum shows Loren- 
zians with finite peak heights and widths [12]. In 
a future publications the influence of finite coherence 
times on the "stochastic resonance" will be discussed 
in detail. 

6. Conclusions 

We have considered the activation process in a bi- 
stable potential with thermal noise being driven by 
an external periodic field. The dynamics of the nonsta- 
tionary Markovian process has been described in 
terms of quasi spectral properties, where the quasi- 
eigenvalues have been proven to coincide with the 
eigenvalues of an extended two-dimensional time ho- 
mogeneous FPE. The activation process has been dis- 
cussed explicitly in terms of the asymptotic periodic 
probability densities and the transition rates. Both 
quantities have been obtained numerically using a 
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matrix continued fraction method. Moreover, ap- 
proximate theories for small and large modulation 
frequencies have been presented. The resuIts of these 
aproximations have been compared with the numeri- 
cal data. At this point I want to emphasize, that the 
numerical errors in all numerical evaluated curves are 
within the line thickness. 

The technique presented in this paper is not re- 
stricted to the quartic double well potential (2.1), but 
holds for very general potentials V(x), such as a peri- 
odic potential or a asymetric potential. It opens a 
huge field of applications in quantum optics (periodic 
modulated lasers), surface science (classical model for 
laser assisted desorption processes), transport theory 
(field induced mobility and conductivity effects) and 
in the theory of superconducting devices (Josephson 
junctions with microwave radiation [-10] ). 
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Appendix A: Explicit expressions for the matrices Lo 
and B 

The matrices Lo and B are of course dependent on 
the special choice of the shape function po(x). For 
Po (x)= 1 we find 

E T b " = - - 2 + 2 ~  T~-~ 4e 2 2 D e 2 ( 2 n + l  6n,. 

{~ 1 n .}_2~2}]//n(n_1)6.,.+2 
-t- -~ g2 2~2 

f 1 3 n D 2) 

�9 ]/(n+l)(n+2)6.,m_2 

1 ]/n(n- 1) (n--2) ( n -  3) 6.,,,+4 
4~  2 

+ ~--~]/(n+ l)(n+ 2)(n+ 3)(n+4)6.,,.-4 

B . . . .  ~ (  n ~ 1 6 ,  ,,_ l -- [//n a .... +l) (A.1) - l / ~  

The shape function po(x)= 1 has turned out to be 
convenient for the calculation of the stationary distri- 
bution. For  the eigenvalues it has turned out, that 

the shape function po(X)= 0o(X), where 0o(X) is given 
in (3.1) produces a better convergence. In this case 
the matrices Lo and B take the simpler form 

/26" = n(1- 2@ n) ~5 .. ,, + (1-- 2~z (n --1) + 2 c~2 D) 

1 n i / ( n +  1 ) (n+2)  a., . ,_ 2 .r ta.,o+2-  

1 ]/n(n_l)(n_2)(n_3)C~,m+4 
2o~2 

B"' " = -- a ~ / ~  6,.,, + 1 (A.2) 

Appendix B: Master equation approach for the time 
dependent phase averaged reduced probability 

In a first step we perform the Laplace transform of 
(2.13). With (s real) 

g.= ; exp(-st)c,(x,t)dt, (B.I) 
o 

we obtain 

-- c,(x, 0) -=(fo --(incoo + s) 1) g,--�89 s c,+ I 
+�89 5~ 1 c,- t, 

with 

(B.2) 

0 
- 0 x  (13.3) 

The function c,(x, 0) can be determined from the ini- 
tial distribution. If we assume a factorized initial 
probability with a uniform 0 dependence, i.e. 

W(x, o, t = o)= Wo (x) (R4) 

we find for c,(x, O) 

e,(x, 0 ) = ~  i ~ o W(x,O,t=O)exp(-inO)dO 

= 6. ,  o Wo(x).  (B.5) 

Thus, the system of partial differential equations (B.2) 
is homogeneous for n =~ 0. The transfer operators ~,, 
defined by 

S, (s) ~, (x, s) = g, +1 (x, s), (B.6) 

obey the operator recursion 

S , -  1 (s)= - l  iA [~L,r --(incoo + s) 1 
�89 ~.q~, S,(s)] - I  ~g~ a . (B.7) 



Since the functions ~,(x, s) obey the relation 

~_.(x, s)= ~* (x, s), (B.8) 

which follows f rom the fact, that  W(x, O, t) has to be 
real, we obtain  f rom (B.2) for n---0 

-Wo(x)=(~o-sl)go(X,S)+ ~i  f((S)go(X,S) (B.9) 

with the opera to r  

I((s) -- - Re (iA So (s)). (B. 10) 

Using the convolu t ion  theorem for Laplace trans- 
forms we find the exact integro-differential equa t ion  
for Co(X, t) 

C 0 (X, t) = ~0  CO (X, t) "~ ~'1 i K (t--  t') c o (x, t') d t' (B.11) 
0 

where the Laplace  t ransform of the operator-kernel  
K ( t -  t') can be formally written as an infinite opera tor  
cont inued fraction 

I A2/4 A2/4 ~1 t f~(s) 
Re[5~  o - io) o - s -  ~1 

B 

So_  2icoo_ S - ...-~1 
(B.12) 

Since c o (x, t) is identical with the phase averaged one 
dimensional  probabil i ty,  i.e. 

2 ~  

P ( x , t ) = ~  ! W(x,O,t) dO=co(x,t ). (B.13) 

Equa t ion  (B.11) is an equa t ion  for the phase averaged 
probabi l i ty  distribution. The opera to r  cont inued frac- 
t ion (B.12) can be expanded  in powers  of  A 2, yielding 
in lowest order  the integro-differential equat ion  for 
Co(X, t) 

�88 Co(X't)=~CoCo(X,t)- A2•  S exp(L'qo(t-t '))  
0 

�9 c~176 ~1 Co(X, t')dt'. (B.14) 
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