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Abstract, In the presence of a static potential drop a car- 
rier stream incident at a contact of the sample is parti- 
tioned into the other contacts according to the transmis- 
sion probabilities of the sample. The bare response to 
oscillating potentials, on the other hand, violates current 
conservation due to the piling up of unscreened charges 
in the sample, and has to be modified by taking the in- 
duced screening potential into account. We present a 
novel derivation of the conductance response to oscillat- 
ing external chemical potentials, find the response to an 
arbitrary internal potential in terms of functional deriva- 
tives with respect to the local potential of the scattering 
matrix of the conductor, and determine the screening po- 
tential for slowly oscillating potentials from the condi- 
tion of local charge neutrality. We find that the current 
partitioning depends on ratios of local densities of states 
which reflect the injection and emission properties of the 
contacts of the sample. 

PACS: 72.10.Bg; 72.30.+9; 73.50.Td; 72.70.+m 

I. Introduction 

In a mesoscopic conductor with unequal static chemical 
potentials/~ at the contacts c~ = 1, 2, 3 .... a carrier stream 
incident in probe ,0 is partitioned into the differing probes 
of the conductor according to the total transmission 
probabilities T~ of the conductor. The current at probe 

is determined by [1] 

L = (1) 
/t  

where at kT=O, g~=(e2/h)(M~-R~) and g~p= 
-(e2/h) T~p for ~ :r Here M~ is the total number of 
channels below energy E in contact ~ and R~ is the total 
reflection probability for carriers incident in contact ~. 
The current is conserved since M~ = R ~  + ~  T~p = R ~  

B 
+ ~ ,  T~p. The transmission and reflection probabili- 

ties depend on the equilibrium electro-static potential. 
The actual potential distribution inside the sample which 
arises in the presence of transport is irrelevant [ 1, 2]. In 
contrast in the presence of oscillating voltages applied to 
the contacts of the sample the partitioning of currents is 
in part determined by the internal potential distribution 
which unscreened charges induce. This internal potential 
in turn generates currents in the contacts of the sample. 
We present a solution of this problem for a metallic con- 
ductor (in an insulating environment). The solution in- 
vokes three steps: First we determine the current and 
density response to external potentials which act only on 
the carriers in the contacts [3]. In a second step the in- 
ternal potential is calculated using Thomas-Fermi screen- 
ing of the excess carriers injected into the sample as a 
consequence of the external perturbation. In a third step 
we find the current induced into the contacts by the in- 
ternal potential. 

Both ac-theories and ac-experiments are of consider- 
able current interest. We can refer the reader only to a 
very few recent works [4-7]. Typically ac-theories treat 
the response to a field which is presumed to be known 
everywhere inside the sample. In the most simple cases 
the electric field is even taken to be uniform throughout 
the sample. The discussion presented below dispells the 
notion that an ac-response can be discussed assuming the 
field to be known. What counts is the response to the 
actual, sample-specific self-consistent potential. Com- 
pared to formal response theory [7] our results are simple 
and provide physical insight. 

First we present a direct and simple calculation of the 
current reponse to external chemical potential oscilla- 
tions: in earlier work [3] the external response was ob- 
tained with respect to preturbations specified in terms of 
electrical and magnetic potentials. The external re- 
sponse was found by evaluating a linear response kernel. 
The derivation given below avoids any appeal to formal 
linear response theory. Second we derive a novel result 
which gives the response to an arbitrary internal poten- 
tial. For slowly oscillating potentials this response can be 
expressed in terms of functional derivatives with respect 
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Fig. 1. Multi-probe conductor with wide metallic contacts at time- 
dependent chemical potentials p~. Currents are evaluated at the 
surfaces S~ located deep in the contacts 

to the local potential of the scattering matrix of the con- 
ductor. 

We consider a metallic conductor with an arbitrary 
number of contacts a = 1, 2, 3,... as shown in Fig. 1. The 
contacts widen into massive metallic conductors which 
serve as equilibrium electron reservoirs. At these contacts 
the conductor is connected to an external macroscopic 
circuit. The external circuit imposes at each contact either 
a voltage (electro-chemical potential) or a current. The 
external circuit is described by a macroscopic admittance 
matrix. We are intersted in the relation between currents 
and voltages at the contact of the sample if one or more 
of the externally imposed currents or voltages are oscil- 
lating functions of time. For frequencies which are not 
too large the metallic conductor of interest here is in a 
locally charge neutral state at all times. Hence, like in the 
dc-case, the sum of all frequency-dependent currents must 
add up to zero. The crucial problem which must be solved 
is thus to find a current conserving relationship between 
the frequency-dependent currents and the frequency-de- 
pendent voltages (chemical potentials) at the contacts of 
the sample. 

H. Response to external perturbation 

We begin our analysis with the investigation of the re- 
sponse of the conductor to oscillating chemical contact 
potentials. Initially, we consider non-interacting electrons 
subject to an equilibrium confinement potential and (pos- 
sibly) subject to an elastic impurity potential. At the con- 
tacts the conductor is connected to electron reservoirs at 
potentials ~ (t) =/~0 + JP~ cos (cot) where/-to is the equi- 
librium electro-chemical potential and Jp~ is the modu- 
lation amplitude of the chemical potential at contact a. 
The modulation of the chemical potential gives rise to a 
perturbation --e~ma~m&t~ (t) in the (grand canonical) 
Hamiltonian of the system. Here a~m annihilates a carrier 
in contact e in quantum channel m and a~m creates a 
carrier in contact a in quantum channel m. As a conse- 
quence of the modulation [8] of the potential the time 
evolution of the operator a~m acquires an extra phase 

q~ ( t ) =  - ~  dtOp~ cos(ogt)/h = -(&t~/hog)sin(ogt) 

and is given by 

a2m (E, t) = a~m (g) exp ( - i (E~m -r t/h + (a (t)). 

We are interested in the linear response and can expand 
exp( - i~b  (t)) to first order in &t~. In addition to an 
amplitude at E the time evolution of a (E, t) now contains 
side-bands at energy E +  ha) and E - h o 9 .  Alternatively 
we can say that the annihilation operator a~m (E) at en- 
ergy E in the presence of the potential modulation is a 
superposition of carriers which have been annihilated at 
energy E and remain unaffected by the presence of the 
modulation, by carriers which have been annihilated at 
energy E § h o9 and have lost a modulation quantum, and 
by carriers which have been annihilated at energy E -  ho9 
and have gained a modulation quantum, 

alm ( E )  = a~r n ( E )  § a~m ( E - r  hog) ( ~ l l~ /2  ha) )  

-- acl m ( E - -  h(.o ) ((~/.l~ / 2  hco ) . (2) 

The annihilation operators used here obey the commuta- 
tion rule [a~m (E), as ,  (E ' ) ]  + = J~a Jmn J (E-- E '  ). These 
operators are normalized such that (e/h)l/Za~m(E)dE 
is a current amplitude [9]. The current incident in 
channel m in contact ~ is determined by Ic~ m = (e/h) 
X (a~m (t)aotrn ( t ) ) .  The outgoing current in channel m in 
contact a is I~m = -- ( e / h ) ( b ~m ( t ) b~m ( t ) ) where the opera- 
tor b annihilates a carrier in the outgoing channel m in 
contact ~. Using the Fourier transforms of the vectors 
a (t) and b (t) gives for the current operator [9] 

e 
/~ ( t )=~-  J" dEdE" [a~(E)a~ ( E ' )  

- b ] ( E ) b ~ ( E ' ) ] e x p ( i ( E - E ' ) t / h ) .  (3) 

The a and b operators are connected by a unitary trans- 
formation [9] which is (in matrix notation) the scattering 
matrix, b~ = ~, s~p a s. To be definite we assume that each 

B 
reservoir is intersected by a surface O~ and that the scat- 
tering matrices relate the incident current amplitudes on 
these surfaces to the out-going current amplitudes on 
these surfaces. To proceed we solve (2) for a, and use (3) 
to find the current. Invoking the standard equilibrium 
statistical assumptions [9] for the a I we  find an equilib- 
rium admittance matrix with elements [3] ges(co)= 
e(JL  (o9)) /JUs (o9), 

e 2 
g ; s ( o g ) = T  ~ d E T r [ l ~ J ~ p  

f (E)-- f (E + ho9) 
- s~p (E) s~p ( E +  hog)] 

he) 
(4) 

Equation (4) gives the currents at the sample contacts in 
response to the external (index e) chemical potentials. 
The unit matrix 1~ has dimensions equal to the number 
of quantum channels below the Fermi energy in lead ~. 
We are interested in the low-frequency limit of (4). To 
first order in o9 we find from (4), 

gep (CO) __ g~s (0) -- io9e 2 (dN~s /dE) ,  (5) 



where we have introduced the temperature dependent 
density of states 

dE 4~ri ~ dE d f  

Tr [s~p (E) ds~, (E) x 
L dE 

ds~a (E) q 
s~a (E) / (6) 

dE _1 

In contrast to the zero-frequency case, where ~. g~, = 

~, g~p---0 due to current conservation, the sum of the 

frequency-dependent conductances (4) is in general not 
zero. To linear order in co we find 

7, ge (CO) = _icoe2(dN~/dE), (7) 
B 

where dN~/dE=  ~ d N ~ , / d E  is the density of states of 

carriers incident in all contacts and emitted at contact cr 
Similarly 

~. g e  (co) = __ icoe 2 d A 7 / d E  (8) 

is determined by the total density of states dATp/dE= 
~. dN~/~/dE of carriers injected in probe B irrespective 

through which probe they leave the conductor. If no 
magnetic field is present dN~/dE=dN~/dE. Because 
current is not conserved, (4) cannot describe the parti- 
tioning of currents correctly. The simple law I~ (co)-- 
~. g~a(co)lz,(co)/e is not invariant under a common 
B 
shift in potential of all applied voltages. The additional 
charges brought into the conductor by the time-depen- 
dent external potential create an internal Coulomb po- 
tential U~(r, t). 

HI. Response to internal potential 

Next we wish to find the response to a given internal 
potential Ue (r, t). We assume that this potential is non- 
vanishing only inside the sample. We can Fourier trans- 
form this potential with respect to time and consider a 
perturbation of the form v(r) (U+o~ exp ( - icot) + U_o~ 
• exp ( + ico t)). Since the potential is real we have U_,o = 
U~-,o. Again we consider the response to such a poten- 
tial from a scattering point of view. Due to the oscillating 
internal potential a carrier incident with energy E can 
gain or loose modulation energy he) during reflection at 
the sample or during transmission through the sample. 
The amplitude of an outgoing wave is again a superpo- 
sition of carriers created at energy E and at the side-band 
energies. Let us denote the scattering amplitude with 
which a carrier appears in an outgoing channel m in lead 

at energy E__ h co if it was incident at energy E in 
channel n in probe B by S+,~amn (E+_ hco, E) e U+o~. With 
this notation we find for the operator b which annihilates 
a carrier in an outgoing channel, 
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b~m(E)= ~. (S~pmn(E) a~n(E) 
.On 

+ s-,~mn(E,E + hco )eU-~apn(E + hco ) 

+ s +,~m.(E,E-  hco )eU+~ ap.(E-hco)).  
(9) 

Using (9) and (3) a simple calculation, similar to 
the one that leads to (4), gives for the current at 
probe ~, I~ (co) =g~ (co) U+~o, a conductance g~ (co) = 
-(e2/h) ~. ~ dETr  [1 with 

p 

Tr [1 - Tr [s~ (E) s +,~ ~ (E + h co, E) f (E) 

+st-,~p(E,E + hco)s~(E + hco) f (E + hco)]. (10) 

Particle conservation requires that all outgoing channels 
are completely filled if all incident channels at all energies 
are completely filled. The particular constraint due to 
unitarity of the scattering matrix which we need is, 

~, [ st-,~a (E, E + hco) s~a (E + hco) 
# 

+ s~o (E) s+ ,~  (E+ hco, E)] = O. (11) 

Using (11) gives for the internal conductance 

gi (co) = _ (e2/h) Z 
,a 

• dETr  [s~ (E) s+ ,~  (E+  he), E)] 

•  ( E ) -  f (E + hco)). (12) 

In the low-frequency limit of interest here we can simplify 
(12). The scattering matrix s(E, U(r)) is a function of 
energy E and is a functional of the static equilibrium 
potential U(r). For a potential U(r, t) that varies slowly 
with time we obtain the transition amplitudes 
s+ (E§  he), E) by replacing the static potential in s by 
the dynamic potential [10]. Taking the functional deriv- 
ative with respect to U(r, t) and expanding the result in 
terms of Fourier components with respect to time gives, 

lim s__,~(E+_hco,E) 
o )  ---~0 

= I d3 r (ds~o (E)/de U(r)) v (r). (13) 

Thus to first order in co the conductance g~ is 

g/(co) =ie2co f d3r(dn(ot,r)/dE)v(r). (14) 

Here we have introduced the density of states 

dn (~, r ) / d E =  

( 1 ) ( _ d E )  ~ ' - ~ I d E  d f  

B 

• Tr [s~P ( E ) (  os~p ( E ) d e  U(r) ) / -  \(Os~/~ ( E ) ) o e  U(r) / s~/~ ( E ) ]  (15) 
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of carriers at point r which are emitted by the conductor 
at probe e. To arrive at (14) and (15) we have again used 
(11). Equation (14) gives the response to an arbitrary 
internal potential. This result is useful only if we can 
actually determine the internal potential. Fortunately, 
since (14) is already proportional to co it is sufficient to 
find the internal potential in quasi-static approximation. 

IV. Self-consistent potential 

The additional charge density at point r brought into the 
sample by the oscillating chemical potential at probe c~ 
is (dn (r, ~ ) / d E )  &t~ where 

dn (r, c~)/dE 

= ( l / h )  j" d E ( - d f / d E )  ~ (1/v=~) I ~U~m (r) 12 (16) 
m 

Here V~m is the channel velocity and ~e~m is a scattering 
state [ 1 ]. In the absence of a magnetic field [ 11 ] dn (~, r ) /  
d E =  dn (r, c~)/dE. According to Thomas-Fermi the 
additional external charge gives rise to an induced 
potential Ue(r) which in turn induces a density n~(r)= 
- (dn ( r ) / dE)  e U,. (r) that compensates the additional ex- 
ternal charge [1, 12, 13] 

(dn(r, f l ) /dE)Sa~-(dn(r ) /dE)eU~(r)=O.  (17) 

The additional charge is screened by all available charges. 
The variation of the density with respect to the potential 
U is thus the sum of all densities given by (15): 
(dn ( r ) /dE) )  = ~, (dn (0c, r ) /dE) .  Using the potential de- 

termined by (17i in (14) we find that the oscillating po- 
tential ~a~ gives rise to an induced current at probe c~ 
given by g~ (co) U+ ~o (~a a) - g~ p (co) (da p / e )  with a con- 
ductance determined by 

g~a (o)) = ie2o) ~ d 3 r (dn (e, r ) / d E )  

• (dE/dn (r)) (dn (r, f l) /dE).  (18) 

Since it is the additional charges due to the oscillation of 
the chemical potential a a  that via a screening consider- 
ation generate the internal potential, the current induced 
by the internal potential is ultimately also proportional 
to the oscillating chemical potential. Equation (18) states 
that the emission of carriers into probe e is proportional 
to the density of  carriers injected at contact fl weighted 
by the total density of  states. 

V. Low-frequency metallic current partition 

The complete current response of the conductor with in- 
teractions (superscript I) in contact 0~ due to an oscillating 
potential in contact B is given by the sum of the two 
conductances, gi = ge + gi 

g/e (co) = g~a (0) - io)e 2 ( (dN~p/dE)  

The interacting conductance (19) obeys current con- 
servation, ~, g~B (co) = 0 and ~, g/a (o9) = 0. Taking 

the sum over ~ gives a volume integral which depends 
only on (dn (r, fl)/dE) but ~, (dN~p/dE)= d N p / d E =  

c~ 
d3r (dn (r, fl)/dE). Summing �9 g=p (co) over fl leaves only 

dn (c~, r ) / d E  under the volume integral and this is equal 
to dN=/dE.  

The external response (4) and (5), through the density 
of states, depends on the location of the cross-sections 
through the leads used to evaluate the current (see Fig. 1). 
The further out in the leads the current is evaluated the 
larger is the density of  states. In contrast, the interacting 
conductance (19) is independent of the exact spatial lo- 
cation of these cross-sections as long as the cross-sections 
are sufficiently far in the leads. For a point r deep in lead 
c~ the total density dn (r) is equal to the density dn (~, r) 
of carriers which from that point will be emitted into lead 
c~. Hence for r deep inside reservoir 0c the last term in 
(19) is determined by dn (r, fl). But the carriers from con- 
tact fl which reach this point will with high probability 
escape into contact ~. Therefore, since dn (r, fl),-,dn (cr fl) 
the second term counteracts any increase in (dN=a/dE) 
arising from a change in the location of the cross-section. 
The density of states in the asymptotic (wide lead or) 
reservoir regions is completely screened. 

VI. Simple example 

We illustrate our main result (19) by solving a simple 
example. We consider a two probe conductor (a quantum 
dot [14]) with a long lived state described by a scattering 
matrix s~(E)=(8~p--i(F~F~)l /2/A)exp(i(8~+~p) 
where A = E - - E  r + iF~2 is an abbreviation for the reso- 
nant pole at energy Er, and F1, F2 are the decay widths 
into the left and right probe. F = F 1 + F 2 is the total decay 
width. From (6) we find 

dN~  ( 2 ~ )  F~ (E-Er); - - (F/2)2+F~(F/2)  
d E  IAI 2 IAI = 

and for e =~ fl 
(20) 

d N ~ P _ ( 2 ~ _ )  F= Fp(F/2) 
d E  IA [2 IA 12 (21) 

For the density inside the sample generated by the oscil- 
lating potential at contact ~ we find 

S d3r (dn (r, e ) / d E )  = (1/2 zt) (F~ / ]A 12). (22) 

To calculate the variation of the scattering matrix with 
respect to Uwe assume that the main effect of  an induced 
potential is a shift in the resonant energy such that 
A = ( E -  E r - e U) + iF~2 and all other coefficients of the 
s matrix remain unchanged. This leads to densities of  
states 

- ~  d3r(dn(~,r)/dn(r))(dn(r, f l)/dE)). (19) S d3r(dn(~ A ] 2). (23) 
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Fig. 2. Frequency-dependent part of the interacting conductance 
for a long lived state as a function of Fermi energy E (solid line) 
compared to the line-shape of a Breit-Wigner resonance (dashed 
line) 

the conductance  o f  the interacting system vanishes (ex- 
cept for  E F =  Er)  when the resonance is completely stable, 
i.e. when the decay widths o f  the long-lived state tend to 
zero. A real conduc tor  exhibits an ac-conductance even 
in this case th rough  capacitive coupling [3, 13]. The the- 
ory presented here is clearly mos t  useful when the con- 
ductor  is metallic everywhere and thus screens all fields 
everywhere efficiently. 
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