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We report high resolution x-ray diffraction studies of the structures and phase transitions of 
monolayer krypton, adsorbed on both powder and single crystal graphite substrates. A 
comprehensive series of powder diffraction profiles is used to construct the two dimensional 

phase diagram. The melting of the f i x  f i  commensurate solid is shown to be strongly first 
order throughout the region where tricritical behavior was previously thought to occur; fluid 
solid coexistence extends up to the termination of the commensurate phase at 130 K. A 
disordered weakly incommensurate phase is shown to be a reentrant fluid, a system which 
may be described as a disordered network of domain walls and which evolves continuously 
into a more conventional 2D fluid. This evolution is marked by the disappearance of satellite 
peaks which are caused by the modulation of the overlayer by the substrate. The freezing of 
the reentrant fluid into the commensurate phase is shown to be consistent with a chiral Potts 
transition, its freezing into the incommensurate solid consistent with a dislocation binding 
transition. 

Single crystal experiments reveal the orientation of the weakly incommensurate phase. The 
reentrant fluid is found to have no visible orientational fluctuations, manifesting isotropic 
diffraction peaks. This is attributed to the strong epitaxy of domain walls. The incommensur- 
ate solid is shown to undergo an aligned-rotated transition which is well described by zero- 
temperature calculations. 
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I. Introduction 

Two dimensional (2D) behavior has been observed in a 
wide variety of systems; reference [1] discusses sur- 
faces, interfaces, thin films, intercalation compounds, 
liquid crystal systems, Wigner crystals, magnetic sys- 
tems, membranes, and micelles. These systems are 
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anisotropic, with long range order developing in two 
dimensions while there is only finite order in the third. 
For many of these systems the shift from 3D to 2D 
ordering produces drastic changes in the phases them- 
selves and in their critical behavior. Critical exponents 
typically change with dimension, and below a lower 
marginal dimensionality thermal fluctuations destroy 
long range order entirely. 

Rare gases adsorbed on graphite basal planes have 
proved a rewarding experimental system for the study 
of 2D phase transitions. Monolayer films are readily 
prepared, and phase changes may be induced by 
varying temperature and the areal density of adsorb- 
ate. The simple, isotropic interaction between the 
adsorbed rare gas atoms facilitates the application of a 
wide variety of theoretical calculations. For  the same 
reasons, these are simple systems in which to study the 
effect of the symmetry of the substrate on 2D systems. 
One may also study ordering in monolayer, bilayer, 
and progressively thicker films. This will elucidate the 
approach to 3D behavior caused by coupling between 
layers. As a prototypical problem, monolayers of rare 
gases on graphite typically melt in a continuous phase 
transition peculiar to 2D systems, while 3D rare gas 
solids always melt in first order transitions: we do not 
know the behavior of films of intermediate thickness. 

To-date, most progress has been made studying the 
effect of the substrate periodicity on the monolayer 
phase. While the rare gas atoms are tightly bound to 
the graphite surface, the adsorbate-substrate potential 
is only weakly corrugated in the plane of the surface, 
with the periodicity of the 3D graphite lattice. The 
monolayer may be treated as a 2D system under the 
influence of a field with the long range order character- 
istic of the 3D substrate. 

The strength of the perturbation of 2D order by the 
graphite substrate varies with different rare gas adsorb- 
ates; the interaction potentials are not so different, but 
the mismatch between the substrate and adsorbate 
periodicity varies greatly. Only in the case of krypton 
does the monolayer form a solid, stable to high 
temperatures, with lattice constant commensurate 
with the substrate. By varying temperature and Kr 
pressure, the lattice mismatch may be varied, spanning 
the range from strong coupling to the substrate when 
the mismatch is small to weak coupling for large 
mismatch. Krypton on graphite (Kr/Gr) therefore 
provides a complex phase diagram which, combined 
with the simple interactions, provides an ideal testbed 
for theories of interactions on competing length scales. 

As first shown by a detailed series of adsorption 
isotherms carried out by Thomy and Duval 1-2, 3, 4], 
monolayer Kr /Gr  exhibits solid, liquid and gas phases 
with a critical and a triple point, as in a typical 3D 
phase diagram. Their phase diagram differs in two 

major ways from the 3D phase diagram of Kr, 
however. Firstly, the liquid-solid coexistence region 
narrows at higher temperatures and pressures, dis- 
appearing at about 100 K in a tricritical point. Below 
this tricritical point the phase transition is first order: 
density is discontinuous as a function of temperature 
and pressure. At the first order transition temperatures, 
islands of the solid phase grow in coexistence with a 
more dilute gas. Above the tricritical point, density 
varies continuously while its derivative is discontin- 
uous: the transition is second order. 

Secondly, a second order phase transition can be 
seen within the solid phase. At lower densities the 
lattice constant of the solid is commensurate with that 
of the substrate, with the structure shown in Fig. la. At 
higher densities the overlayer is compressed relative to 
the substrate, that is, incommensurate. 

Both the tricritical region and the 
commensurate-incommensurate transition have been 
the subject of much study since Thomy and Duval's 
initial reports, the principal goal being to understand 
the details of these phase transitions. At the same time, 
understanding of the phase diagram developed. In 
1980 a heat capacity study by Butler, Litzinger, and 
Stewart I-5] showed that the commensurate solid phase 
terminates at 130 K (Fig. 2). The commensurate solid 
(C), incommensurate solid (IC), and fluid (F) phases 

(b) (d) 

Fig. la-d. Domain structures in the limit of a strong Kr-Gr 
potential. Atoms on the three sublattices are indicated by different 
symbols, solid circles denoting atoms between domains, a Commen- 
surate phase, with atoms drawn to scale, b Uniaxial array of 
superheavy domain walls, c Hexagonal array of superheavy domain 
walls; location of walls relative to the substrate is different to b. 
d Hexagonal array of heavy domain walls 
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Fig. 2. Kr/Gr phase diagram, after I-5]. Solid circles are heat 
capacity anomalies, submonolayer phase boundaries are found from 
adsorption isotherms. Dashed lines indicate extrapolated features. F, 
C, and IC denote fluid, commensurate, and incommensurate solid 
phases 

were taken as meeting in a multicritical point. With 
increasing temperature the C-F and C-IC boundaries 
increase in coverage to ~ 1.5. Their unit of coverage 
corresponds to the quantity adsorbed in a compressed 
monolayer at 77 K, or 1.1 commensurate monolayers. 
Apparently the strongly first-order phase transitions 
between monolayers, bilayers, and so forth do not 
extend to high temperature. The phase transitions 
occurring in the monolayer at low temperatures now 
move to higher coverages: Butler et al. call this the 
extended monolayer regime. 

Their claim to have completed the extended mono- 
layer phase diagram proved short-lived, however. 
Several months later a LEED study [6] found that the 
incommensurate solid was aligned with the Gr lattice 
only at densities very close to the commensurate phase. 
At higher densities it appeared to rotate away by half 
a degree. Meanwhile, synchrotron x-ray diffraction 
studies of the C-IC transition [7, 8] found the IC phase 
to be disordered near the C phase. Thus the IC region 
of Fig. 2 comprises three phases, with a rotated-aligned 
and an ordered-disordered transition within it. 

These two discoveries motivated this paper, which 
reports a series of high resolution x-ray diffraction 
studies of Kr/Gr. We will incorporate these new phases 
into a phase diagram which is still not complete, but 
consistent with current data. We examine the phase 
transitions to the rotated phase and the disordered 
weakly incommensurate phase in detail; we also report 
surprising new results concerning the much-studied 
tricritical behavior, implying a tricritical point 
occurring at a much higher temperature than pre- 
viously reported. These discoveries were made possible 
by using synchrotron x-ray sources bright enough to 

study even a single layer of atoms with resolution 
otherwise possible only for polycrystalline samples. In 
Sec. II we summarize the diffraction patterns expected 
from 2D systems and describe the x-ray diffraction 
apparatus used. Section III describes an experiment 
using a polycrystalline graphite substrate, which gives 
much structural information but cannot describe the 
orientation of the Kr overlayer. Thus we proceeded to 
experiments using single crystal substrates, described 
in Sect. IV. Two brief reports have been made of this 
work [9, 10]. 

II .  X - R a y  S c a t t e r i n g  

IIA. Diffraction from 2D Structures 

Before describing our actual x-ray diffraction appar- 
atus, we will summarize the scattering we expect from a 
variety of 2D structures. A 2D crystal with delta 
function Bragg peaks can form only in a commensurate 
system, where the overlayer acquires the long range 
order of the substrate surface. For an incommensurate 
system, where the lattice is fully invariant under 
translation (but not rotation), atomic displacements 
diverge logarithmically with system size due to long 
wavelength phonons, instead of approaching a con- 
stant value as for a commensurate overlayer. Delta 
function singularities in the structure factor are re- 
placed by power-law singularities, reflecting algebraic 
order [11-14]: 

S(Q) "~ ~AG[ Q -- G[ ~G(T )-2, (1) 
G 

where 

3#+2 . 
qG(T) = kTI G 124rc#(2/~ + 2)' (2) 

2 and # are the Lam4 coefficients of the overlayer. 
Despite the lack of long range positional order, the 
incommensurate solid retains a rigid lattice with non- 
zero shear modulus, and long-range orientational 
order, that is, well-defined crystalline axes [11, 12, 13]. 

The melting of such an incommensurate solid can 
proceed in two stages, a possible mechanism being the 
successive unbinding of dislocations and disclinations 
[14]. The intermediate state has algebraic orien- 
tational order but short range positional order: for 
systems with 6-fold rotational symmetry it is called 
hexatic. 

As we shall discuss below, the substrate will convert 
the orientational order from algebraic to truly long 
range. To explore the hexatic phase we must measure 
both kinds of ordering. Positional correlations are 
measured directly by the structure factor S(q): a 
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correlation length r gives a structure factor with 
longitudinal width x ~ 1/4. The degree of orientational 
order is not simply the reciprocal of the transverse 
width however; this width reflects the amplitude of 
orientational fluctuations. 

Following Nelson [15], we may treat orientational 
fluctuations in a hexatic phase using a harmonic 
approximation. Long wavelength fluctuations will 
dominate, with the mean square amplitude diverging 
logarithmically with system size. We may consider 
regions A with length scales larger than the positional 
correlation length ~ but smaller than the system size. 
Orientational fluctuations within regions smaller than 

will not be important. For perfect orientational 
order, in the harmonic approximation, the structure 
factor is given simply by 

C 
SA(Q) = < IPA(Q)/2 ) =/s ..~ (Q _ Qo)2" (3) 

where 

1 _ iQ-r 
PA(Q) = ~ A  ~ e  " (4) 

In the hexatic phase, (3) should be averaged over 
orientational fluctuations. 

At reduced temperature t = ( T -  Tc)/Tc, in the hexa- 
tic phase just above the solid-hexatic transition, re- 
normalization-group calculations for the dislocation 
unbinding transition give [14] 

C~Co t~rc), ~c~~%e -w'v. (5) 

For the lowest reciprocal lattice vector Go, qGo(To) lies 
between �88 and �89 depending on the value of Poisson's 
ratio for the solid. Similarly, v may lie between 0.37 and 
0.40. 

For small orientational fluctuations, the free energy 
of a hexatic will be 

V = ~d2r (fA + �89 2 + lh602), (6) 

wherefA is the free energy density due to fluctuations 
within region A, 0 is the orientation of domain A 
relative to the substrate, K A is a Frank constant of 
m a g n i t u d e  kTr 2, and h 6 is the orienting field due to the 
substrate [14]. Integrating over orientational fluctu- 
ations on length scales between the positional corre- 
lation length r and the system size L, the domain's 
orientation will take a Gaussian distribution with 
width 

(•02>= kT lnKAq2+h6 
47ZKA Kaq2 +h6, (7) 

l" 2 "~1/2 2n 2n 
where q c = ~ - ~ j  ~ -  and qL=~L-[16]. This form 

gives the Lorentzian (3) convoluted with a Gaussian for 

the transverse structure factor. In the limit of weak 
substrate coupling, fluctuations diverge logarithmi- 
cally with the size of the system, L, giving for a large 
system an isotropic ring of scattering with a structure 
factor which is approximately the square root of a 
Lorentzian. Since the divergence is only logarithmic 
with system size, it should still be possible to observe a 
well-oriented sample of macroscopic size. 

At still higher temperatures the overlayer will lose 
orientational as well as positional order. Well above 
the hexatic-isotropic transition, the structure factor 
may take on the form 

kT 
S(Q)'-~ ~c 2 + ( ]Qj_  Qo)2. (8) 

Rather than Lorentzian spots, the structure factor may 
exhibit rings about the origin with a Lorentzian cross- 
section. For the solid, the hexatic, and the fluid, the 
longitudinal width of the structure factor peak gives a 
measure of the positional correlation length. No such 
information can be extracted from the transverse width 
of the peak; if the orientational correlation length 
diverges in a fluid with constant positional correlation 
length, the structure factor will not change signifi- 
cantly, remaining a complete ring of constant width for 
all temperatures above the hexatic-fluid transition. 

Since the overlayer lies on an ordered substrate, it 
will have long range orientational order for all cases 
although the orienting field h 6 may be weak. The 
hexatic has a divergent susceptibility to the orienting 
field; however, in the fluid phase the susceptibility is 
finite, so a small h 6 will produce only a weak six-fold 
modulation in the rings of scattering. For a larger h 6 or  
a better correlated fluid, orientational fluctuations will 
be suppressed: taking the limits Ka--*0, L--,oo in (7), 

2kT 
(601) = - -  (9) 2 

As for a paramagnet-ferromagnet transition in an 
applied magnetic field, the substrate field will smear 
out a hexatic-isotropic transition; the solid-hexatic 
transition will remain sharp. 

IIB. X-Ray Sources 

We have overcome the small cross-section of a Kr 
monolayer in two ways. By using exfoliated substrates 
we greatly increase surface area [17]. Since orien- 
tational information is thereby lost, experiments using 
single crystal substrates must be carried out as well; 
here the scattering cross-section is increased by the 
large coherence length of our overlayer. We require a 
well-collimated, monochromatic x-ray source to take 
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advantage of the sample coherence, and a well focussed 
beam to illuminate a small sample. In any case, a bright 
beam is needed, although the simple expedient of more 
photons increases the background scattering from the 
substrate as well as the signal. 

The experiments described herein were carried out 
at two facilities providing such an x-ray source, first at 
beamline VII-2 at the Stanford Synchrotron Radiation 
Laboratory (SSRL), a wiggler end station which has 
been described previously [18], then at the newly 
completed IBM-MIT beamlines at the National 
Synchrotron Light Source (NSLS). 

The IBM-MIT beamlines are built on one bending 
magnet at NSLS. At 9 keV the x-ray flux produced by a 
typical stored electron beam of 100 mA at 2.53 GeV is 

l a x  1013 photons distributed uniformly over the 
s0 .1%BP 

5 mrad horizontal acceptance of each beamline but 
with only 0.11 mrad H W H M  vertical divergence; due 
to a higher electron beam energy and the use of an 8- 
pole wiggler rather than a bending magnet, the corre- 
sponding figure at SSRL was 2.0 x 1014 [19]. 

In their basic design, the two IBM-MIT beamlines 
are similar to that used at SSRL: an ellipsoidal mirror 
in a 1:1 focussing geometry is followed by a double 
crystal monochromator.  Each beamline consists of 
evacuated pipe up to a radiation protection hutch. 
Beryllium windows seal either end, one between our 
beamlines and the storage ring vacuum, the others in 
the radiation protection hutches. Attenuation by these 
windows seriously diminishes the x-ray flux below 
~ 4 keV. Evacuated flightpaths are added before and 
after the cryostat holding the sample to minimize air 
scattering. All components exposed to white beam, 
that is up to the first monochromator  crystal, are water 
cooled. 

The x-ray beam is focussed in both the horizontal 
and vertical directions by a single mirror, a single 
crystal block of silicon 60 x 10 x 4 cm 3. It is ground to a 
cylindrical figure with an 8 cm radius of curvature, then 
coated with platinum over a rhodium base. Total 
external reflection occurs below a critical energy of 
12.1 keV for a glancing angle of 0.4 ~ with reflectivity 
falling off sharply at higher energies. 

The low reflectivity above the critical energy typi- 
cally provides an important advantage. The synchro- 
tron is a broad-band source, and monochromator  
crystals will reflect higher harmonics: a Si(111) crystal 
set for 9 keV will reflect 27 keV x-rays from the (333) 
planes in the same direction. Thus in the absence of the 
mirror we see a spurious 27 keV Gr(l l0)  peak ob- 
scuring the weaker 9 keV Kr(100). The mirror removes 
these higher harmonics: at three times the critical 
energy the Fresnel reflectivity is only 8 x 10 -4. 

The focus of the mirror is critical, since NSLS 
provides a compact source, 0.38mm horizontal 
x 0.12 mm vertical. As noted above the mirrors on our 

two beamlines, X20A and X20C, are each ground with 
a fixed sagittal radius of 8 cm; to obtain 1 : 1 focussing 
at focal distances of 6.4 and 5.4 m respectively, they are 
each bent in situ by four spring loaded rods with 
meridional radii of 2.0 and 1.5 km and tilted to 
glancing angles of 0.35 ~ and 0.44 ~ . This experiment 
used beamline X20A. 

A horizontal 4 milliradian beam is focussed into a 
final spot size of 1.1 mm horizontal x 0.71 mm vertical, 
a factor of 17 larger than that for an ideal mirror. The 
effect of the larger spot size on this experiment was to 
dictate the use of a larger, less perfect crystal. The SSRL 
source is 4 m m x  1 mm so focus is not as critical; we can 
take full advantage of the greater intensity of the SSRL 
wiggler source only for a sample several mm in size. 

We use a double crystal monochromator,  with 
scattering in the vertical plane. Each crystal has two 
rotational degrees of freedom, one to tilt the normal to 
the crystal planes into the scattering plane, the other to 
rotate the crystal in the scattering plane to select the 
energy. The rotation and tilt are effected by high- 
precision goniometers inside the beamline vacuum. 
The downstream crystal has a fine adjustment to its 
rotation controlled by a piezoelectric crystal to 
compensate for small thermal shifts of the upstream 
crystal. As the x-ray energy is changed, the downstream 
crystal is moved parallel to the beam so as to intercept 
it at the right height. Energy is calibrated within 1 eV 
by locating the Cu K absorption edge at 8.979 keV at 
NSLS, the 7.112 keV Fe K edge at SSRL. 

The NSLS experiment used Si(111) monochroma- 
tor crystals with 0.0018 ~ Darwin width; at SSRL we 
used asymmetrically cut Ge(111) crystals, giving higher 
flux but poorer resolution. By using an oppositely 
aligned pair in a double crystal monochromator,  each 
cut at 7 ~ from the (111) face, the upstream crystal 
decreases angular divergence and increases beam size, 
while the downstream crystal restores the original 
beam parameters, the only net effect being an increased 
bandpass for the monochromator.  Flat Ge( l l  1) crys- 
tals have a 0.005 ~ Darwin width, versus 0.013 ~ when 
asymmetrically cut. Both experiments used flat Ge(111) 
analyzer crystals. Thus instrumental reciprocal space 
resolution was 3.6 x 10 -4 •-1 H W H M  longitudinal, 
7.0 x 10- 5 ~ -  1 transverse at NSLS, the resolution was 
somewhat broader at SSRL. 

Each beamline is equipped with 32 stepping motors 
controlling 4 horizontal and 4 vertical beam apertures, 
2 fluorescent screens and 2 ion chambers which may be 
inserted into the beam, mirror position and orien- 
tation, the monochromator  and the diffractometer. An 
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IBM PC-XT microcomputer running a Venix oper- 
ating system controls a CAMAC crate housing 4 Data 
Signal Processing E500 stepping motor controllers, 
each of which generates pulse trains for 8 stepping 
motors. Pulses for each set of 8 motors are carried to an 
Advanced Control Systems MDU-8 Step-Pak, which 
provides the 6-phase driving voltages. 

Experiments are mounted on a Huber 6-circle 
diffractometer, which rests on a table providing trans- 
lation in the horizontal and vertical directions, trans- 
verse to the beam, with an accuracy of 0.01 inch. We 
have developed a program to control the diffract- 
ometer, as well as all other motors. This allow us to 
scan all spectrometer circles and to scan beam energy. 
Applying the algorithms of Busing and Levy [20], 
sample orientation may be determined by locating two 
Bragg peaks; then reciprocal space scans may be taken. 
Since the diffractometer has an extra degree of freedom, 
one of several constraints must be applied. One of the 
three circles determining sample orientation may be 
held fixed, or an azimuth angle describing rotation of 
the sample about the reciprocal lattice vector may be 
fixed. 

A NaI scintillation detector was used to count 
scattered x-rays. A pulse height analyzer provided 
~ 3 0 %  energy resolution. While count rates are re- 
ported in counts/second, counting time was in fact 
normalized to a beam monitor: a thin film of Kapton 
placed diagonally in the incident beam scatters into a 
similar detector. Counting time is inversely propor- 
tional to stored electron current, with a nominal 
second of 1013,000 monitor counts corresponding to a 
real second at 140 mA. Typical stored electron beam 
current was 120 mA at both sources, decaying to 
40 mA over 4 h. 

I I I .  P o w d e r  E x p e r i m e n t s  

Due to the high surface area of an exfoliated substrate, 
we were able to make an extensive survey of the high- 
temperature region of the extended monolayer regime 
in a two week run at SSRL. The dashed lines in Fig. 3 
indicate paths through the phase diagram along which 
we have taken detailed series of scans. We find a phase 
diagram strikingly different from that found by Butler 
et al. [5]. Rather than a C-F and a C-IC transition, 
joining at a multicritical point, we find a single 
transition from commensurate to fluid phase; at con- 
stant pressure the fluid first freezes into a commensur- 
ate solid, then reenters the fluid phase before freezing 
again into an incommensurate solid. To understand 
this behavior we will first review previous results 
regarding the C-F and C-RF transitions, then describe 
their evolution as they join. 
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Fig. 3. Kr/Gr phase diagram: F--fluid, C---commensurate solid, 
RF--reentrant fluid, IC~ncommensurate solid, S--3D solid, L - -  
3D liquid. Triangles are from [22], circles this work. Scans were 
taken along dashed lines 

IliA. Review 

As may be seen from Fig. 2, the C-F transition is 
strongly first order below 85 K, while at higher 
temperatures there is an extended region with a small 
discontinuity in coverage, less than 10%. Thus while 
early adsorption isotherms experiments located a 
tricritical point a temperature T3 ~95  K [4, 21], pro- 
gressively more refined measurements have traced 
the coexistence region up to 117___2 K [22, 23]. It is 
difficult to tell, simply by measuring the width of the 
C-F coexistence region, whether it disappears or 
narrows beyond experimental resolution. Even when 
experimental variables such as temperature, pressure 
and coverage are precisely controlled, phase tran- 
sitions remain rounded due to impurity and imper- 
fection of the substrate. Using thermodynamic measur- 
ements such as adsorption isotherms and heat capac- 
ity, weakly first order and second order transitions are 
prohibitively difficult to distinguish. Suter et al. 1-23] 
found that the shape of the nominally vertical step in 
coverage at lower temperatures where the C-F tran- 
sition is unambiguously first order may be described by 
a Gaussian distribution of transition chemical poten- 
tials with 1.5 K FWHM, for ZYX graphite. This 
corresponds to AP/P~O.O15or AT/T~O.O03. At 
119 K the step in the isotherm can no longer be fit to a 
first order jump convolved with this distribution (the 
transition width is roughly doubled), so Suter et al. 
[23] conclude that the transition is second order, with 
T 3 = 117 + 2 K. However, the nature of the fluid at the 
phase boundary is evolving rapidly in this region, 
increasing in density. This might have a large effect on 
the susceptibility of the transition to inhomogeneity. It 
should also be noted that in the system of nitrogen on 
graphite which has a phase diagram closely analogous 
to that of krypton, Miner et al. [24] have demonstrated 
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that the commensurate solid-fluid transition is first 
order up to the highest temperatures. 

X-ray diffraction measurements of Bragg peak 
intensity illustrate the difficulty of distinguishing be- 
tween a first order transition smeared by inhomogen- 
eity and the power law behavior of a second order 
transition. Data have been reported which are consist- 
ent with critical behavior both at and above T 3. Bragg 
peak intensity will be zero in the fluid, increasing 
linearly across a coexistence region for a first order 
transition and growing as a power law I ~ ( T - T c )  2p' 

through a second order phase transition for fixed 
coverage scans. Apparent power law behavior has been 
observed at 106 K with fl'=0.09_+0.03 [25] and at 
113 K with fl' = 0.065 _+ 0.015 [26]. Although both sets 
of data are consistent with power law behavior, 
adsorption isotherms strongly suggest that the lower 
temperature transition is first order [22, 23]. 

As we shall see, x-ray scattering studies of the fluid 
and solid phases can give less ambiguous results. For  a 
strongly first order transition, there is little evolution of 
the lineshape of either phase; while inhomogeneity will 
broaden the transition over a distribution of tempera- 
ture or pressure, diffraction profiles near the transition 
will show a simple linear combination of the two 
phases. For  a second order transition the correlation 
length in the disordered phase diverges as the tran- 
sition is approached; diffraction profiles from an 
imperfect sample will reflect a distribution of peaks of 
various widths. There is a more qualitative difference 
between first and second order transitions, so results 
are less dependent on detailed modelling of the tran- 
sition. 

As may be seen from Fig. la, Kr atoms in the 
commensurate lattice occupy one third of the hexa- 
gonal Gr sites: they may occupy any one of three 
sublattices. The C-F transition falls in the three-state 
Potts universality class. Berker et al. have developed a 
renormalization group treatment of the three-state 
Potts lattice gas, applied to this transition [27]. A four- 
state variable is assigned to each group of three sites: 
three values correspond to the three sublattices, the 
fourth to either a vacancy (as for a bare surface) or 
random occupancy (as for a dense fluid). Renormaliz- 
ation calculations give a phase diagram with a tri- 
critical point at 108 K. Calculated exponents for 
sublattice occupation are consistent with the x-ray 
measurements of Bragg peak intensity [25,26], 
fl' = 0.100_+ 0.004 above and fl' = 0.083 at the tricritical 
point. 

The Ports lattice gas model does not explain the 
extended narrow coexistence region. Ostlund and 
Berker [28] have produced a phase diagram with a 
cusped coexistence region in better agreement with 
observed phase boundaries. They suggest that the true 

tricritical point is 78 K. An apparent coexistence 
region is observed due to sample inhomogeneity: while 
an adsorption isotherm at a second order transition is 
continuous, its slope diverges, and there will be a 
substantial jump in coverage over the range AT in 
which the transition is smeared. Again, by looking for a 
diverging correlation length in the fluid phase, we hope 
to resolve the ambiguity surrounding this elusive 
tricritical point. 

While the C-F transition was immediately re- 
cognized as a melting transition, the C-RF transition 
was initially characterized as a transition from com- 
mensurate to incommensurate solid [29]. However, 
the first synchrotron x-ray study of this system by 
Moncton et al. [8] showed that at least above 80 K, a 
disordered phase intervened between the two solid 
phases. They also showed that as pressure is increased 
at constant temperature, the misfit follows a universal 
form: 

a 0 - -  a 
rn =- - -  - A [ T l n ( P / P c ) ] ~ ;  (10) 

ao  

Pc is the pressure at the C-RF transition, a o and a the 
lattice constants of commensurate and incommensur- 
ate Kr; A =0.79% and f l= 1/3 describe the misfit over 
the entire temperature range [8, 29, 30]. This behavior 
continues smoothly through the RF-IC transition, 
saturating at 5% misfit when the 3D solid Kr lattice 
constant is reached. 

The incommensurate solid has hexagonal sym- 
metry like the commensurate solid and the (111) face of 
the 3D solid. However, the IC phase is modulated by 
the substrate, giving rise to satellite peaks in the 
diffraction pattern. The satellite peak intensity reflects 
the amplitude of this modulation. At large misfit the 
distortion is small and may be treated as a sinusoidal 
perturbation, while at small misfits the structure is 
better described as a honeycomb network of dis- 
commensurations separating commensurate domains. 
X-ray diffraction measurements by Stephens et al. [30] 
of satellite peak intensity are consistent with a domain 
wall width of 5.7_+ 1 Kr rows, independent of misfit 
[30]. 

In their high resolution x-ray diffraction measure- 
ments, Stephens et al. [30] show that the weakly 
incommensurate phase is disordered. At 94.0 K, the 
maximum peak half-width ~c of 0.005+0.001 ~ - 1  
occurs at the smallest misfit observed, 1.2%. Thus 
while the continuous power-law behavior of the misfit 
suggests that the transition is second order, the corre- 
lation length shows, within experimental resolution, a 
discontinuous jump to its lowest value. The incommen- 
surability, defined as e = q - q o  where q and qo are the 
Kr(100) reciprocal lattice vector (r.l.v.) in the in- 
commensurate and commensurate phases respectively, 
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is of the same order as the inverse correlation length x: 
this reflects disorder on the length scale of the domain 
wall separation. In contrast to its jump at the C-RF 
transition, ~c decreases gradually through the RF-IC 
freezing transition. 

A simple model of the C-IC transition at zero 
temperature was proposed by Frank and van der 
Merwe [31]. In this 1D model, the Kr adsorbate is 
represented by a 1D harmonic lattice, while the 
substrate provides a sinusoidal potential. The natural 
lattice constant of the overlayer, that is, that with no 
substrate effect, is taken to vary linearly with pressure, 
and the system is treated using a continuum approxi- 
mation. The model then predicts a continuous C-IC 
transition as a function of pressure, with misfit 

rn~ log . The Frank and van der Merwe 

model explains the abrupt but continuous commen- 
surate-incommensurate transition, but the observed 
1/3 power-law misfit [8, 29, 30] does not agree with the 
predicted logarithmic dependence. 

One way to make the model more realistic is to 
include the two dimensionality of the system. Again 
using a continuum approximation, Shiba has numeri- 
cally minimized the energy of a harmonic hexagonal 
2D lattice distorted by a Gr substrate [32, 33]. The 2D 
Kr-Gr potential used by Shiba is 

3 
V(R) = - N o  ~ cos(Ki "R), (11) 

[=1 

where the three K i are the Gr(100), (010), and (001) r.l.v. 
Calculations of the rare gas-graphite interaction 
[34, 35] suggest that this form accurately describes the 
potential. More restricted energy minimization calcu- 
lations for a discrete lattice with the same Kr-Gr and a 
realistic Kr-Kr interaction [36] are consistent with 
Shiba's results, confirming that the approximation of 
the Kr overlayer by a harmonic lattice is reasonable. 
The overlayer is described by two Lam6 coefficients 2 
and #, where 2=/~ for a Cauchy solid. The model 
gives quantitative agreement with (10) with one free 
parameter, the domain wall width 
I o = [2(,~ + 2~)/(3Vo) ] 1/2 ~ 32~ corresponding to a width 
of 4.8 rows, agreeing with the Stephens et al. [30] value 
of 5.7+1, calculated from satellite peak intensity. 
Agreement of the calculated misfit with a power law is 
accidental: the misfit varies logarithmically with pres- 
sure near the transition, crossing over to a linear 
dependence for large misfits. This suggests that the 
temperature independent behavior of the misfit obser- 
ved in experiment may be due not to the universality of 
critical behavior, but to the low temperatures involved. 
On the other hand, the temperatures, however, are not 
small compared to the interaction energies involved. 

As a further complication, several domain wall 
structures are possible. Because commensurate Kr may 
occupy any of three sublattices, two types of domain 
wall may form. For an overlayer denser than the 
commensurate phase, the walls may be heavy (Fig. ld) 
or superheavy (Figs. lb, c). Kr rows parallel to the wall 
move together by 1/3 of a row spacing at a heavy wall, 
2/3 at a superheavy wall. A more qualitative difference 
is that the superheavy wall introduces only a strain in 
the hexagonal Kr lattice, while the heavy wall puts in a 
row of interstitial atoms. In the limit of a weak 
substrate potential the superheavy wall can relax 
continuously to an unperturbed lattice, so it will have 
lower energy. Since Shiba's calculation considers only 
lattice strains, not defects, it implicitly assumes super- 
heavy walls. Energy minimization calculations 
comparing heavy and superheavy wall configurations 
confirm that superheavy walls are favored [36], as 
shown by the earlier diffraction experiments [8, 30]. 

Each type of wall can be arranged in a honeycomb 
network with hexagonal symmetry (Figs. lc, d) or a 
uniaxial array of parallel walls (Fig. lb). Shiba's 
calculation indicates that the domain walls will be 
uniaxial for small incommensurability, hexagonal for 
larger incommensurability. Renormalization group 
calculations [37] predict, however that the uniaxial 
phase is stable only below 50 K, which might explain 
why only the hexagonal phase has been observed 
experimentally. 

A more phenomenological approach is to consider 
the statistical mechanics of domain walls rather than of 
Kr atoms. Baket  al. [38] use mean field theory to treat 
the zero-temperature case of a harmonic lattice of 
domain walls. The nature of the transition depends on 
the wall crossing energy A: A positive leads to a first 
order transition to a hexagonal incommensurate 
phase, A negative to a second order transition to a 
uniaxial phase, followed by a first order transition from 
uniaxial to hexagonal. The observed case, a continuous 
transition to a hexagonal phase, is ruled out. 

At non-zero temperature, the long range interac- 
tion energy between domain walls may be ignored. In 
the case of hexagonal domain walls, for large wall 
separations, the dominant interaction term derives 
from the entropy of wall breathing: the sizes of the 
hexagonal domains may be independently adjusted 
without changing total wall length or number of wall 
intersections [39]. Adding this entropy term to Bak's 
zero-temperature mean field theory will decrease A for 
small incommensurabilities, favoring the hexagonal 
phase over the uniaxial. The model might explain why 
we see no uniaxial phase, but still rules out any second 
order transition. 

This entropic domain wall interaction produces a 
very soft structure. The compressibility of the domain 
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wall lattice approaches zero as the walls move further 
apart. Coppersmith et al. [40] have estimated the 
elastic constants of a hexagonal domain wall network, 
while Nelson and Halperin [14] have calculated the 
free energy of a free dislocation in a 2D lattice: 
combining the two results, Coppersmith et al. [40] find 
that dislocations in the domain wall network have 
negative free energy, making it unstable and leading to 
a fluid. Since the elastic constant is due to an entropic 
term, it decreases linearly with temperature; the result 
holds for all non-zero temperatures, provided the 
transition is not too strong!y first order. 

The Potts lattice gas model used for the C-F 
transition has been extended by Kardar  and Berker 
[41] to provide a renormalization group treatment of 
the C-RF transition. While the Potts model assigns one 
energy for neighboring sites in the same sublattice, 
another for any combination of different sublattices, 
Kardar  and Berker here use a chiral Potts model, 
where heavy and superheavy walls (see Fig. 1) and their 
crossings have different energies. Their renormaliz- 
ation group calculations give a phase diagram for 
adsorbed monolayers with a fluid phase separating 
commensurate and incommensurate solids, as in the 
model of Coppersmith et al. [40]. The helical Potts 
model predicts a continuous transition, as observed, 
and provides a heuristic explanation of the one-third 
power law behavior of the misfit (10). 

Since the C-RF and C-F melting transition connect 
continuously, we must know when the transition falls 
in the Potts universality class, which has been used to 
describe the C-F transition, and when it falls in that of 
the chiral Potts, which applies to the C-RF melting 
transition. As pointed out by Huse and Fisher [42], the 
asymmetry between heavy and superheavy domain 
walls can be either a relevant or irrelevant perturbation 
to Potts behavior. When it is relevant, the transition 
will fall in the chiral Potts category everywhere except 
at one multicritical point. If it is irrelevant, the 
transition will be of the Ports class when the asym- 
metry is small, possibly shifting to the chiral Potts class 
as the asymmetry increases, with a new multicritical 
point at the crossover. The difference between Potts 
and chiral Potts transitions should be observable by x- 
ray diffraction for an appropriately precise measure- 
ment: as reduced temperature t--,0, the structure factor 
scales as 

S(Q) ~ t- rD(qa/t*), (12) 

where q=  Q - Q o  and a is the commensurate phase 
lattice constant. For  the Potts universality class, D(w) 
has its maximum at w--0, so for incommensurability 
e~,ta, fl>v and e/x~O as t~0:  the profile broadens 
more quickly than its center shifts. For  the chiral Potts 

universality class, D(w) is maximum at w ~ 0, so fl = v 
and e/x approaches a universal nonzero limit. 

Here the comparison of experiment with theory is 
sketchy. The power-law behavior of (10) applies as a 
function of temperature as well as chemical potential 
[8], with the same 1/3 exponent, but the peak width x 
has been observed to increase monotonically as the 
incommensurability decreases; the asymptotic behav- 
ior of e/~c occurs as x decreases. At the smallest 5, 
e/x ,.~ 1, as one might expect for the chiral Potts model. 
Prior to this work, the scattering from the F phase had 
not been observed, so little can be said about the chiral 
character of the C-F transition. 

The picture of the weakly incommensurate phase as 
a domain wall fluid is supported by molecular dynam- 
ics simulations. Using a Lennard-Jones Kr-Kr poten- 
tial and a sinusoidal Kr-Gr potential, Abraham et al. 
find a disordered hexagonal array of domain walls, 
with the walls wandering about while the atoms 
themselves show little mobility [43]. Thus at a simu- 
lation temperature of 97.5 K, the domain walls do not 
appear to be pinned to the lattice. 

IIIB. Sample Preparation and Data Collection 

Our sample was a 25 x 25 • 3 mm 3 piece of Union 
Carbide ZYX graphite placed in a beryllium cell of 
similar dimensions. The large faces of the cell are 
machined to 0.25 mm thickness to provide x-ray 
windows. A circular flange on the bottom of the 
beryllium cell is sealed with an indium o-ring to a 
copper disk, bolted to the cold finger of an Air 
Products Displex closed cycle helium refrigerator. A 
copper spring inside the cell holds the Gr  in place. 

The refrigerator will cool the sample to 15 K. The 
cell is surrounded by an aluminized mylar radiation 
shield cooled to 40 K by the first stage of the two-stage 
refrigerator. All this is enclosed in a stainless steel 
vacuum shroud, with a cylindrical beryllium window. 

A resistive heater is wrapped around the copper 
disk below the sample cell; an Air Products tempera- 
ture controller keeps temperature constant to 0.05 K. 
Three Air Products silicon diode thermometers are 
used: one in the temperature control feedback circuit, 
and one at each end of the cell; these agree to within 
0.6 K. Kr  (Matheson Research Grade, 99.995% pure) 
is admitted through a stainless steel tube. While our gas 
handling system was designed for measuring adsorp- 
tion isotherms, it is connected to the sample by a 3 m 
stainless steel bellows: room temperature fluctuations 
in the large volume of gas in the bellows prevent precise 
measurement of the quantity adsorbed. Thus we 
simply keep the sample in equilibrium with an MKS 
Baratron 1000 Torr  manometer and add gas to the 
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desired pressure. Pressure equilibration is rapid at the 
high pressures studied: under a minute. The sample 
was baked in vacuum at 1200 K a week before the 
experiment and transferred under dry nitrogen into the 
cell. The base pressure of the Gr, cell, and gas handling 
system w a s  10 - 6  Torr. 

ZYX is a turbostratic exfoliated Gr; the constituent 
flakes have large uniform basal planes. The basal 
planes are preferentially aligned parallel to the large 
face of the sample; the distribution of tilts is approxi- 
mately Lorentzian, 8.3 ~ half-width-at-half-maximum 
(HWHM) [44]. There is no order of the crystallites in- 
plane. Thus the Bragg rod of a monolayer solid is 
converted to a cylinder by in-plane powder averaging. 
Since maximum signal is obtained when sample thick- 
ness is close to one absorption length, the sample is 
oriented so as to scatter in transmission, through the 
minimum sample thickness. Momentum transfer is in 
the basal plane, with the basal plane normal also in the 
scattering plane. 

The cryostat is mounted in a 6-circle Huber 
goniometer, but since the only information is in the 
longitudinal direction, we used the 0 and 20 circles only 
to take longitudinal scans. Only the center of the 
sample is illuminated; the edges are damaged when the 
sample is cut. The scattering volume is 2 mm high, 
5 mm wide, and 2 mm thick; 20 mm 3 of graphite has a 
surface area of 2000 cm 2 [2], giving a diffracted signal 
of 11~ counts/s, where ~ is the overlayer correlation 
length in Angstroms. 

While a Kr monolayer gives a substantial signal, 
scattering from the Gr substrate, Kr gas, and the 
sample cell can be larger, so the quality of our data is 
determined largely by the accuracy of background 
subtraction. We were able to observe weak fluid 
scattering not seen in previous experiments because 
improved temperature control of the SSRL focussing 
mirror and a more stable synchrotron electron orbit 
gave a more reproducible background level. We first 
measured the background due to the Gr alone; by 
comparing the Gr(002) peak intensity when Kr is 
added, we determine and correct for the x-ray attenu- 
ation due to Kr, both gaseous and adsorbed. Next a 
scan was taken with 500 Torr  of Kr in the cell at 200 K, 
at which temperature a negligible quantity of Kr is 
adsorbed. Subtracting the Gr scattering gives the Kr 
gas contribution, which we subtract from our data after 
scaling by the gas density. 

We find a remaining component of the scattering 
which we believe is not due to Kr adsorbed on Gr basal 
planes. This scattering does not change as the Kr 
monolayer passes through a phase transition, it grows 
rapidly near the bulk Kr gas-liquid transition, and it is 
well described by the bulk Kr  liquid structure factor, so 
we attribute it to capillary condensation of liquid Kr 

and remove it by subtracting a variable amount of this 
structure factor, determined by neutron scattering 
[45]. This effect should be reduced by using a more 
loosely packed form of Gr, such being less susceptible 
to capillary effects. 

Typical values for the scattering subtracted 
( T =  121 K, P =435 Torr) are 3000 counts/s from diff- 
use Gr scattering, 770 from Kr gas, and 670 at the 
structure factor peak of ,-~ 1.85/~-1 from liquid Kr, 
compared to a maximum scattering of 5000 counts/s 
from commensurate Kr at 1.70/~-1; Kr absorbs 21% 
of the beam. Although the basal planes are for the most 
part aligned 90 ~ away from our momentum transfer, 
we see 180,000 counts/sec at 1.875 ~-1 ,  the Gr(0002) 
wavevector, from misaligned crystallites, forcing us to 
disregard data between 1.85 and 1.90/~ -1. More 
bothersome are three sharp peaks (HWHM 
~0.006/~ -1) in our "clean" Gr background, with 
wavevectors of 1.7123, 1.7335, and 1.7977/~-1 and 
intensity ,-~ 600 counts/s. Both Gr sample and beryl- 
lium cell walls are in our scattering volume; we do not 
know which contains these impurities. Small changes 
in these peaks, perhaps due to thermal expansion, 
contribute an uncertainty of ___ 100 counts/s to our data 
at the above wavevectors. 

IIIC. Results 

The dashed lines in Fig. 3 show the paths through the 
phase diagram along which we have taken detailed 
series of diffraction profiles. Representative scans are 
shown in Figs. 4-8. While these figures show only the 
vicinity of the Kr(100) peak, in all cases scans were 
taken and fit from 1.2 to 2.5/~- 1 to measure the wings 
of the peak. Figure 9 shows scans on this broader scale 
for the three phases; the bulk liquid Kr contribution 
has not been subtracted and is shown as the dashed line 
in Fig. 9. 

In preparation for this experiment we took much 
low resolution data using a rotating anode source. For 
the most part we will discuss only the higher resolution 
synchrotron results, but low resolution is sufficient for 
the study of the development of the broad bulk liquid 
Kr scattering. Figure 10 shows rotating anode scans of 
a ZYX sample near bulk Kr liquid-gas coexistence. The 
data are fit to a resolution-limited 2D solid peak and a 
Kr liquid peak; at high coverage the lineshapc can be 
described by a small amount of 2-D solid and a 
growing amount of 3-D liquid. 

The solid lines in Figs. 4-10 are the results of least 
squares fits; the best fit parameters are shown in 
Figs. 11-13 for these and similar scans. To fit the data, 
we start with a 2-D structure factor S([Q-Qol) ,  
assumed to be isotropic about the r.l.v. Qo. As we shall 



E.D. S p e c h t  et  al.: P h a s e  D i a g r a m  a n d  P h a s e  T r a n s i t i o n s  o f  K r y p t o n  357 

4 0 0 0  

2000 

s 
Z 
O 
(D 
Ld 

0 

o o  2 0 0 0 1  
l-- 

Z 
D 
0 
<J 

0 

0 

1.60 

' I ' I ' I ' 

C - F  
- -  T R A N S I T I O N ,  - 

P = 510  T O R R  

(a) 

_ ~176 o - 

, I , t , I , I ~ 1 
L65 L7OQ(~_ I )L75 1.80 L85 

Fig. 4a~l. P o w d e r  d i f f rac t ion  prof i les ,  c o m m e n s u r a t e  so l id - f lu id  
t rans i t ion:  a 127.6 K, b 128.75 K, c 128.82 K, and d 129.5 K. D a s h e d  
l ines  i n d i c a t e  the  f luid c o m p o n e n t  o f  c o m p o s i t e  l i n e s h a p e s  

4000  k I I ' I ' I i I I 

/ ic-  RF I 
F T R A N S I T I O N ,  ' ~  : 

/ T oRR /o) I \  
t q 

/ r \ " .  

o . .  �9 . . . . .  T~, -~ 

2 ~ o o c -  (b) I ~,.  - 

. . . .  
I-- 0 - e " ; o -  - 

<c)) . ~ . . . .  , 
o . / . .  

e f  �9 �9 

�9 

O - -  -- 

, L , i ~ I , i , 
~.60 L.65 Go ~.75 ~.80 ~.85 

Q(k ~) 

Fig .  6 a - e .  P o w d e r  d i f f rac t ion  prof i les ,  i n c o m m e n s u r a t e  so l id -re -  
e n t r a n t  f luid t rans i t ion:  a 116 K, b 118.5 K, e 119.5 K, d 121 K, a n d  
e 122.25 K. D a s h e d  l ine  in e is a L o r e n t z i a n  l i n e s h a p e ,  a a p o w e r  l a w  
l i n e s h a p e ,  the  rest  f o l l o w  (16) 

2000 

I o o o  
a 
Z 
o 
cJ 
h i  
03 

"-.. 0 
60 
I-- 
Z 

o o CD 

! o o o  

0 

1.60 

' I ' I I ' I ' 

- -  R F - C  

�9 e o o o o o  e 

~ 1 7 6  ~176 

. O o ~  

�9 o o  �9 

, I , 1 I ~ I , 
1.64 1.68 Q(~.- I )1" ] '2  1.76 [ .80 

Fig. 5a-e. P o w d e r  d i f f rac t ion  prof i les ,  r e e n t r a n t  f l u i d - c o m m e n s u r -  
a t e  so l id  t rans i t i on :  a 123 K, h 123.5 K, and e 123.75 K. D a s h e d  l ine  
i n d i c a t e s  the  f luid c o m p o n e n t  of a c o m p o s i t e  l i n e s h a p e  

see in Sect. IV, this is often the case. The structure factor 
is then averaged over all in-plane orientations. Finally, 
the lineshape is averaged over the tilt distribution. 
Following Stephens et al. [303, the double integral over 
tilts is converted to a single integral over effective 
tipping angle. The Lorentzian tilt distribution with 8.3 ~ 
H W H M  is well approximated by a Lorentzian dis- 
tribution of tipping angles with 15 ~ HWHM. 

Instrumental resolution gives only a small correc- 
tion to the lineshape, so it has been treated in an ad hoc 
manner: a correction of 0.00079 ~ - 1  is added in 
quadrature to the HWHM. The data are fit by varying 
peak width, peak intensity, and peak position. The 
amplitude of the capillary condensed liquid contribu- 
tion is determined from the high Q data, Q,-~ 1.90 to 
2 .5 /~-  t, while the Gr scattering, Kr gas scattering, and 
attenuation due to Kr are fixed as described in 
Sect. IIIB. 

For the commensurate phase, we use the lineshape 
developed by Stephens et al. [-30]: 

I(q)=A[ 1 +1"8q2/tr + e_,.(2,q2/~2 ]. (13) 
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where L =2.96/x  is the domain size. We find L =  1650 
_ 100 ~,  similar to the result of Stephens et al. [30]. 

As discussed in Sect. 2, the structure factor for a 
fluid will typically be a Lorentzian spot or a 
Lorentzian ring. A ring of scattering will be unaffected 
by powder averaging, but a Lorentzian spot, S(q) 

A 
will give approximately the square 

x 2 + ( Q -  Qo) 2 
root of a Lorentzian in the powder average: 

2XQo 
S(Q) = [(x2 + Q2 + 02)2 _ (2QQo)221/2 (14) 

1 
[ 1 + (Q - Qo)~/~ 23 ~/2, (15) 

for Q-Qo,,~x <Qo . 

These subtle lineshape distinctions are most readily 
made in the RF phase: the scattering in the F phase is 
too broad to permit accurate measurement of the 
wings of the scattering. Equation (14) gives a poor fit in 
the RF phase, as shown by the dashed line in Fig. 6e. A 
Lorentzian ring gives a satisfactory description of 
the powder data, but as we shall see in Sect. IV, 
the scattering is a spot and not a ring. We therefore fit 
the data with yet another lineshape, 

A 
S(Q) (16) 

1 + (Q - Qo)2/x 2 + C4(Q - Qo)4/x "' 

which is analytically powder-averaged in-plane. C 4 = 0 
gives a Lorentzian spot, C4 = 1/4 a Lorentzian squared. 
A fit of (16) to the data with C4 allowed to vary, yields 
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values of C4/~c z between 20 and 70/~2. To reduce 
random error in determining the other parameters, 
C4/~ 2 is held fixed at 36 ~2. The Lorentzian lineshape 
would be expected in the scaling limit, (q~< 1). A 
correction term to a Lorentzian line-shape can be 
understood for a domain wall fluid, because although 
correlation distances are large in terms of a unit cell, 
they are small in units of the domain wall separation. 

We would expect the scattering for the IC phase to 
follow a power-law structure factor (1). Following the 
procedure of Heiney et al. [46], we can fit our IC 
lineshapes to the approximation of Dutta and Sinha 
[47] to a power law lineshape convolved with finite size 
rounding. However, as found by Heiney et al. [46], the 
value of r/cannot be precisely determined, and indeed a 
power law lineshape cannot be distinguished from a 
Lorentzian unless the strength of scattering on the 
wings of the peak is accurately measured. We cannot 
determine our Kr gas background accurately enough 
to do this, so we only demonstrate consistency with a 
power-law lineshape: the solid line in Fig. 6a is the 
lineshape developed by Heiney et al. with t/set to 1/3, as 
one might expect near melting [14], and a best-fit finite 
size of 840 ~. It is reasonable that the finite size found 
here is smaller than the 1650 ~ found in the commen- 
surate phase. Since the IC phase has continuous 
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translational symmetry, its phonon spectrum will have 
no gap at q = 0  and it will be more susceptible to 
distortion by impurities. 

The IC phase may be fit equally well by the 
lineshape used for the fluid phase, (16). Since we cannot 
make a clear distinction between fluid and incommen- 
surate solid, and cannot precisely determine t/when the 
scattering is sharp enough to be solid, we fit all the data 
to this modified Lorentzian lineshape. 

Notably absent in all the observed incommensur- 
ate lineshapes are the satellite peaks seen at lower 
temperatures. When the Kr(100) peak is found at 
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Qo + e, where Qo is the commensurate peak position, 
the satellite appears at Q o -  e/2. The incommensurate 
lineshape will not fit a Lorentzian because it is too 
weak on this leading edge. Thus it seems unlikely that 
the satellite peak is present in broadened form. 

The existence of a satellite peak can be ruled out 
only when e is large enough for the primary and 
satellite peak to be resolved. From our data around 
124 K, we can rule out a satellite peak which is 0.05 as 
intense as the primary peak for all e>0.02 ~-1.  In 
contrast, at 94 K, the relative satellite peak intensity is 
0.3 for e = 0.02 ,~- 1, and falls to 0.05 only for e = 0.05 
[30]. Thus the satellite peak intensity is at least a factor 
of six weaker at 124 K, compared with the data at 94 K. 

The satellite peak intensity for a disordered system 
is most easily computed in the limit of an incommen- 
surate solid weakly perturbed by the substrate. To 
lowest order in the perturbing potential (11), the 
structure factor is [48] 

6 

S(Q) = So(Q) + ~ (Q' 6,)2So(Q + K,), (17) 
n = l  

where So(Q) is the structure factor of the unperturbed 
overlayer and 

K .  
6 n - -  2 2 2 (18) 

9qom lo 

is the amplitude of the static distortion wave with 
wavevector K. equal to one of the six Gr(100) r.l.v.; Qo 
is the commensurate Kr(100) r.l.v., m the misfit, and l o 
the dimensionless domain wall width. 

The first term in (17) gives the primary peaks, 
unmodified (to first order) by the distortion. The 
second term gives satellite peaks at Q = G ~ - K , ,  the 
differences between a Kr and a Gr(100) r.l.v. In the 
presence of thermal fluctuations in the unperturbed 
overlayer, the satellite peak will take the intensity and 
shape of the corresponding Kr peak G = Q + K,. Since 
the Q o -  ~/2 satellite peak is the sum of a Gr(100) and a 
Kr(010) r.l.v., comparing its intensity to the primary 
Kr(100) gives the displacement 5: thermal fluctuations 
drop out. The satellite peak at Qo + 3e/2 corresponding 
to a Gr(100) and Kr(200) r.l.v, has not been observed 
even at low temperatures, presumably because the 
Kr(200) peak is much weaker than the Kr(100). Since 
two satellite peaks contribute to the Q o -  ~/2 peak for 
each primary peak, the ratio of primary to satellite 
peak is 

S(Qo-e /2  ) 1 
S(Qo + e) - 18tmlo,-4 . r  , (19) 

As discussed by Stephens et al. [30], this theory 
works at temperatures of 94 K and below. In addition, 
detailed x-ray diffraction studies of the uniaxial system 
of weakly incommensurate bromine-intercalated 
graphite verify this scaling of satellite peak lineshape 
with that of the appropriate principal peak [49]. 

Both (17) and the bromine intercalated graphite 
example refer to the modulation of 2D solids; the same 
argument also applies to a fluid [50, 51, 52]. Thus, 
simple Debye-Waller type arguments etc. cannot ex- 
plain the absence of satellite peaks at 124 K. This must 
instead be due to a change in the width of the domain 
wall. As the magnitude of fluctuations approaches the 
wavelength of the modulation of the Kr-Gr  potential 
(2.13 ~), the effective strength of the modulation is 
reduced as each Kr atom samples an average of the 
potential. Calculations using the Sine-Gordon equa- 
tion to model the domain wall structure show that 
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phonons wilt increase the width of domain walls in the 
incommensurate solid by ,-~ 60% before the solid melts 
[53]. In the limit of a weak perturbation, the satellite 
peak intensity varies as the fourth power of domain 
wall width (19), so this corresponds to a factor of 0.15 in 
satellite peak intensity, making the peaks unobserv- 
able. A rapid diminution of the satellite peak intensities 
is also observed in bromine intercalated graphite near 
melting [49]. 

Having described the structures observed, we will 
now consider the phase transitions. The best-fit par- 
ameters for the P = 3 1 0 T o r r  scans are shown in 
Fig. 11. At the highest temperature, in the F phase, 
there is a single broad 2D peak (Figs. 4d, 9c). Between 
128.5 and 128.9 K, a commensurate peak develops 
(Fig. 4b, c). As shown by Fig. llc, the fluid peak does 
not simply disappear at this point, but becomes weaker 
by half and shifts to higher r.l.v. (Fig. 1 ld). Within the C 
phase the parameters for the fluid component are 
represented by open rather than filled squares in 
Fig. 11 to remind the reader that they represent an 
increased scattering on the tail of the commensurate 
peak, rather than a resolvable peak: their values are not 
to be taken too seriously. This is best seen in Fig. 9b, 
where the dashed line is the incommensurate compo- 
nent of the scattering. This scattering may be thermal 
diffuse scattering, as suggested by Stephens et al. [30]. 
Alternatively, it is well described by the liquid bulk Kr 
lineshape, although this explanation is unappealing 
because we expect this contribution to increase mon- 
otonically as the sample is cooled, and we see no such 
scattering in the RF phase. 

The striking feature of the C-F transition is that we 
see no evolution of the lineshapes as one would expect 
near a continuous transition. The scattering is well 
described by the sum of two lineshapes, with the 
commensurate peak remaining uniformly sharp as its 
intensity increases, while the fluid exhibits only a 
gradual 70% increase in correlation length to ~ 20/~ 
in the 2 K interval above the transition. The Kr(100) 
r.l.v, is a constant 1.73 ~-1  to within the 0.01 ~ -1  
experimental resolution in the fluid phase: interpreted 
naively, this would imply a first order transition with a 
fluid density 3.6% greater than that of the solid C 
phase. There is no sign of fluctuations on length scales 
between 50 and 1000 ~. 

Although the Bragg peak intensity rises over a 
0.4 K interval, the temperature resolution is somewhat 
better: even if the correlation length were to diverge 
from 50 to 1000~ over 0.1 K, we would see a 
superposition of lineshapes of different width, rather 
than a clean sum of a sharp peak and the broad fluid 
scattering. We can rule out all but an extraordinarily 
sharp second order transition. We conclude that the 
transition is strongly first order. While the disconti- 

nuity in density must approach zero at a tricritical 
point, a small jump in density does not imply a weakly 
first order transition: the density is not the order 
parameter. A necessary and sufficient condition for the 
existence of a tricritical point is that the correlation 
length in the fluid phase at the phase transition diverge 
approaching the tricritical point: at 310Torr and 
129 K there is little increase in the correlation length as 
the phase transition is approached from higher temper- 
atures. 

We therefore conclude that in this case the growth 
of the Bragg peak intensity appears to be continuous 
because of inhomogeneity effects. As noted earlier, the 
ideally discontinuous changes in coverage and Bragg 
peak intensity are spread over a larger temperature 
range than at lower temperatures. This must be due 
to an increased susceptibility to inhomogeneity, ac- 
companying the increase in fluid density at coexistence. 
Earlier reports of power-law behavior in Bragg peak 
intensity and compressibility in fact describe the 
distribution of inhomogeneity in the system, rather 
than a second order phase transition. Despite descrip- 
tions of tricritical behavior at 117 K and lower, our 
measurements show that the transition is first order up 
to 129 K. 

The coexistence line for a first-order phase transi- 
tion follows the Clausius-Clapeyron formula: 

dP L 
d T -  T(v2 -- vl)' (20) 

where L is the latent heat, v z and/)1 the volume per 
atom of each phase. Applied to a 2D system, the 
volumes translate to areas, while the pressure is a 2D 
spreading pressure. We do not measure this pressure, 
but whatever the relation between 2D and 3D pressure, 
the phase boundary has a maximum temperature at 
130 K and 400 Torr (Fig. 3). Assuming a smooth phase 
boundary (no multicritical point), d P / d T  diverges at 
that maximum. Since the latent heat remains finite, the 
two phases must reach equal density: past that point 
the fluid will be denser than the solid. Adsorption 
isotherms have not been measured at such high 
presures: the large mass in the gas phase makes it 
difficult to measure small changes in the mass ad- 
sorbed. At the maximum temperature of the phase 
boundary, an adsorption isotherm would exhibit only 
a change in slope at the phase transition, since the two 
phases have equal densities but different compress- 
ibilities, even for a strongly first order transition. The 
vanishing of the coverage jump does not imply a 
continuous transition. 

If the magnitude of the wavevector at the fluid 
scattering peak is taken at face value, the maximum 
temperature of the phase boundary must occur below 
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310 Tort, since the fluid is 3.6% denser than the solid. 
This would require slight modification of the boundary 
shown in Fig. 3. The fluid is highly disordered, how- 
ever, so its density need not be that of the solid, scaled 
by the peak position. Since the commensurate solid 
forms with an atomic separation some 5 % greater than 
the Kr-Kr  potential minimum, it is more likely that the 
fluid has a first shell at atomic separation 1.8% less 
than the solid, but contains enough voids to give it a 
slightly lower density. 

On further cooling the commensurate monolayer 
reenters the fluid phase. We can now see a growth of 
correlations in the RF phase as it approaches the C 
phase: HWHM decreases from 0.025 to 0.0097/~-1 
before the coexisting C phase obscures the RF 
scattering, as shown in Fig. 11. This is the reverse of the 
behavior seen at lower temperatures by Stephens et al. 
[30], where the correlation length in the RF phase 
decreased as the ordered C phase was approached. The 
solid line in Fig. l l b  represents the 0.2 K spread in 
transition temperature multiplied by the derivative of 
peak position with respect to the temperature: if the 
transition temperature is spread over 0.2 K by in- 
homogeneity, this is the peak broadening due to the 
distribution of misfits. Right at the C-RF transition we 
see a spread of peak positions comparable to the peak 
width. Turning to the data in Fig. 5, it is not surprising 
that a single lineshape gives a poor description of the 
scattering. Nevertheless, as is evident in Fig. 11b, the 
increase in width with decreasing temperature is 
apparent; the measured width in the RF phase is due to 
equilibrium thermodynamic effects not substrate in- 
homogeneities. 

Plotting peak half-width ~ versus incommensur- 
ability e (Fig. 14), we find that roughly e ~ c  in the 
region where both are decreasing. In term of a Potts 
model this implies that the transition falls in the chiral 
Potts universality class. Inhomogeneity-induced C-RF 
coexistence spans 0.2 K, while the reentrant melting 
occurs over a 1 K range, not enough room to extract 
critical exponents. 

At these high temperatures the misfit is well 
described by an exponent closer to 1/2 rather than the 
1/3 observed at lower temperatures. The solid line in 
Fig. l l d  is 
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Q - Q0 = 0 .178  [ (T~ - T)/T~] 1/2, (21)  
Qo 

with a transition temperature Tc = 123.87. To compare 
with lower temperature behavior, Fig. 15 shows the 
incommensurability at constant temperature rather 
than constant pressure. The dashed line is (10) with the 
low temperature parameters A =0.79% and fl= 1/3; 
the solid line is A =0.58%, fl=0.44, the best fit to the 

data; (21) which has fl= 1/2 gives a similar fit. Note that 
the incommensurability is greater than that extrapo- 
lated from low temperatures: this is the opposite of 
what one might expect for a monolayer. With increas- 
ing temperature the disordered RF phase should have 
a reduced free energy relative to the C phase, and the C- 
RF transition will occur at a smaller natural misfit. 

When the RF finally freezes into the IC phase, the 
half-width ~ approaches zero in the manner expected 



364 E.D. Specht et al.: Phase Diagram and Phase Transitions of Krypton 

for a dislocation-unbinding transition. Close to the C- 
RF transition, inhomogeneity effects contribute to 
peak width because the peak position varies rapidly 
with temperature; near the IC-RF transition the in- 
homogeneity contribution is important simply because 
the peak becomes very sharp. To account for this effect 
as well as finite size effects, we have simply added to the 
width a constant term equal to the width of the 
narrowest peak observed, giving 

x = x z + ~c0e-B/~v, (22) 

which is shown in Fig. 16 along with the scaled data. 
Parameters are t%=4.11/~ -1, xl=0.00059A -t ,  
B= 1.8066, and v=0.4; v=0.37 gives similar results. 

A similar evolution of peak width is seen for the 
freezing of IC Xe/Gr. However, the transition in the Xe 
case is much sharper, spanning the same range of 
correlation lengths in less than 1/30 the reduced 
temperature 1-16, 44, 46]. Since the adsorbed atoms are 
so similar, this suggests that the substrate is playing a 
strong role in the freezing of the incommensurate 
overlayer and indeed the freezing mechanisms may be 
fundamentally different for Kr and Xe. The reduced 
temperature range over which the correlation length 
evolves significantly is comparable for monolayer Kr 
and for the 2D nearest neighbor XY model [54]. 

Calculations by Joos and Duesbery 1-55] suggest 
that while IC Kr/Gr melts by formation of dislocations 
in a network of domain walls, melting of IC Xe/Gr is a 
result of dislocations in the atomic lattice. Calculating 
the energy of dislocation pairs for both systems, they 
find that due to the anharmonicity of the rare gas 
interactions, vacancy dislocation dipoles are favored 
over interstitials for either adsorbate. Since Kr has 
dense walls, dislocations pinned to the walls are a low 
energy excitation, while Xe dislocations are repelled by 
the walls; thus widely separated dislocation dipoles 
have much lower energy for Kr. 

Figure 17 shows how these results fit into the global 
Kr on Gr phase diagram. Since the 3D pressure has 
little physical significance for the 2D phases, the plot 
shows chemical potential, given in temperature units 
by 

ph 3 
# = Tin kT(27tmkT)a/2. (23) 

Solid lines indicate first order phase transition, dashed 
lines second order. Layering transitions are extrapol- 
ations from low pressure data [3], assuming they occur 
at the same fraction of the bulk vapor pressure. The 
other nearly straight lines are interpolations published 
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along with the data shown. The aligned and rotated 
versions of the incommensurate phase will be discussed 
in the next section. 

Unfortunately, we cannot include on this plot the 
phase transitions found by Butler et al. [5], who report 
data as a function of temperature and coverage, rather 
than temperature and pressure. Comparing topology 
and correlating temperature between our phase dia- 
grams, they see no IC-RF transition but find a line of 
phase transitions at 127 to 128K in our F phase, 
meeting the C phase at a multicritical point (Fig. 2). A 
dislocation unbinding transition will give only an 
essential singularity in the specific heat [14], which 
may be why Butler et al. see no anomaly at our IC-RF 
transition. Furthermore, we find that the evolution of 
correlation is gradual, broadening any specific heat 
peak still more. 

We see no anomaly at what Butler et al. label the 
IC-F transition. At 600 Tor t  we see a smooth evolution 
from the IC to a very disordered fluid (Figs. 8, 13). (The 
apparent dip in the parameters shown in Fig. 13 is an 
experimental artifact due to a temporary loss of 
temperature control.) The C-F and C-RF transitions 
may be described by a smooth curve, 

T =  To -- A (# --/.t o)2, (24) 

with T o = 129.08 K, #o = --2042 K, and A =0.000931, 
as shown in Fig. 17. This quadratic behavior has been 
observed in liquid crystal systems [56-58]. 

The heat capacity peaks identified by Butler et al. 
[5] as an IC-F transition may correspond to our 
435 Torr  scan. As shown in Fig. 12c, only a fraction of 
the overlayer enters the C phase at that pressure. Due 
to inhomogeneity, some regions of the sample will 
become commensurate while the rest only approaches 
the phase boundary, possibly giving the broad, weak 
heat capacity peak observed by Butler et al. Alterna- 
tively, the heat capacity peak may be due to the IC-RF 
transition, since while there is only an essential singu- 
larity at a dislocation unbinding transition, there is a 
broad heat capacity peak at somewhat higher 
temperatures [14]. 

Caflisch et al. [59] have constructed a Potts lattice 
gas model accounting for both fluctuations in sub- 
lattice in the commensurate phase and domain wall 
fluctuations in the incommensurate phase. Renormal- 
ization group calculations give pha~e boundaries in 
good quantitative agreement with those given here. 
They propose another interpretation of the results of 
Butler et al. [5]. The RF phase, they calculate, occurs at 
a coverage near I. 1 monolayer. They suggest that what 
Butler et al. report as a C-IC phase boundary at higher 
coverage is neither a C-RF nor a RF-IC phase 
transition but a monolayer-bilayer transition. Since 
this work has accurately located the C-RF boundary in 

terms of temperature and pressure, vapor pressure 
isotherms in this regime would reveal the coverage and 
settle the issue. 

It is clear from Fig. 17 that we cannot claim to have 
completed the phase diagram. While the C phase is 
found to terminate at 130 K, we know neither how nor 
at what temperature the IC phase comes to an end. 

IV. Single Crystal Experiments 

Structural measurements on single crystal surfaces 
have traditionally been carried out using electron 
diffraction techniques. X-ray scattering has a great 
advantage, however, because photons interact weakly, 
both with each other and with a sample: multiple 
scattering is negligible, simplifying data analysis, and 
highly collimated beams may be produced, providing 
high resolution. An added advantage for the Kr /Gr  
system is that We can scatter through high pressures of 
Kr gas. Here we will present x-ray diffraction measure- 
ments using a single crystal substrate which resolve 
questions which can be answered neither by powder 
substrate data nor by traditional surface probes. 

Scattering from a powder substrate gives no direct 
evidence of the orientation of the overlayer. Some 
information may be gained from the lineshape: Dimon 
et al. [44] find that the scattering from a Xe monolayer 
on a powder substrate corresponds to a powder- 
averaged Lorentzian spot near melting, a Lorentzian 
ring at higher temperatures. This technique is highly 
dependent on the model used for the lineshape. We 
make a direct, highly accurate determination of the 
orientation and structure factor of incommensurate Kr 
overlayers. 

Even for an incommensurate overlayer, which has 
translational invariance, decoupling it from the sub- 
strate, the overlayer is not rotationally invariant 
with respect to the substrate; thus the underlying order 
of the substrate is projected onto the overlayer through 
its orientation. We study this coupling in two ways. For  
an incommensurate solid overlayer, we see a transition 
from an aligned to a rotated phase, reflecting the 
change in the strain produced by the substrate from an 
array of domain walls to a sinusoidal modulation. By 
observing small rotations of the overlayer we can 
determine the strength of the modulations in the 
substrate-adsorbate potential. 

For  a disordered, incommensurate overlayer close 
to the freezing point, we expect to see a hexatic phase 
with long range orientational order. While the sub- 
strate will impose long range order on a highly 
correlated fluid, an overlayer which would be hexatic 
with no substrate will have an orientational stiffness, 
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revealed in a suppression of orientational fluctuations. 
With a high resolution probe, we can measure orienta- 
tional fluctuations as the correlation length diverges. 

IV. A. Rotational Theory and Previous Experiments 

treated as harmonic everywhere except at a line along 
the domain wall center, and the sinusoidal corrugation 
of the Kr-Gr potential (11) is replaced by a second 
order Taylor expansion about its minimum; this is 
valid for m ~ lo ~ 1. Strain falls off exponentially with 
distance from the domain wall center, giving energy per 
atom of 

As discussed in Sect. III, when an incommensurate 
overlayer is subject to a modulated adsorption poten- 
tial, static distortion waves in the overlayer will form. 
Novaco and McTague [-60] realized that as the 
overlayer rotates with respect to the substrate, the 
strain will be taken up in softer transverse modes, 
lowering the energy. 

For a weak corrugation of the Kr-Gr potential (11), 
the overlayer will respond linearly. For small misfit m 
and rotation angle 0 of the overlayer with respect to the 
substrate, the energy per atom gained by this strain will 
be, neglecting higher order terms in m and 0 [48], 

(1  0 2 -2 \ 

-_Vo \ + ~ r )  (25) 
Eg l21dmZ (1 + O2/mZ) 2' 

where cL and c r are the longitudinal and transverse 
sound speeds. 

The strain energy reflects competing effects. The 
numerator increases with rotation as the strain is 
accommodated in softer transverse modes, favoring 
rotation. The denominator increases as the wavelength 
of the strain decreases, favoring an aligned phase. For 
cL <x /~c r ,  the wavelength effect dominates and the 
overlayer is aligned with the substrate. For cL > x/~cr,  
the strain energy will be minimum when 

I01 ,-~ m(1 --2c2/c2) 1/2. (26) 

For a hexagonal Cauchy solid % = v / 3 c r ;  the over- 

layer will rotate by 101 =re~v~3, independent of the 
magnitudes of the Kr-Kr and Kr-Gr interactions. 

This linear response calculation holds when the 
misfit is small and the corrugation of the Kr-Gr 
potential still smaller: 1/lo ~m,~ i. As the misfit ap- 
proaches zero and the overlayer strain is accommo- 
dated in localized domain walls rather than a sinus- 
oidal displacement, the large commensurate domains 
between the walls will be strongly held in alignment, 
since each atom sits at a potential minimum; the low 
energy modes of rotation will consist of the domain 
wall network rotating while each domain remains 
aligned. 

In the limit of widely separated domain walls, the 
problem of overlayer rotation reduces to that of an 
isolated domain wall. Villain [61] treated domain walls 
in a pseudoharmonic approximation: the Kr lattice is 

E ~ Vonmlo x/~ [ 1 I/cr 1"~02-] (27) 

neglecting higher order terms as before. Again, the 
energy of the rotated phase is lowered by the shift of 
strain to the transverse mode, but raised by the 
increased domain wall density. The increased density 
now costs only the energy of an isolated domain wall: 
interactions are assumed to be negligible. 

Note that the angle 0 refers to rotation of the 
Kr(100) r.l.v, about the origin. In fact, each domain wall 
rotates by a large angle O/m; each overlayer r.l.v. 
rotates by Olin about the nearest commensurate 
Kr r.l.v. The limit of (26) corresponds to a domain wall 
rotation of 33 ~ independent of misfit. 

For  CL/CT<N/f2, the aligned phase is favored in 
both the linear response limit and the isolated domain 
wall limit; for %leT>2 the rotated phase is favored 
in both limits. The Cauchy solid lies in between, 

eL/eT = X/~, SO it will be aligned with the substrate for 
small misfit, rotated for large misfit: a phase transition 
must occur between the two limits. As discussed in 
Sect. IIIA, Shiba [32, 33] has determined numerically 
the response of a continuous elastic medium to an 
external potential. The calculation begins with the 
linear response approximation discussed above; sub- 
sequent iterations account for the variation in poten- 
tial felt by the medium as it distorts, adding higher 
harmonics to the distortion. In the limit of small misfit, 
Shiba's calculation gives a more accurate version of the 
pseudoharmonic approximation, with the lattice re- 
sponding harmonically to a sinusoidal potential. 

Shiba finds the rotation angle to be a universal 
function of the misfit, when both are scaled tO the wall 

width parameter l o. For CL/CT = X/~ the overlayer is 
aligned with the substrate (i.e. rotated 30 ~ for 
m<mc~0.7/lo, with IOl,~(m-mc) 1/2 for O<m-mc 

1/Io, IOl'~m/v/~ for m>> 1/lo. 
The domain wall width lo may be estimated in a 

variety of ways which do not depend on orientational 
information. The Kr-Kr potential is modified slightly 
due to screening by the Gr substrate, giving an effective 
Kr-Kr potential well depth of W~ 150 K [62]; theor- 
etical estimates of the corrugation of the Kr-Gr 
potential range from Vo=4.2K [34] to 14K [35], 
giving lo=(54W/Vo) I/2 between 24 and 42. Shiba 
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calculates that the commensurate-incommensurate 
transition occurs at a natural misfit of 1.103//o; using 
estimates of 4% [29] and 4.5% [63] for the natural 
misfit gives lo of 25 to 28. Satellite peak intensity gives a 
more direct measurement of domain wall structure: 
Stephens et al. [30] find a domain wall width corres- 
ponding to l o = 3 8 _ 7 .  Both theoretical and exper- 
imental measurements allow considerable latitude, but 
the critical misfit for rotation would be expected to lie 
between 1.7% (Io=42) and 2.9% (/o=24). 

At non-zero temperatures, the overlayer orien- 
tation will fluctuate. If the potential minimum is 0 = 0, 
we will see the behavior discussed in Sect. IIA, (7) and 
(9). The lattice in the problem will be a lattice of domain 
walls in the limit ml o ~ 1, the atomic lattice in the limit 
mlo ~> 1. For  a nonzero rotation, there may be more 
complex behavior. A solid or hexatic phase has long 
range orientational order, so at low temperature an 
overlayer will rotate coherently. With increasing tem- 
perature fluctuations about the equilibrium rotation 
will increase. In the simple picture the orientationally 
disordered overlayer is composed of domains each 
rotated by the same angle clockwise or counterclock- 
wise and the transition will fall in the 2D Ising 
universality class. 

Electron diffraction experiments suggest a continu- 
ous transition from an aligned to a rotated phase with 
increasing incommensurability [29, 64]. Poor  instru- 
mental resolution hindered observations near the 
transition; what was actually seen was a transition 
from a circular spot to one elongated in the transverse 
direction. Only for the largest misfits could the clock- 
wise and counter-clockwise rotated domains be re- 
solved. If a single rotation angle is assumed (plus or 
minus), the transverse broading indicates a critical 
misfit near 2% [29], as expected. Measurements of the 
magnitude of the misfit from different experiments are 
in disagreement. Although both studies used flakes of 
natural graphite at temperatures near 50 K, one found 
a rotation of 0.5 ~ the other one of 1.2 ~ both at the 
saturated misfit of 5%. A history-dependence of the 
rotation seems the likely explanation; neither exper- 
iment determines the reversibility of the rotation. For 
this relativity large misfit the linear response approxi- 

mation may be accurate: 10[ = m/,r + 1.7 ~ 
The electron diffraction results are resolution- 

limited in the longitudinal direction throughout the 
incommensurate phases, implying positional order 
and justifying the ansatz of orientational order. Ho- 
wever, higher resolution x-ray diffraction studies using 
a powder substrate found the weakly incommensurate 
phase to be longitudinally broadened, providing no 
direct information about the overlayer orientation, but 
suggesting that the electron diffraction results need to 
be re-examined; specifically, in a disordered phase, 

transversely broadened spots could be the result of 
rotational fluctuations, rather than coexistence be- 
tween two orientationally ordered rotated phases. By 
performing high-resolution x-ray diffraction on a 
single crystal of Gr  we combine the critical elements of 
both experiments, to answer two questions: is the 
overlayer solid or fluid at the critical misfit for rotation, 
and does the overlayer rotate coherently, or is the 
rotation preceded by orientational fluctuations? 

IV.B. Sample Preparation and Data Collection 

We report two experiments using single crystal graph- 
ite substrates. In the first, conducted at SSRL, we 
measured the transition of the incommensurate kryp- 
ton overlayer from an aligned to a rotated phase. In the 
second, conducted at NSLS, we measured the magni- 
tude of the orientational fluctuations in the reentrant 
fluid. 

The SSRL experiment used a natural graphite 
crystal, the NSLS experiment a synthetic Kish crystal. 
Both were about 2 x 3 mm 2 in area and were cleaved to 
expose a clean face. The SSRL sample was much 
thinner: 0.025 mm versus 0.25 mm but had a somewhat 
larger macroscopic bend. 

The sample, pinched between tantalum clips, is 
mounted in a cylindrical beryllium cell. The crystal is 
cleaned in situ by passing current between the Ta clips, 
across the sample, heating it resistively. Current is 
increased until the temperature of a W5%Re/W26% 
Re thermocouple spot-welded to one of the Ta clips 
reaches 900~ the graphite crystal will be much hotter. 
The SSRL sample was secured at two points, holding it 
more securely but introducing stress. 

For  the NSLS experiment, we included in the cell a 
0.25 cm 3 Teflon frame closed with Be windows and 
filled with vermicular graphite. When operating at Kr 
pressures too low to measure conveniently, we can put 
enough gas into the cell to produce the desired 
coverage on the vermicular graphite; the single crystal 
will then equilibrate at the same coverage. The exper- 
iments described here were conducted at relatively high 
pressures. Pressure was measured using a 100 Torr  
MKS capacitance manometer, but coverage could not 
be measured, due to room temperature fluctuations. 

The vermicular graphite also serves as a buffer. 
During the SSRL experiment, where vermicular graph- 
ite was not used, fluctuations in room temperature led 
to uncontrolled pressure fluctuations. Accordingly, the 
cell was sealed off from the gas handling system to 
reduce the problem; this, however, meant that we could 
not measure pressure as temperature was varied. In the 
NSLS experiment, as room temperature and therefore 
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gas pressure increase, the vermicular graphite, held at 
constant temperature, adsorbs more krypton, lessen- 
ing the pressure increase. The Be windows on the 
vermicular graphite container allow scattering from 
the vermicular as well as the single crystal. The 
vermicular was baked under vacuum at 900~ and 
transferred to the cell under dry nitrogen. 

The cell was mounted on a Displex closed cycle 
helium gas refrigerator, as in the Z Y X  experiment. Air 
Products platinum resistance (NSLS) or silicon diode 
(SSRL) thermometers were used to control and meas- 
ure cell temperature. While the temperature of the 
measurement thermometer was well controlled, the 
sample temperature and pressure were not so stable; 
counting times were limited by drifts in lattice constant. 
In the SSRL experiment these correlated with pressure 
fluctuations induced by changes in room temperature. 
The addition of the vermicular graphite ballast for the 
NSLS experiment eliminated this effect, but lattice 
constant fluctuations corresponding to a 0.3K 
temperature change remained. We do not fully under- 
stand the source of these apparent fluctuations. They 
are not present in our more recent experiments. 

Since a graphite single crystal is more exposed to 
impurities than a Z Y X  sample, we took greater care to 
keep this system clean. Gas is admitted to the cell 
through a 1/4" stainless steel tube and bellows 12" long, 
leading out of the cryostat. The balance of the system is 
connected with 3/4" stainless steel tubing, joined by 
Conflat flanges, including a 1 m long bellows to allow 
motion of the cryostat, which is mounted on a 6-circle 
goniometer. The components external to the cryostat 
were baked to 200~ the sample cell itself to only 
100~ as it was sealed with indium. Base pressure was 
10-7 Torr  outside the cryostat. At low temperatures, 
the base pressure within the cryostat was much smaller. 

The outgassing rate from the sample cell is 
1.0 x 10- 7 Torr-1/s while the cell is under vacuum at 
room temperature; during the experiment, the cell is 
cool so that the actual outgassing rate is much lower. 
Even at room temperature, the pressure increase when 
the cell is sealed off saturates, that is, the level of gas 
impurities reaches an equilibrium value. Thus our only 
reliable measure of gas purity is our sample lifetime: 
every few days we observed a sudden broadening of the 
incommensurate peaks we were studying; the commen- 
surate Kr  peak remained sharp but lost a factor of two 
in intensity. The scattering could be returned to its 
original form by flash-heating, warming the sample cell 
to room temperature and admitting fresh gas. 

The Gr  crystals were selected based on detailed 
study of their bulk mosaic, which may be carried out at 
high resolution using a rotating anode source. Charac- 
terization of the graphite surface was possible only 
using the synchrotron source. The crystals have both a 

discrete mosaic corresponding to grain boundaries and 
a continuous mosaic corresponding to elastic defor- 
mation. Since the thin flakes are flexible in the out of 
plane direction, we see a more continuous mosaic in 
that direction, with one (NSLS) or two (SSRL) crystal- 
lites and a mosaic of ,-~0.4 ~ HWHM. Within the basal 
planes the graphite exhibits more grain boundaries. 
The NSLS sample is comprised of five crystallites at 
relative angles of 0 ~ 0.8 ~ 5.1 ~ 5.5 ~ and 9.9 ~ with 
relative intensities of 0.02, 1, 0.4, 0.09, and 0.01; typical 
width is 0.07 ~ HWHM. 

A wide variety of probes was available to character- 
ize the graphite basal plane surfaces, but none match 
the resolution with which we analyze the Kr over- 
layers. We therefore determine the quality of the 
surfaces of our crystal by growing a commensurate Kr 
monolayer and measuring its mosaic and coherence 
length. The commensurate overlayer is aligned with 
the substrate, so we obtain an accurate measure of the 
surface mosaic. The coherence length of the overlayer 
may reflect either the distance between steps on the 
surface or the effect of point defects or impurities which 
pin the phase of the overlayer. 

The in-plane mosaic of the commensurate Kr 
overlayer is similar to that of the substrate. The most 
intense peak has a width of 0.07 ~ (SSRL) or 0.025 ~ 
(NSLS), with weaker peaks extending over 1 ~ Both the 
coherence length and out-of-plane mosaic are found 
from a radial scan through the commensurate over- 
layer peak [65]; out-of-plane mosaic is 1.4 ~ (SSRL) or 
0.4 ~ (NSLS), while the radial width is limited by our 
3 x 10 . 4 /~ -  1 instrumental resolution, implying a co- 
herence length of at least 10,000/~. 

We orient the krypton overlayer by aligning our 
resolution function with the overlayer Bragg rod. 
When the graphite surface is aligned with the scattering 
plane, the Bragg rod lies in the direction of poorest 
resolution, and scattering is maximum. Having thus 
levelled the basal planes, we can once again use our 
diffractometer as a two-circle instrument. When the 
sample is flash cleaned it rotates by a few hundredths of 
a degree in-plane, so the crystal axes must be redefined; 
this was done by finding the commensurate phase 
peak. At each temperature point, the Kr(100) peak was 
located, and a longitudinal and a transverse angular 
scan taken through the peak. This was difficult when 
pressure or temperature was fluctuating, since the 
incommensurate peak position changes concomi- 
tantly. 

Counting rates at NSLS were 5 x 10 -5 ~2S-1, 
where ( is the overlayer correlation length in Ang- 
stroms. For  the one scan with the weakest correlations, 
we increased this rate by replacing the Ge( l l  1) ana- 
lyzer with a pyrolytic Gr(002) analyzer. Its angular 
acceptance is limited by slits to 0.11 ~ the mosaic of the 
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crystal was 0.50 ~ This increases the signal by a factor 
of 60. 

IV.C. Results 

The SSRL experiment was the first to study rare gas 
overlayers on a single crystal of graphite using high- 
resolution x-ray diffraction [10]. As might be expected, 
it proved easier to determine reciprocal lattice vectors 
than to study lineshapes, so we first studied the 
transition of incommensurate Kr from aligned to 
rotated. Following the same course, we will defer a 
detailed examination of the weakly incommensurate 
Kr fluid and begin by discussing the orientation of 
incommensurate Kr. 

Our results consist of one cut through the phase 
diagram. The sample cell was sealed off from the gas 
handling system at 91 K and 2.2 Torr. Since the sample 
cell contained only a single crystal of graphite, we 
expect that little Kr adsorbed as the cell was cooled to 
72 K, so pressure would drop to 1.7 Torr, following the 
ideal gas law. Figures 18 and 19 show longitudinal and 
transverse scans through the Kr(100) peak as the 
sample is cooled. 

The first scan is taken in the commensurate phase. 
The longitudinal width is resolution limited, while the 
transverse width reflects the mosaic of the substrate. 

The solid lines in Fig. 19 are the results of least 
squares fits to a sum of Lorentzians. The lines in Fig. 18 
are a somewhat more complex model. The structure 
factor is assumed to be isotropic and Lorentzian; this 
lineshape is convolved analytically with a Lorentzian 
in-plane mosaic and numerically with a Lorentzian 
out-of-plane mosaic. The out-of-plane mosaic was 
found to be 1.5 ~ in the commensurate phase, and was 
held fixed at this value for the other scans. 

For  small angles, the angular average over a mosaic 
of width A0 may be approximated by an average in the 
transverse direction of width GAO. For a structure 
factor 

A 
S (Q)=  tc 2 + ( O - Q 0 ) 2  (28) 

convolved with an in-plane mosaic 

1/GAO 
M(q• 1 +q2 z/(GAO) 2' (29) 

the scattering will be 
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where q = Q - G .  For  a simple Lorentzian mosaic, 
q• = 0 for a longitudinal scan, giving 

A 
I(qll) = K2 + ql] + GA0( K2 + q~l )1/2, (31) 

which crosses over from a Lorentzian for qll ~ GAO to 
the square root of a Lorentzian for qlI~GAO. The 

A 
l(q) 

[•2 + q~l + GAO( ~2 + q~l )1/2 ] { t + q2 / [(~c2 + q~)1/2 + GAO] 2 }" (30) 
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actual mosaic is a sum of Lorentzians, so only one of 
several q• is zero for a longitudinal scan. The trans- 
verse scan remains a sum of Lorentzians however: for 
qll =0,  

, A (1 + GAO/x) 
I(q• ) = ( ~ ,  (32) 

the widths of the mosaic and structure factor simply 
add in the transverse scan. 

Both longitudinal and transverse scans are fit to 
(30); the width of the transverse scan is the sum of an 
isotropic width ~ and two mosaics GAO, one due to 
substrate mosaic which is fixed to the lineshape of 
Fig. 19a, the other varied to reflect rotation of the 
overlayer. The width of the longitudinal scan reflects 
all three factors mixed together: only by fitting both 
scans together can both x and GAO be extracted. 

Longitudinal and transverse scan in Figs. 18b and 
19b show a weakly incommensurate overlayer, misfit 
of 1.4%. While the peak is less intense and longitudi- 
nally broadened, this is primarily an experimental 
artifact: the longitudinal width is 0.0044/~ - I HWHM, 
but the thermal expansion coefficient is 0.05/~-~/K, 
and the commensurate and incommensurate phases 
coexist over a 0.1 K range, so the longitfidinal width is 
in large part due to inhomogeneity effects. Similar 
results at the C-RF transition were found in the Z YX 
graphite experiments discussed in the previous section. 
Consistent with this inhomogeneity explanation, there 
is no appreciable transverse broadening: the solid line 
through the transverse scan (Fig. 19b) is the same 
shape as that through the incommensurate solid 
lineshapes (Fig. 19c, d). Since the reentrant fluid phase 
is difficult to measure here due to substrate in- 
homogeneity effects, our subsequent experiment at 
NSLS examined higher temperatures and pressures, 
where the fluid correlations are shorter range; the 
narrower mosaic of the crystal used in the NSLS 
experiment also improved resolution. The 0.1 K tem- 
perature spread of the transition is an unpleasant 
surprise; we had hoped that a graphite single crystal 
would provide much greater homogeneity than our 
powder samples, but such was not the case. Certainly 
we can rule out a 0.1 K temperature gradient on our 
small crystal. 

As incommensurability increases the thermal ex- 
pansion coefficient is reduced; the longitudinal scan 
in Fig. 18c, taken at 3.5% misfit, exhibits the 
0 .0011 /~ - tHWHM characteristic of the IC solid 
phase. Taking the 5 x 10 - 4 / ~ -  1 width of the C phase 
as a measure of instrumental resolution and finite 
size effects, the intrinsic width of the IC peak is 
6 x 1 0 - 4 ~  -~. Since some of this width is due to the 
power-law lineshape rather than a finite length [46], 

the coherence length of the IC phase is close or perhaps 
equal to that of the C phase. 

The transverse scan (Fig. 19c) exhibits broadening 
as well. This is easy to observe but difficult to measure 
accurately: the fine structure seen in the C phase 
(Fig. 19a) simply disappears, leaving two peaks which 
are only slightly broader than those of the C phase. 
Considering the large peak at 0 = 0, the peak broadens 
from 0.077 ~ H W H M  in the C phase to 0.097 ~ in the IC 
phase, an increase of G A 0 = 6 x  10-4/~ -1. Thus the 
spot is circular, suggesting no orientational fluctu- 
ations. We will discuss this further after presenting 
similar data for the RF phase. 

Figures 18d and 19d show the rotated phase, at a 
misfit of 4.6%. The solid lines in the figures are simply 
the fits to the aligned phase (Figs. 18c, 19c) shifted 
longitudinally and duplicated with -t-0 rotation. The 
shape of the peak does not change as the overlayer 
rotates. The intensities must be adjusted in an ad hoc 
manner, as the two rotated phases have slightly 
different intensities. 

Figure 20 is a plot of rotation angle 0 as a function 
of misfit. Figure 20a shows Kr data for the present 
work, as well as a single point from [64]; since Kr 
saturates at 5 % misfit we also show electron diffraction 
data for Ar at higher misfit [66]. The dashed line is the 
linear response limit (26) for a Cauchy solid; since the 
angle of rotation is independent of the magnitude of the 
adsorbate-adsorbate or adsorbate-substrate forces, we 
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treat the Kr and Ar systems together as Cauchy solids, 
with no free parameter in this model. 

The solid line in Fig. 20a and b is the result of 
Shiba's calculation, which includes the domain wall 
corrections necessary at smaller misfit [33]. Again 
fixing the ratio of longitudinal to transverse sound 

speed at x/~, we have one free parameter, the domain 
wall width l o, which is set to 20 to agree with the critical 
misfit of 3.5 %. This falls slightly below other estimates 
of l o, which range from 24 to 42 (Sect. IVA). The 
theoretical curve describes the data well except near 
the transition, where we observe hysteresis. Adjusting 
the second parameter in the theory, the ratio of sound 
speeds, would presumably improve the fit, but the 
theoretical curve is published for only the single value 

of x/3; in any case we expect only small deviations from 
this Cauchy behavior. 

The dashed curve in Fig. 20b is the mean field 
power-law, O=A(rn-mc) 1/2, which is the asymptotic 
form of the solid curve. This form provides a better 
description of the data, albeit with one more free 
parameter. This form does not have the advantage of 
approaching the asymptote of the first order theory. 
Similar power law behavior has been seen for the 
orientation angle in C24Cs [67]. 

Hysteresis typically occurs at a first order tran- 
sition. However, within the hysteresis loop at the 
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aligned-rotated transition we see a continuous evol- 
ution of the rotation angle, rather than three-phase 
coexistence between the aligned, clockwise, and 
counterclockwise rotated phases. We can thus rule out 
any first-order jump in angle greater than 0.2 ~ . 

The mechanism for hysteresis may be inhibited 
equilibration due to pinning of domain walls. Here the 
domain walls are part of the equilibrium structure 
rather than the result of defects. Sharp domain walls 
might be pinned by the graphite lattice itself, but here it 
is more likely that they are pinned by impurities and Gr  
lattice defects. 

An increased hysteresis would explain the results of 
Fain et al. [6]. Working at a much lower temperature 
(52 K), they observe rotations about half as great at 
each misfit. Since these measurements were taken with 
increasing Kr pressure, the difference could reflect a 
large hysteresis at lower temperatures. Since the critical 
misfit found by Fain et al. [6] is closer to zero- 
temperature estimates, the 3.5% critical misfit ob- 
served in this work may be an equilibrium effect of 
non-zero temperature. 

As an independent measure of domain wall width, 
we measured satellite peak intensity. At a misfit of 
2.2%, the principal peak is 8.5 times as intense as the 
satellite peak, but with the same shape (Fig. 21). Since 
the aligned-rotated transition corresponds to the 
crossover from isolated domain walls, which are 
aligned with the substrate, to a sinusoidally modulated 
overlayer, which rotates, we calculate satellite peak 
intensities using a model which includes both limits. 
We begin with a hexagonal lattice with misfit of 1/44; 
since this is a commensurate structure it is no longer 
translationally invariant and we must choose its posi- 
tion relative to the substrate. For  convenience we 
consider a lattice where a sublattice of atoms 108 
apart lie at the centers of graphite hexagons. The lattice 
is aligned with the substrate. In the limit of sharp 
domain walls, this corresponds to the structure shown 
in Fig. lc. In our calculation we gradually turn on a 
sinusoidal Kr-Gr potential (11) while nearest neighbor 
Kr atoms interact harmonically. With each increase in 
potential, the Kr atoms are allowed to relax to their 
equilibrium positions. 

This is done iteratively. For  each iteration, each Kr 
atom is moved to the minimum of the potential due to 
the substrate and its six neighbors, using their positions 
in the previous iteration. The sinusoidal Kr-Gr  poten- 
tial is approximated by a quadratic Taylor expansion 
at each Kr position, so the potential minimum may be 
found analytically. As the computation converges, this 
approximation becomes increasingly accurate. The 
process is continued until the root mean square 
displacement from the previous iteration is less than 
10 -6/~. For each value of the potential the structure 
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factor is computed at the Kr(100) and satellite peak 
positions. 

The calculation has two free parameters, the 
minimum energy Kr -Kr  separation, fixed at 
%=4.04/~,  and the ratio of the Kr-Kr  and Kr-Gr  
potential energies, which is varied. Thus the Kr -Gr  
potential is 

3 

V ( R ) =  -- ~, Vo cos(KFR), (33) 
i = 1  

the Kr -Kr  potential 

2 ,VoIoZ (r~--- 1)2 ; (34) 

V o drops out of the calculation, and lo is the domain 
wall width parameter. 

The simulation is first equilibrated at /o = 100, 
giving a hexagonal lattice with a weak sinusoidal 
modulation, lo is decreased one unit at a time, with the 
system equilibrated at each step; the principal and 
satellite peak intensities are shown in Fig. 22. For  high 
l o the satellite peak intensity follows (19), while as lo ~ 0 ,  
the structure approaches that of Fig. lc, with compar-  
able principal and satellite peak intensities. 

The measured intensity ratio of 8.5 corresponds to 
wall width l o = 25, close to the lo = 20 found from the 
critical misfit for rotation. Figure 2 of Ref. 53 depicts 
such a relaxed domain wall. Displacements from the 

commensurate sites are small outside the domain walls; 
Figure 23 shows the displacement of each a tom in a 
column extending from a domain center to a domain 
wall crossing. The solid line is the strain for a uniaxial 
array of walls in the pseudoharmonic approximation 
discussed in Sect. IVA [61]: 

D = A sinh (n/2), (35) 

where n is the row of the atom. As expected, this 
describes the data well except near the wall center, but 

is modified by the hexagonal domain wall lattice: we 

expect 2=V/~o /3 rc=3 .75  for a uniaxial array, but 
observe 2 = 2.44 in the simulation. 

Similar calculations have been carried out for other 
domain wall structures. Gooding et al. [36] use the 
same method to calculate structures for superlattices 
with a variety of lattice constants and both heavy and 
superheavy domain walls. By working in reciprocal 
rather than real space, Shiba 1-32, 33] calculated struc- 
tures for truly incommensurate lattices. 

We see that disorder plays a small role in the 
transition between aligned and rotated phases. While 
the Bragg peaks in the incommensurate phase are 
slightly broader than those of the commensurate 
phase, due to an unknown combination of quenched 
disorder and thermal fluctuations, there is no change in 
their width through the rotation transition. The vari- 
ation of overlayer orientation as a function of lattice 
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misfit is consistent with zero-temperature predictions; 
while the sense of rotation is random on a macroscopic 
scale, single domains cover at least 1000/~. The transi- 
tion from aligned to rotated solid is distinct from the 
melting transition of the incommensurate phase. We 
proceed to consider this melting transition, which 
occurs just a few degrees higher in temperature. 

We observed the orientational effects of the melting 
of the IC phase at a constant pressure of 50 Torr. 
Typical longitudinal and transverse scans through 
the Kr(100) peak are shown in Figs. 24 and 25. The 
longitudinal scans simply reproduce the powder 

substrate data with poorer counting statistics. The IC 
phase (T= 104.69 K) melts gradually into the RF phase 
(T=106.44, T=107.44), before refreezing into the 
C phase (T= 108.54). Comparing with the powder data 
in Figs. 5 and 6, the single crystal peaks are much 
sharper, both because the fluid phase remains better 
correlated at the lower pressure and because powder 
averaging makes the peaks appear broader. 

The transverse scans exhibit a similar pattern. The 
substrate induced mosaic structure seen in the C phase 
(T= 108.54) is partially washed out even in the IC 
phase (T=104.69) and is lost entirely as the peak 
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broadens in the RF phase (T= 106.44, 107.44). The 
solid lines are the results of least squares fits to a 
Lorentzian lineshape, as used for the SSRL data. 

The single pair of scans at T=  107.44 is treated 
somewhat differently. To obtain sufficient signal from 
the weak scattering at this temperature, a pyrolytic 
Gr(0002) analyzer crystal is substituted for the Ge(111) 
crystal used for all other synchrotron data presented 
here. The incoming beam is collimated to within 0.01% 
while the resolution in 20 takes a trapezoidal profile, 
with a fiat top 0.6 ~ wide and a 0.18 ~ base, defined by 
slits. This asymmetry between incoming and outgoing 
resolution produces an instrumental resolution func- 
tion tilted in reciprocal space. The model lineshape is a 
Lorentzian convolved with this one-dimensional re- 
solution function with a trapezoidal profile, tilted at 
0=  13.5 ~ to the longitudinal direction: 

I(qll, q• ) = S R (~)S(qll 4- k0 ~t cos 0, q• + k o ~ sin 0)dct, 
(36) 

where k o = 2 n / 2 = 4 . 5 5 ~  -1, 0=13.5 ~ is the Bragg 
angle of the monochromator, and R(a) is the trap- 
ezoidal resolution function. The structure factor S(q) 
remains a convolution of Lorentzians. 

Peak position is consistent with the 1//3 power law 
dependence of misfit on reduced temperature observed 
using powder substrates, as shown in Fig. 26 although 
clearly the data are too sparse to prove this form 
uniquely. The longitudinal and transverse peak widths 
are shown in Fig. 27. The lines in Figs. 24 and 25 are the 
results of fits to the lineshape given in (30), the 
convolution of a Lorentzian spot of width x with a 
Lorentzian mosaic of width GAO; the longitudinal 
width shown in Fig. 27 is x, while the transverse width 
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is the total width x+ GAO including all broadening 
except that due to the substrate. 

As discussed above the accuracy of the widths 
found in the incommensurate phase is limited by 
temperature and pressure fluctuations, which move the 
peak positions. The fluctuations, as measured by 
change in the IC phase lattice constant, correspond to 
temperature changes of __+0.15 K on a time scale of 
about 15 min, moving the peak by amounts varying 
from 0.0015 to 0.005 A -1. Absolute uncertainty in 
either width due to all systematic errors remains about 
50%. This uncertainty does not, however, affect our 
principal conclusion. Specifically, within these error 
bars, the longitudinal widths are similar to those found 
using powder substrates (Fig. l lb). The transverse 
widths do not differ significantly from the longitudinal 
widths: the spots are circular, exhibiting no orientational 
fluctuations. 

A fluid has short range positional order. In the RF 
phase, approaching the RF-IC transition, the corre- 
lation length ( diverges; on length scales less than ~ the 
fluid phase behaves as a solid, with well-defined 
crystalline axes. In an ordinary fluid, these axes will 
have short range orientational order, and the x-ray 
diffraction pattern will be a set of rings (Sect. IIA). The 
diffraction pattern we see in the RF phase is character- 
istic of a hexatic, retaining long range orientational 
order as the positional order diverges. 

For a solid or hexatic, the response to an orien- 
tationally ordering field diverges, so only a weak 
perturbation by the substrate is needed to produce 
orientational alignment. Since the effect of the corrug- 
ation in the substrate-adsorbate potential becomes 
larger as the lattice misfit decreases, we must consider 
the possibility that the substrate provides more than 



E.D. Specht et al.: Phase Diagram and Phase Transitions of Krypton 375 

just a perturbation. Is a hexatic phase with long range 
orientational order characteristic of 2D melting, or is it 
imposed by the substrate? We will address this ques- 
tion by considering the orientational fluctuations we 
would expect in two limits, that of a hexatic phase on a 
smooth substrate, and that of a fluid. 

Much as positional fluctuations diverge in a 2D 
solid, orientational fluctuations will diverge in a 
hexatic. Taking the limit of zero orienting field h 6 in (7), 
we have 

kT In (2L2/Tzx//3~2), (37) <a~ 

where L is the system size, and Ka.,~kTc{ 2 is a Frank 
constant. The weak dependence of this result on system 
size introduces little uncertainty. More troublesome is 
the value of Ka;  the theory of dislocation mediated 
melting gives only its scaling behavior [14], and we 
have no model-independent estimate. 

Whatever the mechanism for the melting tran- 
sition, the orientational fluctuations should have a 
universal amplitude. From (37), the magnitude of the 
fluctuations will scale as GAO ~(kT/K a )t/2~ x, giving 
a spot with constant aspect ratio. The strength of the 
Kr-Kr  interaction determines the transition tempera- 
ture, but drops out of the calculation of the fluctuation 
amplitude. Since the substrate will only reduce these 
fluctuations, a system with a weaker corrugation of the 
substrate-adsorbate potential provides a lower bound 
on the fluctuations expected on a smooth substrate. 

Xenon on graphite provides such a system. While 
the actual potentials are not so different, the misfit at its 
melting transition is much larger, so the effect of the 
potential will be less. Just above the melting point of Xe 
the diffraction peak has transverse width 4 times its 
longitudinal width [16, 68], consistent with the dislo- 
cation unbinding theory of melting. Interestingly, 
smectic I liquid crystal films, aligned by the coupling 
between the director and the orientational order rather 
than a substrate, exhibit peaks characterized by a 
similar 5: 1 aspect ratio in the hexatic phase [69]. Since 
<602 ) is at least 60 times less for comparable corre- 
lation lengths in the Kr system, they can hardly be 
melting by the same mechanism if the substrate is 
unimportant. 

This comparison to Xe suggests that the substrate 
has a substantial effect on the IC-RF transition, but 
does not demonstrate that the substrate acts simply by 
supplying a field favoring alignment. As misfit de- 
creases, the overlayer no longer responds linearly to 
the corrugation in substrate-adsorbate potential, but 
takes up the misfit in narrow domain walls. The 
disorder in the RF phase may be better described by 
defects in this lattice of domain walls than in the atomic 
lattice; zero-temperature energy minimization calcu- 

lations show very different interactions for dislocations 
in the Xe atomic lattice and dislocations in the Kr 
domain wall lattice [55]. 

For  this reason it is important to estimate the effect 
of the orienting field due to the substrate. We consider 
now a fluid which is rigid on length scales less than 
but free to rotate on longer length scales, in a orienting 
potential per unit a r e a  v=�89 To account for the 
observed GA0<0.5~ requires h6>1400K//~  2. The 
overlayer may rotate in two ways. For  a weak corru- 
gation of the Kr-Gr potential, the entire lattice will 

rotate by 10[ ~m/x/~, where m is the lattice misfit. 
From (25), the orienting potential for small fluctu- 
ations about that minimum energy is, for a Cauchy 
solid, 

_3 %2Vo 
h 6 32m41~ . (38) 

For  a stronger corrugation, most of the Kr atoms lie in 
commensurate domains which will not rotate; domain 
walls only will rotate, with orienting potential for 
fluctuations about the 0 = 0 energy minimum given by 
(27): 

3 1 1 2 
h 6 = ~ ( ~ - ~ ) V o l o G  /m (39) 

Rotation of domain walls gives a lower energy for 
m <0.76/lo, close to the critical misfit for rotation. 

In the RF phase domain wall rotation gives the 
lower energy, as one would expect, since alignment 
with the substrate is a signature of the isolated domain 
wall regime. For  a domain wall width lo = 28, Kr-Gr  
corrugation Vo= 10K, misfit m=2.5%, and Kr(100) 
wavevector G = 1.746 • - 1, the potential is, from Equa- 
tion 39, h 6 = 4000  K /~  2, more than enough to account 
for the lack of orientational fluctuations. 

While Kr /Gr  exhibits a continuous IC-RF melting 
transition, interactions with the substrate create a 
strong orienting field. That the transition is continuous 
fulfills one major prediction of the dislocation unbin- 
ding theory of 2D melting, but we cannot test the more 
dramatic prediction that melting occurs in two stages, 
with an intermediate hexatic phase. 

As shown by Fig. 27, we have examined only the 
IC-RF melting transition; between the point with the 
weakest correlations (T=107.44 K) and the well- 
correlated C phase lies another melting transition. 
Since the misfit for the C-RF transition is still smaller 
than for the IC-RF, we expect no measurable orien- 
tational fluctuations in this region. 

We are left with the phase diagram shown in 
Fig. 17. The results reported in this section adds the 
aligned-rotated transition: this dashed line assumes the 
transition remains at 3.5% misfit. Since we have seen 
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that the RF phase has a high degree of orientational 
order near the IC-RF transition, the aligned-rotated 
transition may extend into the fluid phase at higher 
temperatures. In the RF phase the aligned-rotated 
transition may be characterized by fluctuations be- 
tween the two directions of rotation, terminating at an 
Ising type critical point. 

We have reported two novel effects in this Section. 
We see a continuous transition from an aligned phase 
to one rotated away from the substrate symmetry 
direction, both phases being incommensurate solid 
monolayers. We see continuous melting of an in- 
commensurate solid monolayer to a phase which, 
although it has only short range positional order, not 
only has long range orientational order but exhibits 
negligible orientational fluctuations. Both transitions 
may be explained by simple models describing domain 
walls formed in elastic media by a weak incommensur- 
ate potential, and are consistent with a domain wall 
width of 5 atomic rows. 
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