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For  certain parameters the motion of particles in an inclined cosine potential is bistable, 
i.e. particles are either in a locked or a running state. Fluctuations will cause transitions 
between these two states. First the connection of the transition rates with the lowest 
non-zero eigenvalue and the stationary solution of the Fokker-Planck equation is given. 
Then the eigenvalues of the Fokker-Planck equation for this Brownian motion problem 
are calculated using the matrix continued fraction method. Finally explicit results for 
these (generally complex) eigenvalues as a function of the averaged angle of inclination 
are shown for three typical friction constants and various temperatures. 

1. Introduction 

The problem of Brownian motion in a cosine poten- 
tial f ( x ) - - - d c o s x  with an additional constant 
force F (assumed to be non-negative) i.e. the motion in 
the inclined washboard potential 

V(x)= - d  c o s x - F x  (1.1) 

arises for instance in connection with Josephson tun- 
neling junctions [1-5], phase locked loops [6-10], 
motion of electric dipoles in an external field [11- 
14], and superionic conductors [15-19]. Whereas in 
the last two cases the constant force F is usually 
small compared to the amplitude of the periodic 
force, F and d are of the same order in the first two 
cases. For  F < d  the potential (1.1) has minima 
whereas for F > d  no minima are present. For  F < d  
the following bistability can occur: In the stationary 
state the particles may either sit in these minima 
(locked state) or they may move down the cor- 
rugated plane (running state). In the last case a 
stationary solution is only possible if the friction is 
not too large and the force F is not too small 
because otherwise the particles cannot overcome the 
next maximum. In Fig. 1 this bistability region (II) is 
shown [-5, 20-22]. With the inclusion of white noise, 
the equation of motion then takes the form (the 
total force is given by - d V / d x  = - d sin x + F) 

2 + 7 2 + d  s i n x  = F  + F(t)  (1.2) 

where F(t)  is a 6-correlated Langevin force with 

{C(t)) = 0; (C( t )  F( t ' ) )  = 27 O 5(t - t'). (1.3) 
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Fig. 1. Phase diagram of the different solutions without noise. 
Region I: Locked solution, III: running solution, II: coexistence 
of locked and running solutions (depending on initial condition). 
If noise is added the bistability region splits into a running (IIa) 
and a locked (IIb) one in the zero temperature limit, see [22]. 
The circles indicate extrapolated values of the critical force calcu- 
lated with the method of [28] 
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In (1.2, 3)7 is the damping constant and O the noise 
power of the Langevin force. Here we have norma- 
lized the mass of the particles to unity, or in other 
words d and F are the potential amplitude and force 
per mass m and O is given by O = k T / m  where T is 
the temperature and k Boltzmann's constant. 
In the bistability region the noise force in (1.2) 
causes transitions between the locked and the run- 
ning state. To calculate transition rates we proceed 
as follows. First we set up the Fokker-Planck equa- 
tion for the probability density W(x, v, t) in phase 
space. The Fokker-Planck equation corresponding 
to (1.2, 3) reads [-23, 24] 

t = LFP W, (1.4) 

~ ~2 
L y e -  axV+ ( T v + d s i n x - F ) + 7 0  6v ~ .  (1.5) 

The separation ansatz W(x, v, t)= exp(-)~u t) O,(x, v) 
leads to the eigenvalue equation 

LveO" = - 2~,Ou. (1.6) 

This equation together with proper boundary con- 
ditions determine the eigenvalues. For the boundary 
condition we require that the eigenfunctions are per- 
iodic in x 

Ou(x, v) = Ou(x + 2re, v) (1.7) 

and that the eigenfunctions decrease sufficiently fast 
for v ~  _+ oe (natural boundary conditions for v). If 
for instance x is an angle variable and if we do not 
distinguish whether an additional full rotation has 
been made or not the boundary condition (1.7) is 
appropriate. If one is only interested in expectation 
values which are periodic in x, it is also sufficient to 
use (1.7) for the distribution function. If the diffusion 
of particles is investigated, we have to apply more 
general boundary conditions. Because Lye is periodic 
in x we may use 

~u(x, v, k)= eikXu~(x, v) (1.7a) 

with periodic uu(x, v) (Floquet's theorem). The eigen- 
value will then depend on k. 
As will be explained in Chap. 3 the eigenvalues of 
(1.6, 7) can be determined by the matrix continued 
fraction method. As it turns out, the lowest non-zero 
eigenvalue is well separated from the other (heigher) 
eigenvalues in the bistability region for low noise 
strength O. This enables us in Chap. 2 to express the 
transition rates in terms of this lowest non-zero ei- 
genvalue and the stationary distribution of (1.5). In 
Chap.4 the results for the generally complex eigen- 

values are presented. For three typical friction con- 
stants 7 the eigenvalues are shown as a function of 
the force for various noise strengths 0. A compari- 
son with the eigenvalues of the Smoluchowski equa- 
tion is also discussed. Transition rates for the above 
problem have been obtained by Ben Jacob et al. 
[25] and Btittiker et al. [26] in the zero temperature 
limit O ~ 0. Whereas in [-25] the transition rate out 
of the running state only was calculated, the tran- 
sition out of the locked state only was obtained in 
[-26]. (In [26] the investigation was restricted to the 
zero friction limit.) The methods used in [25, 26] are 
not suitable for finite temperatures whereas the pres- 
ent one will not work in the zero temperature limit 
O--,0. In a recent investigation [27] we treated the 
above problem in the zero friction limit 7 ~ 0. In this 
limit we are able to obtain numerical results for 
finite O as well as analytical results for the zero 
temperature limit O ~ 0. 

2. Transition Rates 

For low noise strength O and after some initial 
disturbances have decayed the distribution function 
in phase space will be a quasistationary solution 
centered around the locked and the running so- 
lutions without noise. (Here we assume that we are 
in the bistability region,) Therefore we make the 
ansatz 

W(x, v, t)= pL(t) W~(x, v)+ pR(t) W~(x, v). (2.1) 

W~(x, v) dx dv = ~ W~(x, v) dx dv = 1 (2.2) 
L.R. R.R. 

where WSLt(X,V) and WR(x,v) are the normalized 
quasistationary distributions near the locked and the 
running solution respectively. The indices L.R. and 
R.R. in (2.2) indicate that we have to integrate the 
distribution functions over a region near the locked 
and running solution (both regions are different 
areas of the phase space and therefore do not over- 
lap). In (2.1) pL(t)(pR(t)) is the probability to find the 
particles in the locked (running) state. The time de- 
pendence of these probabilities follow from the mas- 
ter equation (pL +DR = 1) 

I 5L = r(R --* L) pn _ r(L-* R) pL (2.3) 

fir = _ r( R --* L) pR + r( L ~ R) pL, 

where the transition rate from the locked to the 
running state is denoted by r(L-*R) and vice 
versa. 
As in all rate equation treatments we have to as- 
sume that there is a strong localization near both 
states and that the result does not depend strongly 
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on the way in which the phase space is cut into two 
regions. This assumption requires for instance that 
the probability density near the cut is sufficiently 
small In an exact treatment the rates may be calcu- 
lated from the currents crossing the cut in either 
direction. 
The general solution of (2.3) is given by 

pL(t) = pEt + A e -  J.t (2.4) 

pR(t ) _ pR _ A e -  ~.t 
- -  S t  

where pest and psRt are the stationary solutions of (2.3) 

pl,  = r ( n - - ,  L)/,L Pgt = r(L-  

the non-zero eigenvalue 2 reads 

2 = r ( L ~  R)  + r(R ~ L) 

(2.5) 

(2.6) 

and the constant A is the difference of the initial 
probability and the stationary probability 

L L _ _  A = p (0) - P s t -  - (PR(O) - P~t). (2.7) 

Insertion of (2.4) in (2.1) leads to 

W ( x , v , t ) -  L L - Ps, W;t(x,  v) + P~t Ws~(X, v) 

+ W2(x, 0) (2.8) 

This result must be compared with the general so- 
lution of the Fokker-Planck Eq. (1.4, 5). In terms of 
eigenvalues and eigenfunctions this solutions reads 

W(x ,  v, t )=  Wst(X , v )+  ~ Autpl,(x , v) e -2ut .  (2.9) 
# = 1  

In (2.9) we have split off the stationary distribution 
(2o=0); the coefficients A, are determined by the 
initial condition of W(x ,  v, 0). As we will see in the 
next chapter the eigenvalue 2~ is well separated from 
the other (in general complex) cigenvalues 

2 1 ~ R e 2 , ,  # > 2  (2.10) 

in the bistability region for low noise strength O. 
Whereas for small times t < t 0 = ( M i n R e 2 , )  -~, # >2 ,  
large number of terms of (2.9) have to be taken into 
account we need only the first two 

W (x, v, t )= Wst(X, v) + A l tp t (x , v) e - z~t 

for t>>t o. (2.11) 

A comparison of this expression with (2.8) leads to 

"~ 1 = "~ = r (L-*  R)  + r(R ~ L), (2.12) 

- -  L L R R W s t - P s t  l/V~t + PstW~t, (2.13) 

~ ~ = (A /A  x) ( W ~ -  W~). (2.14) 

(The result (2.14) is consistent with the requirement 
~ tp+tp tdxdv=O.  Here O~ =1 is the eigenfunction of 
L)p with the eigenvalue zero). Because of (2.2, 5) we 
can thus express the transition rates in terms of the 
stationary solution Wst(X , v) and the eigenvalue 2z of 
the Fokker-Planck equation, 

r ( R - ~ C ) = 2 1 p ~ t = 2 1  ~ Wst(X,v)dxdv, (2.15a) 
L.R. 

r (L- -+R)=21pgt=21  ~ Ws t (X , v )dxdv .  (2.15b) 
R.R. 

The mobility times the damping constant was calcu- 
lated in [22, 28]. Denoting the mobility for noiseless 
particles in the running state by (y#)g (7# for the 
locked state is zero) we have 

(~#)s, R R =(~#) Ps, (2.16) 

and we may thus write instead of (2.15) 

r(R -~ L) = 21 ( i  - (7 #)st/(~ #)R), (2.17 a) 

r(L ~ R)  = )c 1 (? #)st/(7 #)R. (2.17 b) 

In Fig. 2 (~#)st as well as (7#) R are shown as a 
function of the force F for various temperatures O. 
Finally concerning the transition rates we would like 
to make the following remarks: 

( i )  As seen from (2.5,6) the transition rates deter- 
mine the decay constant and the stationary solution 
and vice versa. Therefore we can use either set. If 
one is interested in the decay constant one needs the 
combination (2.6) of both transition rates which, 
however, can be obtained directly by the method 
outlined in Chap. 3. If one is interested in the in- 
dividual transition rates we show that we can use 
the Fokker-Planck approach similarly to calculate 
p~,=(1-Psi)  in addition to 2. 

••/./Yll// v~=o.5 

. 0  0 . 5  1 .0  .5  
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Fig. 2. The stationary mobility times ~ (Tp=7<v)/F) is shown as a 
function of the external force F for various temperatures O/d and 
for 7/]/d=0.5. The stationary mobility (7/~)R of the noiseless run- 
ning particles is shown by the broken line 

O 
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(ii) As mentioned previously the transition rates 
should be derived from the solution of the Fokker- 
Planck equation for an appropriate boundary value 
problem in both regions simultaneously. When cal- 
culating transition rates for each region separately, 
care should be taken that the distribution function 
in each region is consistent with the solution of the 
full problem. 

(iii) It should be stressed that the rate equations 
(2.3) are valid only if the times are sufficiently large 
(t>>to) and if the lowest non-zero eigenvalue is 
well separated from the higher ones, see (2.10). (For 
degenerate eigenvalues this must hold for the whole 
group). 

(iv) There are examples where only a few terms of 
the expansion (2.9) enter in the final results, e.g. 
[29]. In contrast to the rate Eqs. (2.3), the Fokker- 
Planck equation may then still be used for inter- 
mediate times and arbitrary barrier heights. 

3. Determination of the Eigenvalues 

The procedure for determining the eigenvalues of the 
Fokker-Planck operator (1.5) and for similar oper- 
ators was discussed in several papers [30-33]. The 
main steps are: First we expand the eigenfunctions 
~(x, v)= q/,(x, v) into two complete sets satisfying the 
boundary conditions for x and v, i.e. 

O(x, v) = exp[( - v2/2 + d cos x)/(20)] 

n = O  q - - o o  

Here 0n(v) are the Hermite functions 

O,(v) = H , (v / ] /20 )  exp( -  v2/(40))/]/n [ 2" 2] /~O (3.2) 

and Oq(x) are the exponential functions 

Oq(x) = (27c)- 1/2 exp(iqx). (3.3) 

By inserting (3.1) into (1.6) and using the normali- 
zation 

j On(v) Om(v)dv=gnm , (3.4a) 
- o o  

2~z 

(qSP(x))* qSq(x) dx = (S pq (3,4b) 
0 

we get a system of coupled differential equations for 
the expansion coefficients c, p. Next we introduce the 
column vector e, and the matrices D and f) 

- -  q e , ,  - ( c , ) ,  D = (OPq), f)  = (/)Pq) (3.5) 

where the elements c q are the expansion coefficients 
of (3.l) truncated at q=  +Q and where the matrix 
elements D pq and DPq are given by 

DPq=l~[ ip~pq+id(~p ,q+l -~p ,q_ l ) / (40) ] ,  (3.6) 

]~Pq = ~ [(i p - F/O) C~ ,q - id(~p, q +1 - 6 p, q - l)/(4 O)]. 
(3.7) 

The system of coupled differential equations for the 
expansion coefficients c q truncated at q=  +Q can 
then be cast into the tridiagonal recurrence relation 
for the column vectors c, 

] / ~  1Dc~+ 1+ (nT-  5~) c. + 1/n 17)c._ 1 =0. (3.8) 

The final step consists in eliminating all e, with n > 1 
by iteration. This leads to 

[2I + I~0(- 2)] e 0 =0  (3.9) 

where I(o(S ) is the following matrix continued frac- 
tion (I is the unit matrix) 

K o(s) -- D [(s + 7) I - 2 D [(s + 2 7) I 

" - 3D[(s + 37) I -  . . . ] -  11)] ID]-IO. (3.10) 

Nontrivial solutions can occur only if the corre- 
sponding determinant vanishes i.e. 

Do()~ )-- Det [2I + K o ( -  2)] = 0. (3. l 1) 

By this transcendental equation the eigenvalues 2 
= 2 .  are determined. Thus one has to calculate the 
continued fraction (3.10) (truncated at an appropri- 
ate step) and then determine the roots of (3.11) by 
some root finding technique. For complex eigen- 
values the roots of the complex Eq.(3.11) must be 
found. 

Eigenvalues of the Smoluchowski Equation 

For large damping constants we may use the Smo- 
luchowski equation for the probability density W 
= W(x ,  ~) 

OW 
0t =LsW'  (3.12) 

L _ 1  • 02 s - 7  [~x (d sin x - F) + O ~x2 ] (3.13) 

instead of the Kramers Eq. (1.4, 5). The derivation of 
(3.12,13) from (1.4,5) and various inverse friction 
expansions are treated in a number of papers, see for 
instance [34-37, 32]. The distribution function in po- 
sition only i.e. W(x, t) is the integral of the distribu- 
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tion function W(x, v, t) with respect to v. The sepa- 
ration ansatz W(x, t )= exp(-2ut)Cu(x)  leads to 

LsO.= - 2~,0f, .  (3 .14 )  

To solve (3.14) we make the ansatz 

r ~ co4~(x) (3.15) 
q ~  - - o o  

where ~b q in (3.15) are the expansion functions (3.3) 
of a Fourier series. Insertion of (3.15) into the Fok- 
ker-Planck Eq.(3.12, 13) leads to the two sided tri- 
diagonal recurrence relation 

(y)~-iqF-Oq2)cq+(dq/2)(Cq_~-cq+l)=O. (3.16) 

For  2=0 ,  i.e. for the stationary solution, (3.16) for q 
= 0 vanishes identically. In this case the probability 
current S=7-1[ (F-ds inx )  W-OOW/Ox] is con- 
stant and (3.16) has to be replaced by 

( -  i F -  Oq) cq+(d/2) (cq_ 1 -cq+ 1)= - i T S b q o .  (3.16a) 
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Fig. 3. The two lowest nonzero real eigenvalues 2 as a function of 

the external force F for y/l/d=0.5 and for various d/O values. 
The critical forces F1, F a are indicated 

For 2 4 0 ,  (3.16) for q = 0  leads to c0=0. Thus (3.16) 
splits into two systems one for q > 0  and the other 
for q < 0. For  real )~, Cu must be real too and there- 
fore we have cq=C*_q. Both systems are thus equiva- 
lent and can be used to find the real eigenvalues. 
For  complex 2 one is the complex conjugate of the 
other one. Thus one system determines 2 the other 
j ,*. 

For real and complex eigenvalues 2 4 0  we can elim- 
inate all Cq with q > 1 finally leading to 

[72~ - i F -  0 - (d/2)/s c 1 = 0 (3.17) 

where/<~(s) is given by the ordinary continued frac- 
tion 

/~  1 (S )=  
1 

1 
2(7 s + 2 iF  + 22 0)/(2 d) + 

2b s + 3 i f  + 3 2 0)/(3 d) +. . .  
(3.18) 

Solutions of (3.16) with c~ ~:0 can occur only if 

D 1 (2) = 72 - i F - O - (d/2)/s ( - 2) = 0. (3.19) 

From this equation the eigenvalues 24=0 can be 
determined. 

l 1 1 I I I . I I I [ 
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Fig. 4. Some of the lowest non-zero real (full lines) and complex 
(real parts - -  imaginary parts ---)eigenvalues 2 as a func- 

tion of the external force F for y/1/d= 1 and for various d/O 
values. The critical forces F1, F 3 according to Fig. 1 are indicated. 
The letters a and b distinguish different eigenvalues for the same 
d/O ratio. (The eigenvalue for d/O =20  could not  be completed 
with a 16 digit arithmetic) 

4. Results and Discussion 

In Figs. 3-5 the results for the eigenvalues of the 
Fokker-Planck operator (1.5) are shown. As may 

be easily seen from (1.5, 6) by dividing (1.6) by l ~  

and by using the normalized velocity ~=v/l/d, the 

eigenvalue divided by ] /d is a function of y/I/d, Old 
and F/d only, i.e. 

2/~ =fup(7/l/d, O/d, F/d). (4.1) 
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Fig. 5. The two lowest non-zero eigenvalues as a function of the 

external force F for ~ / ] /d=  2 and different d/O ratios indicated in 
the same style as in Fig. 4. The dotted line is the limit result (4.5) 
for the imaginary part, the line . . . . .  is the Smoluchowski 
result of Fig. 6 for d/O = 20 

Therefore we have plotted in Figs. 3-5 2/1~ as a 

function of F/d for typical ? / ] ~  values and for var- 
ious noise powers O/d. These results have been ob- 
tained by the method described in Chap. 3. The 
truncation values (2 and N of the indices q and n 
respectively in the expansion (3.1) are determined by 
the requirement that an increase of (2 and N does 
not change the final result within a given accuracy. 
Generally the following features have been observed. 
For decreasing noise power 0/d,(2 and N increase 
whereas for decreasing damping constants ? essen- 
tially N increases. (For this reason the method does 

not work in the limits O/d--* 0 or 7/l/d-* 0.) Typical 
values for the parameters in Fig. 3 are (2 = 5, N =  32 
for d/O= 1 and (2= 11 and N =  128 for d/O = 10. To 
compare the results of the Fokker-Planck equation 
with those of the Smoluchowski equation, we have 
plotted the eigenvalues of the Smoluchowski opera- 
tor (3.13) in Fig. 6. As is easily seen by dividing 
(3.14) by d, Z? divided by d is a function of F/d and 
Old only i.e. 

Z T/d =fs( O /d, F/d). (4.2) 

Because the eigenvalues of the Smoluchowski opera- 
tor agree with the lowest ones of the Fokker-Planck 
equation for large damping constants fFP and fs 
should be connected by 

fvp(y/]/d, O/d, F/d)= (I/d/7)fs(O/d, F/d) 

for Re{?/l /d}<r and y/1/d>>l. (4.3) 
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2.,111 !l 
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~' II.'" 
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III II" " 

i/i I II.." - o ii i r  
i . I  i 

/./ I / ' ;  

0 . . . . . . . .  I . . . .  I . . . .  

0 . 0  0 , 5  1 . 0  1 . 5  2 . 0  

b F / d  
Fig. 6. The real (a) and imaginary (b) parts of the two lowest 
non-zero eigenvalues ). as a function of F/d for various d/O ratios 
in the Smoluchowski limit. In Fig. b the limit result according to 
(4.5) and its second harmonic are dotted in 

This agreement is confirmed by the comparison in 
Fig. 5 where the curve d/O = 20 of Fig. 6 is plotted 
in. 
We now discuss the results by going from small to 
large friction constants. In Fig. 3 the two lowest 
non-zero real eigenvalues are shown for the friction 

constant ?/1~=0.5,  which lies in the middle of the 

bistability region 0 < 7 / ~ d <  1.193... see Fig. 1. (First 
results of Fig. 3 have been reported recently [38].) 
The most remarkable feature of Fig. 3 is that the 
lowest non-zero eigenvalue tends to zero for 
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decreasing noise power O/d for forces F/d in the 
bistability region (F I < F < F 3 ) .  The explanation for 
this behaviour is as follows. Without any Langevin 
force (i.e. O/d=O) (1.2) has two stable solutions, a 
running and a locked one. For  finite noise strength 
O/d one gets transitions between these two solutions. 
For O/d-*O the transition rates and therefore also 
the eigenvalue (see (2.12)) must vanish. 
For  finite but small noise power O the stationary 
solution Wst of the Fokker-Planck equation and 
s o m e  stationary expectation values show a sharp 
transition at a critical force F 2 (F 1 <F z<F3) as al- 
ready discussed in [22]. In terms of the stationary 
probabilities psrt and Ps~ defined in Chap. 2 this 
means that P~t goes from a value near 1 to approxi- 
mately zero by changing F from a value below F 2 
to a value above F 2 thus making a phase transition 
of first order at F 2. As is seen in Fig. 3 the lowest 
non-zero eigenvalue is smallest at approximately F 
=F z. Thus a very long time is needed to establish 
the stationary solution near this critical force. This is 
similar to the well known critical slowing which we 
find here for a transition which is reminiscent of a 
first order phase transition. In the limit O/d ~ 0 one 

expects that the 2/]/d curve as a function of F 
makes a sharp transition to zero if F reaches the 
first critical force F 1 and stays zero till F reaches the 

third critical force F 3 where 2/]fd will jump to a 

finite value which is approximately given by 7/l/d. 
This value is obtained as follows: For large forces 
F>>d one can neglect the periodic force in (1.2) and 
thus obtains the damping constant 2 = 7  of the 
Brownian motion without a potential. (The constant 
force can be absorbed in the shifted velocity vs=v 
- F ,  i.e. one obtains for G the equation f~+Tvs=F(t ) 
of free Brownian motion.) For low forces F and low 
noise powers Old the particles oscillate in a well 
which is approximately parabolic. The first non-zero 
real eigenvalue in such a parabolic potential is given 
by 7 [33, Eq. (3.33)]. (The deviations from this value 
for finite O/d stem from the deviations from the 
parabolic form). As seen from Fig. 3 in the bista- 
bility region the next real eigenvalue takes over the 
value 2 ~  7 of the lowest non-zero eigenvalue outside 
the bistability region for very low noise power O. 
Complex eigenvalues are also obtained. They are not 
plotted in Fig. 3 in order not to overload this Fig- 
ure. The real parts of these complex eigenvalues did 
not show signs of critical slowing down in the bista- 
bility region as was the case for the real eigen- 
values. 
In Fig. 4 real and complex eigenvalues are shown for 

7/]/ /d=l,  i.e. just near the end of the bistability 

region at 7/1/~/~ 1.193 .... see Fig. 1. The lowest non- 

zero real eigenvalue still shows the critical slowing 
down in the bistability region; however, it does not 
reach the low values as in Fig. 3 even for the lower 
O/d = 0.05. For  large forces the real parts of the com- 
plex eigenvalues decrease for increasing F whereas 
the imaginary parts increase with increasing F as in 

Figs. 5 and 6. Thus at 7/l/-d= 1 the eigenvalue de- 
pendence shows features of the eigenvalues for small 

and large 7/lfd. Therefore the eigenvalues show a 
complicated structure in this intermediate region. 

In Fig. 5 at 7 / l /d=  2 we are well outside the bista- 
bility region and the dependence of the eigenvalues 
on the force simplifies again. For F>d only a run- 
ning solution occurs for zero noise (O/d=O). This 
running solution shows oscillation in time with fre- 
quency components being multiples of a fundamen- 
tal frequency co. If we neglect the second time de- 
rivative in (1.2) the time to travel the distance 2re is 
given by 

2~ 2rc 

T= ~ dx/v= 7 ~ dx/ (F-dsinx)=2rcT/] /~-d  2. (4.4) 
0 0 

Thus the fundamental frequency co or beat frequency 
[39] reads 

Im 2/l /d = co/]/~ = 2 rc/(Tl/d) = ]/(F/d) 2 - 1/(7/]fd). 
(4.5) 

The imaginary parts of the eigenvalues with low real 
parts agree approximately with (4.5) for F/d > 1 and low 
Old. For smaller forces F/d the imaginary part of the 
eigenvalues disappears and two real eigenvalues appear 
instead of the two complex conjugate ones. (Because 
LFp is real the complex conjugate of a complex 
eigenvalue is also an eigenvalue of LFp. ) The bend in 
the real part of the eigenvalue at F~d for low O 
may be considered as a rudiment of the critical 
slowing down of the lowest non-zero real eigenvalue 
in the bistability region. 
Finally in Fig. 6 the eigenvalues of the Smolu- 
chowski equation are shown. For  large F/d the 
eigenvalues behave similarly as in Fig. 5. In contrast 
to Fig. 5, however, the imaginary parts do not disap- 
pear suddenly for decreasing F. The imaginary parts 
are zero for F = 0  only, though they have extremely 
low values for small O/d and F/d < 1. The real parts 
behave for large F similar to those in Fig. 5. For  
smaller F/d no bifurcation as in Fig. 6 is observed. 

5. Conclusion 

As shown the eigenvalues for the Brownian motion 
in an inclined cosine potential can be determined 
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inside and  outs ide  the  b is tab i l i ty  region  by the ma-  
trix con t inued  f ract ion method.  In  the b is tab i l i ty  
region  we get the typical  cr i t ical  s lowing down of a 
phase  t ransi t ion.  (Eigenfunct ions m a y  be ob ta ined  
by up i te ra t ion  of  (3.8) as done  in [40] for the sta- 
t i ona ry  state. This  up i t e ra t ion  is unstable.  A s table  
up i te ra t ion  is the i te ra t ion  accord ing  to (2.19) of  
[31].) Though  the m e t h o d  does  not  work  in the 
l imit  O ~ 0 ,  re la t ively low O/d values can be han-  
dled. The  value O/d =0.05 in Fig. 4 for low F/d for 
instance,  cor responds  to an  energy difference A E of 
the po ten t ia l  of 40 kT. In  the  b is tab i l i ty  region  of  
Fig. 3 the energy difference is still of the o rde r  of  
1 0 k T  for F=F 2 and  O/d=OA. The m e t h o d  is of  
course  no t  res t r ic ted  to  a cosine potent ia l .  F o r  more  
compl i ca t ed  per iod ic  po ten t ia l s  the mat r ices  D and  
[)  have more  non-zero  e lements  bu t  the o ther  ex- 
pressions r ema in  the same. By t ak ing  the Fou r i e r  
(Laplace)  t ransform of the F o k k e r - P l a n c k  equat ion,  
the Fou r i e r  (Laplace)  t r ans fo rm of the d i s t r ibu t ion  
funct ion and  also of  the cor re la t ion  funct ions can 
be ob t a ined  by  con t inued  fract ions as done  in [41] 
for the cosine poten t ia l  wi th  F = 0 ( leading to mat r ix  
con t inued  fractions) and  in [42]  for the  Smolu-  
chowski  equa t ion  with F=t=0 ( leading to o rd ina ry  
con t inued  fractions). As  men t ioned  in the in t roduc-  
tion, a wave vec tor  dependence  of  the eigenvalues 
2(k) mus t  be taken  into account  if the diffusion of  
par t ic les  in the co r ruga ted  p lane  is invest igated.  This  
can also be done  by  the mat r ix  con t inued  fract ion 
method.  (The mat r ix  D and 1) will then  also depend  
on k). In  the zero fr ict ion limit,  the  ma t r ix  con t inued  
f ract ion m e t h o d  will no t  work.  Here  we can t rans-  
form the F o k k e r - P l a n c k  equa t ion  to a differential  
equat ion ,  where main ly  the  energy enters as the  vari-  
able. This  equa t ion  can then be solved in the sta- 
t i ona ry  state 2 o = 0  [43] as well as for o ther  eigen- 
values [27]. 
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