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Abslract. We determine the class of all locally compact stable planes M of positive 
dimension d ~< 4 which admit a reflection at each point of some open set U _~ M. 
Apart  from the expected possibilities (planes defined by real and complex hermitian 
forms, and almost projective translation planes), one obtains (subplanes of) 
H. SALZMANN'S modified real hyperbolic planes [14; 5.3] and one exceptional plane 
which was not known before. The case U = M has been treated [9] and is reproved 
here in a simpler way. The solution to the problem indicated in the title constitutes the 
main step in the proof  of our results. 

A stable plane is a topological geometry (M, L~) with the 
properties that (i) any two pointsp, q ~ M are joined continuously by a 
unique line p v q ~ 5 ~ and (ii) the set of  pairs of  lines intersecting in 
any open set of  points is open; cf. [4] for details. Stable planes are less 
complete geometrically than topological projective planes ( =  stable 
planes in which any two lines meet) and are, therefore, more difficult 
to handle. They have one convenient feature, however; namely, the 
class of  stable planes is closed with respect to taking open subsets. 
Many geometrically significant subsets of  a stable plane are open, 
such as the set ofnon-coaffine points [8; w 1], the set of points incident 
with at least one compact line [4; 1.16], the set of  moving points under 
a group of  automorphisms or, with some luck, an orbit of  a group. 
This makes it desirable to find out what can be said about M once an 
open subset U has been identified as some 'nice' plane. 

Here, we shall restrict ourselves to planes of positive dimension 
d ~< 4, and U shall be qualified as 'nice' if Uis a hermitianplane, i. e., if 
Uis isomorphic to an open subplane, defined by a hermitian form, of  
the real or complex projective plane; cf. [6; w 2], and w 2 of  the present 
paper. Moreover, we shall assume that the plane Uhas  been detected 
within M by the aid of  its motion group (see below); otherwise, our 
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question would be far too general. The answer is particularly useful in 
this situation because the class of (low dimensional) hermitian planes 
can be characterized in different ways. Indeed, it is almost identical 
[7, 9] with (i) the class of symmetric planes, i. e., of  those planes Which 
admit a compatible structure of  a symmetric space [6], and with (ii) the 
class of  those planes which admit a reflection at each point. The 
motion group Sis  defined as the group generated by the symmetries of  
a symmetric plane; for the present considerations, it suffices to think 
of it as a group ofautomorphisms which contains a reflection at each 
point and is minimal with respect to this property. A complete list of 
the symmetric planes of  low dimension is given below (w the 
motion groups can be found in [6; w 2]. 

The proof  of  our result is based on the observation that for two 
given lines of  a symmetric plane and a given class of involutions in its 
motion group, it often happens that some involution out of  that class 
either fixes both these lines or interchanges them (w 7, Lemma). Also, 
as indicated above, the classification of symmetric planes [7] and a 
weak form of  the characterization of  those planes [9; 1.5] play an 
essential role in the proof. 

w 1 Statement of Results; Applications 

Let U and M be stable planes, and let ~ : U ~ M be an embedding 
(i. e., an isomorphism onto a subplane of  M;  for the notion of 
subplane, cf. w 3). ~ is called equivariant with respect to a group A of 
automorphisms of Uif the action of  A on U ~ extends to an action on M 
by automorphisms. 

Theorem. Let U be a symmetric plane o f  positive dimension d <~ 4, 
with motion group X. Let ~ : U --, M be a S-equivariant open embedding 
into a stable plane M. Then M is one of  the following planes (for 
definitions, see w 2 below). 

a) A symmetric plane; 

b) an almost projective translation plane (possibly desarguesian) ; 

c) a modified real hyperbolic or cylinder plane other than EHt (~). 
Moreover, up to an automorphism of  M, the image U ~ is the standard 
copy of  U in M. 

Remarks. a) With a little more precision, the last statement means 
that U ~ can be one of  the following. 
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(i) All of M; 
(ii) a connected component of M; 

(iii) an affine translation plane obtained by removing a line of M; 
(iv) the standard copy of U, defined by a hermitian form, in the 

desarguesian projective or coaffine plane M; 
(v) the interior hyperbolic part of a projective modified real 

hyperbolic plane M. 
However, regarding (ii), not all connected components of M need 

be symmetric. Also, regarding (iv), not all symmetric planes can be 
embedded equivariantly into the desarguesian coaffine or projective 
plane. 

Note that we do not attempt to determine q~; our assertions are 
concerned with U ~ only (cf., however, the Proposition of w 3). 

b) The restriction to equivariant embeddings is quite necessary, 
even if one concentrates on embeddings into projective planes in 
order to avoid trivial counterexamples. For example, the connected 
real hyperbolic and cylinder planes both embed into the Moulton 
planes, and also into HILBERT'S original example of a nondesargue- 
sian affine plane, where the lines of the real affine plane are 
interpolated by circular arcs inside some ellipse; the latter plane has 
772 as its full automorphism group. 

Corollary. Let (M, 5~) be a locally compact stable plane of  positive 
dimension d <~ 4. M belongs to one of  the classes (a), (b), (c) of  the 
Theorem if  and only i f  M admits a reflection at each point o f  some open 
set U ~_ M. 

The Corollary is a generalization of the Main Theorem of [9], 
where the case U ----- Mwas considered. It is proved here using only the 
main result of the present paper and the results ofw 1 of[9]. The proof 
provides typical examples of the situations described in the introduc- 
tion. The full information of the Main Theorem of [9] may be 
recovered from the Corollary, using w 2 of [9]. 

We do use the classification of all symmetric planes of dimension 
d ~< 4 in the proof of the Theorem. However, one could extract from 
the present proof a new and simpler proof of Theorem B of [7] 
(classification of disconnected symmetric planes). 

Finally, the Theorem can be used to simplify the proofs in [10], 
and it will be used in [11] and in a forthcoming paper on stable planes 
with a simple group of automorphisms. 
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w 2 The Planes 

The following set of examples contains a complete list of all 
symmetric planes of positive dimension d ~< 4 (cf. [6, 7]), and a 
number of nonsymmetric planes, namely the nonaffine almost 
projective translation planes (2.3), and the modified real hyperbolic 
and cylinder planes (2.8, 2.9). The motion groups of the symmetric 
planes are described in [6; w 2]. 

2.1 The projective plane P2 ~- over the field I= of real or complex 
numbers. 

2.2 The coaffine plane P2 U= \ { ~ } over D=, i. e., the projective plane 
with one point oo deleted. 

2.3 The almost projective translation planes, which are obtained 
from projective translation planes by removing a closed subset of the 
translation axis. They include the affine translation planes and, in 
particular, the desarguesian affine planes Az g:. 

2.4 The united cylinder plane over U z, 

UC(~-)  = { ( x l , x z , x 3 } E P 2  F; Xl)C 1 ~ x2)c2} , 

considered as a subplane of P2 • in the sense of w 3. Its connected 
components are both isomorphic to the subplane 

C ( ~  = {(x,y); Ix[ < 1} ~< A2•, 

called the (connected) cylinder plane. 

2.5 The complex Minkowski plane 

M(C) = {(x,y)6A2C; x # 0}. 

The lines of the form {x} • U: in C(0:) and M(C) are referred to as the 
vertical lines. 

2.6 The united hyperbolic planes 

UH (g:) = { (Xl , X2, X3) ff P 2 ~: ; Xl 21 r x2 x 2 -t- x3x3} 

and their connected components, the interior hyperbolic planes IH (f), 
defined by x~ xl > x2Y2 + X3X3, and the exterior hyperbolic planes 
EH(F), defined by the converse inequality. 

2.7 The complex oval plane 

O(C) = {(xI,x2,x3)EP2C'~ x 2 4- x 2 4- x 2 5~ 0}. 
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The  lines of EH (7) and of  O (C) which meet  the complement  in Pz ~z in 
precisely one point  are called the tangents. 

2.8 The modified real hyperbolic planes. Their  projective versions 
are obtained f rom P2 R as follows [14; 5.3]: Let A be the orientat ion 
preserving hyperbolic mot ion  group. Take a line L which meets 
IH(N), and replace L n EH(N) by any orbit of  AL which joins  the two 

end points  o f L  c~ IH(R).  Replace the orbit  L ~ of  lines by the orbit  L 'A 
of the modif ied fine. Depending  on the choice of  an orbit  of  AL, there 
results one of  a one-parameter  family of  non- isomorphic  projective 
planes lit (~), 0 < t ~ ~. 

The modified united and exterior hyperbolic planes UHt (~) and 
E H t ( ~  ) a r e  the subplanes of  H t ( ~  ) induced on the point  sets of  
UH(~) and EH(~),  respectively; cf. [10]. 

2.9 The modified real cylinder plane MC (E) is constructed as 
follows. Represent  C (E) as the right hal f  plane x > 0 of  A 2 ~ .  
F o r m  the disjoint un ion  M = E w C (E) with a copy E of  ~2, and let 
A ~ ~2 act on  M as the group of  all h o m e o m o r p h i s m s  "Cb, c defined, for 
b,e~E, by 

~b,<: C ( ~ )  -~ C(~) :  (x,y) ~ (x,y + bx  + c) 

rb,~: E ~ E :  ( x , y ) ~ ( x + b , y + c ) .  

Consider  C (~) as a stable plane with the usual lines, and endow E 
with the following set of  lines: First, the ordinary lines of  negative 
slope s, - ~ ~< s ~ O; second, the hyperbola  branch 

H =  {(x, - x - i ) ;  0 < x~  ~},  

and its translates H ~, 2 e A. In this way E, too, becomes a stable plane; 
cf. [14; 2.12]. (The plane E was found by SALZMANN [15].) Next, 
identify the line H a of  E with the image X ~ of  the x-axis (y = 0) of  
C (~); in other words, form the sum MC (~) of  the stable planes C (~) 
and E with respect to the h o m e o m o r p h i s m f :  X A ~ H A sending X ~ to 
H ~, as described in the Appendix.  

In order to show that  this sum is a stable plane we have to verify, 
according to the Appendix,  that  for p E C (~) the f - image of  the set 
X A c~ Sp covers E simply. We may  assume t h a t p  = (x, 0) ~X, since A 
is transitive on {x} x R. Then  

Ap = {Tb, c; bx  + c = O} 
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acts transitively on X A n ~p, and acts on E as the one-parameter 
group of translations in the direction of( l ,  - x). Thus, H A~ is, indeed, 
a simple covering of E. 

Remark. Note that the motion group S o f  C (~) acts on MC (~). 
The action is described explicitly in the proof of the Theorem. 

The Theorem implies that MC(~)  cannot be embedded, equi- 
variantly with respect to S, as an open subplane into a bigger stable 
plane. Actually, our proof will show that more generally, MC (~) 
admits no proper open embedding into any stable plane - -  even without 
regard to its group; see case B2ii, step 3, of the proof. This implies that 
MC (~) is not isomorphic to (an open subplane of) any known plane ; in 
fact, disconnected planes have not been considered in the literature. 

w 3 Dense Open Subplanes of Projective Planes 

An open set S of points of a stable plane (M, ~ )  can always be 
made into a stable plane; one simply endows S with the system 

~ ( S )  = { L n S ;  L ~ Y  and [ L n S I  ~> 2} 

of lines; note that we think of lines as sets of points. The topology for 
A ~ (S) is obtained by means of the embedding 

(S) --, oL.q~ L ~ (L) 

which sends a line L of S to the unique line of M containing L. We call 
a plane (S, s (S)) of this kind an open subplane of(M, ~ ) ;  for a more 
general notion of subplane, cf. [4; 1.28]. 

The following result shows that a topological projective plane is 
uniquely determined by the geometry induced on any of its dense 
open subsets. No groups are involved. 

Proposition. Let (P, ~ )  and (Q, JH) be topological projective planes 
such that P is not discrete. Let U ~_ P and V ~ Q be open subsets, and 
let q~: (U, 5/7 (U)) --* (V, Jg (V)) be a topological isomorphism of  the 
associated subplanes. 

I f  U is dense in P then q~ extends uniquely to an isomorphism 
~p: (P, S )  -~ (Q, Jg); in particular, V is dense in Q. 

Remarks. a) If P and Q are topological manifolds of the same 
dimension and U is open in P then V ~ U is automatically open in Q; 
see [2; XVII, 3.1]. 
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b) The assert ion is false wi thout  the density assumption.  This is 
shown, for example, by the obvious embeddings  o f l H ( R )  into lit (R). 

Corollary. I f (U,  • (U)) is a dense open subplane of  a topological 
projective plane (P, 5~) then the automorphism group Aut  (U, ~ (U)) 
consists o f  those elements of  Aut(P,  5~) which leave U invariant. 

Proof o f  Proposition. 1) Select different points  x, y E U, and let 
A = P \ (x v y), B = Q \ (x ~ v y~). It  is clearly sufficient to show that  
~0l vnA extends to an I somorph i sm ~o:A ~ B  of  topological  affine 
planes;  uniqueness  of~0 is obvious since U is dense. The line pencil 5fx 
is contained in 5q (U) since U is open  and P is not  discrete and, thus, 
has no  isolated points. Therefore,  we may  define 

= (x v A (y v 

for any point  p e A. The resulting map  W: A --* B is cont inuous  and 
extends q~[ vnA. Conversely,  by 

q ~ (x~ v q)~-' A (y~ v q) q'-' 

we get a cont inuous  inverse of  9- 

2) Next  we show that  each triple of  collinear points of  A can be 
approximated  by a sequence of  triples of  collinear points  of  A n U; 
this will imply that  ~0 preserves collinearity. Indeed,  let Xl, x2, x3 e L be 
different points  and choose a fourth point  p e L. Given neighbour-  
hoods  W~ of  xi (i = 1, 2, 3), apply the cont inuous  open map  

~:x-4  x v p : A \  {p}--,,. ~ 

to each of  them and form the intersection ~/r of  the images ~ = W~; 
it is non-empty,  since L ~ ~/r Replacing W~ by W,. n ~/t2 ~-' we can adjust  
these sets so that  ~ = ~,. for all i. Then  the open  set Zi = W~ n U is 
dense in W,., and ~ i  = Z? is open  and dense in ~/F. Hence, ~e = n/~ei is 
open  and dense in ~ and, in particular, is non-empty.  On any line 
K s ~ ,  we may  select a collinear triple (Yl,Y2,Y3) such that  

= W i n  U. 

3) It remains to show that  ~ maps  no triangle xl,  x2, x3 into one 
line, K. I f  that  happens,  consider a line L which meets at least two 
sides Lg, Lj of  the triangle and contains no vertex x~. The  images 
(Li/x L) ~ and (Lj/~ L) ~ are different, and lie on K. Thus,  L ~ _ K, and 
V n B _c A ~ ___ K, a contradiction.  
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w 4 A Characterization of Generalized Real Cylinder Planes 

The following result is originally due to K. STRAMBACH [18]. We 
sketch a simplified proof  of an extended version of  his result, making 
no special assumptions on the topology of the point set and the lines. 

Definition. Consider a point oo eP2 N, and let q/__ 50~ = / ' 1 N  be 
an open subset. Let My be the open subset 

My = {p~P2 ~ \  {oo}; p v oo ~d~/} 

of  the real coaffine plane Pz ~ \  {oo}. The subplane defined by this 
point set is called a generalized real cylinder plane. Observe that the 
group ~ ~_ [~2 of elations of P2 fl~ with centre ~ acts on M~. 

Proposition. Let (M, 50) be a 2-dimensional stable plane, and let 1" 
be a connected 2-dimensional abelian group o f  automorphisms whose 
orbits on M are all 1-dimensionaL 

Then 1" is isomorphic to ~2, all isotropy groups I" x are isomorphic to 
~, and M is isomorphic to the generalized real cylinder plane M~ , where 

= {1"x;x~M} c_ Pl ~" 

Proof  11 has a 1-dimensional kernel Fx on each orbit x r of  points. 
Thus, x r is contained in a line F~ = Ff,  and 1"x acts freely on M \ Fx. 
The set ~ = {F~;x~M} is a simple covering of M. Consider the 
action of  the connected component  A = F~ on the circle 50x consisting 
of  all lines through x [4; w 1]. 

(*) A is transitive on 50x \ ~ .  

Indeed, ifA fixes L e 50x \ ~ then x is a boundary point of  some 
orbit y~ = yr  contained in L. Then x = x r, a contradiction. It follows 
easily that F is transitive on each F~ ~ and sharply transitive on 
5 ~ \ Y .  In particular, L E 5f \ Y meets  each F~ g .  Moreover, (*) 
implies that A --~ R. Then the pair (/1,1"x) must be isomorphic to 
(R 2, ~); otherwise, xr=. Fx would be compact and would meet all 
other lines .in ~ [4; 1.15]. 

Now P2 R \ { oo } can be coordinatized, using the group 1" acting as 
the elation group with centre 0% as foIIows. The line set is 1" ~ P1", 
where P1" is the set of  one-parameter subgroups of  1". The points are 
defined by their line pencils, which correspond to the sets 

~A u {A} _a P w  P1", 
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where y e F  and A e PF. The results above show that the given 
plane M can be coordinatized in the same way; only in M the 
points ~,A w {A} all satisfy A eY'. Thus, an embedding of M onto 
M~r ~< P 2 R \  {oo} is obtained. 

w 5 Proof of Theorem: Preliminary Remarks 

We shall suppress the embedding r in our notation; that is, we 
assume that U ~ M and that qv is the inclusion. By [6, 7], the 
hypothesis that U is a symmetric plane implies that U is one of the 
planes described in 2.1 through 2.7; in case 2.3, U is affine. Any two 
points of a stable plane have homeomorphic neighbourhoods. 
Therefore, M is a locally compact stable plane of positive dimension 
d ~< 4. In particular, each line pencil @ ofa  pointp 6 M is a sphere of 
dimension 6l/2 [4; 1.19]. Ifp ~ U then the embedding A ~ (U) --, A D maps 
the pencil ofp in U onto the pencil @ in M. Therefore, we shall not 
distinguish between the two pencils in our notation. 

The following assertions are true in the planes U and M [4; 1.15, 
1.16]: 

(C 1) A line is compact iff it meets each other line. 

(C 2) The set of compact lines is open. 
The proof of the Theorem is divided into two parts, according as U 

is dense or not. If U is dense and M ~ U, we show first that M is 
coaffine or projective; then, we apply w 3. If U is not dense, the first 
steps are to show that V = M \  Uis an orbit of Sand  to determine the 
isomorphism type of the dense open subplane U u V of M; after- 
wards, M is determined from U u V as in the first part of the proof. 
This makes it necessary to work, in that first part, with the motion 
group of a connected component of U rather than the whole motion 
group of U. 

The following facts will be used frequently. 

Observation 1. Let L~AC(U), and let (L)denote  the line of M 
containing L. For p~ U \  L, the growth 

L * : =  (L) \ L 

is homeomorphic to a subset of the 'parallel set' 

. # (p ,L ) :=  { K ~ @ ; K n L =  0}, 
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which depends only on the plane U. Indeed, n: x--, x vp  maps L* 
homeomorphically into ~ (p, L). 

Observation 2. In the same situation, L* ~ = ~ (p, L) implies that 
(L) ~ = @,  hence that (L) is compact. By (C 1), the converse is also 
true. 

Observation 3. If  L is a manifold of dimension n and contains a 
subset S homeomorphic to the n-sphere then S = L = (L). This 
follows from BROtrWER'S theorem on the invariance of domain 
[2; XVII, 3.1], applied to S"___ (L)~_c @.  In particular, if L is 
compact then L = (L). 

Observation 4. Let (A, 50) be a locally compact connected affine 
plane and consider any embedding (A, ~.cf) ~ (B, J~) as a proper open 
subplane of  a stable plane. Then B \  A is a line; in particular, B is an 
almost projective plane in the sense of[8;2.6]. 

Indeed, any line K ~ / \  5 ~ must be disjoint from A, since A is 
open. By Obsei-vation 1, the growth o f L r  5 ~ satisfies [L*] ~< 1. Thus, 
any two points x, yCA are joined by a line Kq~ 50, and K~_ B \ A .  If  
B \  A contains a triangle, then B \ A  contains an open set. 

w 6 Proof of Theorem, Case A: U Dense in M 

Case A 1: U is affine or coaffine, or projective. 
Suppose first that Uis an affine translation plane. By Observation 

4, M is an almost projective plane, with line at infinity M \  U. By 
[8; 2.7], Membeds, equivariantly with respect to S, into the projective 
hull P of U. Therefore, M is an almost projective translation plane, as 
stated. 

If U is coaffine or projective then either M = U, or U is coaffine 
and M is the unique projective extension Uw {oo} of U. 

Case A 2: U is neither affine nor coaffine, nor projective. 

We may assume that M : /U .  The planes U that remain to be 
considered are the cylinder planes, the complex Minkowski plane, the 
hyperbolic planes and the complex oval plane. 

1) I f  Le50(U)  and L r (L) then (L) is compact. 
I f L  is affine (i. e., i f J~  (p, L)] = 1 for eachp ~ U \  L), this follows 

from Observation 2. That takes care of the vertical lines in the cylinder 
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and Minkowski planes and of the tangents in the exterior hyperbolic 
and oval planes; cf. w 2. 

Inspection shows that, in all remaining cases, the orbit L s is open 
and L has at most  two connected components.  Openness o f L  z implies 
that L must be dense in (L); in particular, (L) has at most  the 
same number of  components as L. Choose p 6 L. We may embed the 
pair L _ (L) into the pencil S = &Pp, which is a sphere of dimension 
n = l  o r2 .  

I f L  is an open interval and the closure of L in S is also an interval 
then (L) cannot be a manifold. Therefore, L = S, and (L) must be 
compact. If  L consists of  two intervals, then [L*I ~> 2 since the 
reflection at x~ L reverses each component  of  L. Because (L) is a 
manifold, (L) = S. 

Now let n = 2. If  U = M (C) or O (C) then Observation 1 shows 
that [L*I ~< 2. If  L has two ends, then these are interchanged by the 
reflection at x ~ L. Thus, by Observation 2, (L) is compact. Inspec t ion  
shows that in all remaining cases L is either a disc or a disjoint union 
of two discs, and that S L contains a subgroup q~ ~ SO2 acting 
nontrivially on each component.  The action of  q~ enforces [13; 
Theorem 5] that each component  of  (L) is a disc or a cylinder or a 
sphere, and by [12], q~ acts in the usual way on each of  them. We may 
assume that (L) contains no sphere (Observation 3), and each 
component  of the q~-invariant set L* must  be a point or a circle. This is 
impossible. 

2) I f  L ~ S f  (U) and (L) is not compact then U is a cylinder or 
Minkowski  plane, and L is a vertical line. 

In the cylinder and Minkowski planes, 5~ consists of two 
E-orbits; one of  them is the set ~ of vertical lines, and the other, 
5r (U) \ ~ ,  is dense. I f L  = (L) for each L ~ 5~ (U) \ Y then, by (C 2), 
the same holds for L e Y .  In that case, M = U. In the interior 
hyperbolic planes, ~ (U) is a single orbit, and the same argument 
applies. 

In E H ( ~  and O(C), there are two orbits of noncompact  lines 
of U. One of them is the set J -  of  tangents (or, equivalently, of affine 
lines); it is contained in the closure of the other orbit. Thus, if the 
elements of  Y satisfy T* ~ 0, the assertion follows by (C 2). If  (L) is 
compact for one of the remaining lines, consider Te  J -  such that 
T n L = 0 i n  U. By (C1), (L) c~ (7 3 # 0 , a n d  T*~0.  
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3) Conclusion. Consider  a point  u ~ U. I f  the pencil 5au consists of  
compact  lines then M is projective [8; 1.3]. Otherwise, (2) asserts that  
of  all lines in 5~,, only the (unique) vertical line determines a 
noncompac t  line of  M. This implies that  u is a coaffine point  of  M;  see 
[8; 1.4, 1.6]. Since Uis dense in M, all points  of  M are coaffine [8; 1.9], 
and M can be embedded  into a projective plane M w  {oo}. In both  
cases, applicat ion of  w 3 completes the proof. 

w 7 Proof of Theorem, Case B: U not Dense in M 

Observation 5. U must be a connected cylinder or hyperbolic plane. 

Indeed, in all other  cases, the s tandard embedding  of  U has the 
proper ty  that  each line of  U is dense in the corresponding line of  P2 ~. 
Consequently,  ~ (p, L) is nowhere  dense in Lfp for each p ~  L. By 
Observat ion 1, this is not  compatible  with the assumpt ion  that  M \  U 
contains an open set. 

Lemma. Let v ~ V: = M \ U, and let X ~_ S be a conjugacy class o f  
involutions. Then Sv n 3s # O. Moreover, Ys contains a reflection at v in 
the following cases: 

a) U = C (C) and ~ contains the reflections at the vertical lines 

b) U = IH (f) or E H  (~-), and ~ contains the reflections at all lines 
or at all compact lines o f  U, respectively. 

Proof  1) F r o m  the action of  S on / ' 2  ~ it is easily seen that  the 
elements of  Y" are reflections at points or lines of  U. However,  not  all 
lines occur as axes. The exceptions are (i) all lines of  U if U = IH(~)  
or C ( ~ )  and (ii) the tangents if U =  E H ( ~ .  I f  U =  C(C) and 5f 
contains the reflections at the nonvertical  lines, let ~6Y" be the 
reflection at a line L ~ 5 ~  such that  v6(L); note  that  L is not  
vertical since L* contains an open set. Then  ~r fixes v, by [5; 1.4]. In this 
case the result will, however,  not  be needed in the sequel. 

2) Let U = IH(F), and let ~ be the class of  all reflections at points 
of  U. Choose  two lines K, L ~ ~ (U) such that  v = (K) /x (L). There is 
an element ~r ~ W which interchanges K and L and, hence, fixes v. 
Indeed, consider the lines K' and L' corresponding to K and L in the 
s tandard copy U' _~ P2 F oflH(IZ), and let v' = (K')/x (L'). Then  v' is 
an 'exterior'  point  since K' and L'  are not  asymptotes  of  each other. 
The above assertion is easily checked by examining the action of  Sv, 
on the sub-pencil ~u', v' - Lfv' of  lines meeting U'. I f  F = N, that  action 
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is equivalent to the action {(x ---> _ x + t); t E N} on the real line. If  
I: = C then 

~w v, = U 2 (C, l) ~ (SL2 E x SO2)/(-  1, - 1) 

acts ineffectively, inducing the real hyperbolic motion group; the 
kernel is the centre of  U2 (C, 1) (cf. [1]). Observe that every involution 
of  the effective quotient group can be represented by an involution of  
u2 (c, 1). 

3) Let U = IH(C),  and let X be the class of  reflections at lines of  
U. In the notat ion of  (2), the reflection r ~ 7  at v'fixes K a n d  L and, 
hence, fixes v. The point v then lies on two fixed lines of  x which are 
not  axes (namely, (K) and (L)), and hence is a centre of  x [5; 1.4]. 

4) The proofs of(2) and (3) are typical for all the remaining cases. 
The procedure resembles that of(2) or (3), according as 5~ consists of  
reflections at points or lines of  U. The reflections at the points of  
EH(g:) have axes as well; nevertheless, they have to be treated as 
reflections at points. One needs to know the actions of  Zv, on 5('u, ' v,. If  
U =  EH(~), then Zv, = Uzg: acts on 2,*u,, v, = ~ ,  = P~ ~ by the usual 
action. I f  U =  C([F), the action contains a transitive sub-action 
equivalent to {(x --. • x 4- t) : IF ~ D:; t e ~:}. Moreover,  in the complex 
case, Zr contains a reflection at  v'. 

If  a~Y" has an axis A~Z#(U)  and A is compact  ( U =  E H ( ~ )  
or vertical ( U =  C(C)) then IA*I ~< 1 by Observations 3 and 1, 
and v~(A) is the centre of or. This settles the second part  of  the 
assertion. E] 

Case B 1: U = EH(F-) or C(C) or IH(C).  

According to the Lemma,  S contains a class Y" of  involutions 
which contains a reflection at each point ve V = M \  0. Because the 
centre of  a reflection is unique, S is transitive on V, and the centralizer 
C (or) of  ~ e • fixes the centre v ~ V. Conversely, Sv centralizes o. 
Indeed, if Z contains several reflections at v then the results [8; 3.21 
and 3.2] imply that Vis dense in M. By [6; Theorem A], Vand U u  V 
are symmetric planes. Zconta ins  the symmetries of  U u V; hence, Zis  
the motion group of  U u V, and application of  part A yields the 
assertion. 

Case B 2: U = C (~). 

1) Represent  U as the right half  plane (defined by x > 0) of  the 
real affine plane [~2. Then 22 acts as the product  Z 1. (~r(1, 0)), where 
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s  {~a,b,c; a , b , c ~ , O  < a} 

Ta, b,c" (x, y) ~ (a 2 x, a y + a 2 b x + c) 

~Y(1,0): ( x , y )  ~ (X -1, -- x - l y ) .  

Observe that  ao,0) is the reflection at the point  (1, 0). The isotropy 
group of  the line X defined by y = 0 is S x = Six �9 (ao,0)), where 

w l =  {Z.o, 0,0; 0 < ( / ~ } .  

The vertical lines F~  ~ of  Uare  the lines x = const. ;  they do not  meet  
V =  M \  ~', by Observat ion 1. 

2) According to the Lemma,  each point  v~ V is fixed by the 
reflection rru at some point  u e U. By [5; 1.4], au has an axis Au ~ ~v. The 
isotropy group Su is the centralizer ofau; it acts transitively on the set 
5~ \ ~ and fixes A,. Therefore,  it acts transitively on A,, and Au is 
homeomorph ic  to [~. Since all reflections ~r, are conjugate under  S 1, 
we infer that  2; 1 is transitive on V. 

In order to determine the action of  L' on V, we have to determine 
the isotropy group Z'v of  v6 V. We may assume that  S~ contains the 
reflection ~(1, 0). On the Lie algebra of  Z~, the involut ion ~r(1 ' 0) induces 
either the identity id, or -id. In the first case, L'l~ is centralized by ~r0, 0~, 
and L'~ = Z~l,0~. This is impossible since S~,0) acts freely on 5r Y .  

N ow assume that  or(l,0) induces -id on the Lie algebra of  S~. By 
[7; 1.7], each one-parameter  group q~ with this proper ty  fixes a li~e 
L e 5~0, 0)- I f  L ~ ~ ,  then Z~ is the normal  subgroup 

A = {~l,b,~; b, c e ~ }  

of S, on which ~ro, 0) acts by 

r ~l,b,c ' '~ "E1,_ e, - b .  

Then, ~ is uniquely determined.  In all other  cases, r ---- Z "1. Up  to 
conjugacy, we get the following two possibilities: 

(B2i)  27~= {~q,b,b; b~ ~}'(a(1,0~) 

(B 2 ii) Sv = Zx. 

3) In case (B 2 i), all orbits of  the normal  subgroup A ~ ~2 on 
the plane U w V are 1-dimensional. By w 4, U w V ~  UC (~). I f  
M - r  U w V then M is the real coaffine or projective plane, by 
case A;  observe that  reflections at the points of  Vare not  used in th~ 
p roo f  o f  case A. 
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4) Case (B 2ii): IfXv = X x then the normal  subgroup A ~ ~2 acts 
on Vsharply transitively, and the action of  S on Vmay be described as 
the action of  A on itself by translation, extended by Sx acting on A by 
conjugation. In coordinate description, the elements of  S act on 
V =  ~2 as follows. 

ra, b,c: ( v , w ) ~ ( a - l v + b ,  a w + c )  

fr0,0)" (V, W) ~ ( - -  W, - -  •) 

In particular, the axis of  ~r(1, 0) is the line L defined by w = - v. Thus 
the set ~Ar = L s of  all ordinary lines of  negative slope belongs to 
~v(V). For  topological reasons, the sets defined by v = const, or 
w = const, are lines as well. 

Now, considerp  e U a n d  q~ V, and let K =  (p v q) n U. Then Kis  
not  a vertical line of  U, and we may assume that K = X. Then the line 
L = (p v q) n V of  V satisfies "X L = Xx, and L is a union of  orbits of  
22 x. The orbits 

z = {(0, w); 0 < w} v {(v, 0); v < 0} 

and - Z cannot  be contained in any line. The remaining orbits Of Sx 
are hyperbolae and one point. Since L meets each line o f  JV" at most  
once, L must  be one of  the hyperbolae 

L~= {(a-is, - as); 0 < a e ~ } ,  0 :~ s ~  

contained in the second or fourth quadrant.  Together  with the lines in 
jl~ and in s (U), the orbit 

u X) = (Ls v X) A 

forms a stable plane MC~ (~). Now for 0 ~ t ~ ~, the map 

U --* U: (x, y) -o (x, t y) 

~vt" V--* V: ( v , w ) ~ ( t v ,  tw) 

induces an automorphism of  U, fixing X, and leaves ~4~ invariant. 
Moreover,  ~0t normalizes A and maps Ls onto L~,. Therefore,  it maps 
(LswJO A onto (L~tuX) A, and induces an isomorphism between 
MC~(R) and MC~, (R). This shows that U u V is isomorphic to the 
modified cylinder plane MC (~) = MC1 (~). 

5) Now assume that U u  V ~  MC(R)  is a proper subset of  M. As 
announced in w 2, we shall obtain a contradiction without using S. 

A point x s M \ ( U u  V) can be joined to u~ U; therefore, x e K *  
for some line K e  ~ (U u V) meeting U. I f K i s  a vertical line of  U then 

3 Monatshefte ftir Mathematik, Bd. 91/1 
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the parallel set ~ (p, K) consists of  one line or a closed interval of  lines, 
according as p c  U \ K  or p c  V. Therefore, (K) ~ K contradicts 
Observations 1 and 2. 

Suppose now that K is one of  the disconnected lines. We may 
assume that K =  L1 war, in the notation of (4). For all points 
p = (a,b) of the quadrant Q_~ V defined by a ~< 0 ~< b, the set 

(p, K) consists of the horizontal line H b = {(r, b); r e ~} and the 
vertical line V~. One of  these lines must be p v x; let us assume that 
p v x = (lib). By continuity, the fines q v x are all horizontal for q ~ Q, 
and 5e~ contains the set ~0 = {Hb; b >>. 0}. If  H~' contains another 
point y # x then y lies on no vertical line, and repetition of  the 
argument shows that ~y contains some set ~ t  of  horizontal lines, a 
contradiction. Now, since the line (lib) = Hb u {x} is a manifold, it 
must  be compact. This implies that (p, lib)[ ~---  1 for eachp ~ V \  Hb, 

which is evidently false. 

Case B 3: U = I H  (~) .  

We know from the Lemma that each v ~ V = M \ 0 is fixed by the 
reflection cr at some point u e U. The group q~ =-ru ~ SO2 acts 
transitively on ~ ,  with kernel (a). Hence, q~v = (a), and K = v ~ _ Vis 
a circle consisting of fixed points of~r. This implies (cf. Observation 3) 
that K is a line of  M. In particular, each point of V lies on some 
compact line, and Vis connected; cf. (C 1). The subgroup Sv ~< r has 
positive dimension; it contains ~r, but does not contain qs. The only 
subgroups of  S with this property are the isotropy groups of points of  
EH(~) ,  and the action of  S on Vis equivalent to the action of S on 
E H ( ~ ) .  It is now easy to determine the remaining lines of  U u  V, 
using that action. This has been carried out, in a practically identical 
situation, in step (4) of the proof  of Theorem 2 in il0]. The result is 
that U u V ~-- U H  (~) or UHt (~).  By case A, M is equal to U u V or is 
the (unique) projective extension of  U u V. (In case A, we have 
assumed that U w  Vis a symmetric plane, but the proof  carries over 
without change to the present situation. In particular, no use was 
made of  reflections at the points of V.) 

w 8 Proof of Corollary 

Let S ~ Aut (M, • )  be the closure of  the group generated by all 
reflections at points of  U. We may assume that U = U x. Denote by Cu 
the set ofcoaffine points of  the stable plane U; cf. [8; w 1]. If  Uis  not 
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projective and U # Cv then we may assume that Cv = 0, since Cv is 
always closed [8; 1.9]. By [9; 1.5], U is a symmetric plane, whose 
motion group is contained in L" ~< Aut (M, 5e), and we may apply the 
Theorem. 

If U = Cv (i. e., if Uis a coaffine plane) or if Uis projective, then S 
is a Lie group [16; 3.9]. By [9; 1.4], Shas  an open orbit Vin U. If Vis 
neither coaffine nor projective, apply to V the arguments of the first 
paragraph. Otherwise, I M \  VI ~< 1, and V is a desarguesian pro- 
jective or coaffine plane by [16; 5.4], [17], and [14; 5.1, 5.7]. 

w 9 Appendix: The Sum of Two Stable Planes 

We describe here a general construction which allows to embed 
two given stable planes as open and closed, disjoint subplanes into a 
third plane, which is obtained from the given ones by means of a 
suitable identification of lines. H. GROI~ [3] has given a similar 
construction for flat planes; however, he glues the two components 
together along a line whereas, in our case, they have no boundary in 
common. In higher dimensions it is impossible, anyway, that a line 
should be the boundary of an open subset. 

Our result is that, somewhat surprisingly, the trouble with 
constructing sums of stable planes lies in the definition of a suitable 
incidence structure, not in the verification of its contintuity and 
stability properties. 

Definition. Let (MI, ~ )  and (M2, s be stable planes, and let 
~k _c A" k be open subsets. A map f:  qll ~ q/2 is called admissible if 

(i) f i s  a homeomorphism, and 
(ii) for allp e M1, the set (~pyof l ines  covers M2 simply, i. e., each 

qEM2 lies on the image L f of exactly one line L e ~  ~ 5r 

Definition. Let (Mk,SCk) (/+ = 1,2) be stable planes, and let 
f:~---> ~ be an admissible map between open subsets q/k of 5~k. 
Define 

+:(M2, = (M, 

where M = M1 -t- 2142 is the sum of the topological spaces M1, M2, and 
where Y is the set 

3* 
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of subsets of M, topologized as the amalgamated sum ~ = 
= ~ + f 4 ;  i. e., ~ is the quotient of the sum Ar 1 -t- ~ modulo the 
identification L ~ L f for L ~ ~ .  

(M, A a) is called the sum of  the planes (Mk, 4 )  (with respect to the 
admissible map f ). 

Remark. Let X1, X2 be topological spaces, and let f :  U 1 ~ U2 be a 
continuous map between subsets Uk -~ Xk. When the amalgamated 
sum S = X1 +fX2 is considered, it is usually assumed that the sets 
Uk ~ Xk are closed. We have assumed, instead, that U k is open in Xk, 
and thus we do not even know that S is Hausdorff if both X1 and 
X 2 are Hausdorff. However, it is easily verified that openness of Uk, 
together with the additional assumption tha t f i s  a homeomorphism, 
ensures that the natural inclusion ik" Xk ~ S is an open embedding, and 
this is all we need. 

Proposition. The sum of  two locally compact stable planes of  positive 
dimension, as defined above, is a stable plane. 

Proof We use the notation of the definitions and of the Remark 
above. It is evident that different pointsp, q e M are joined by a unique 
line. Stability of intersections is easily deduced from stability in 
(Mk, 4 ) ,  using the Remark. 

We now prove continuity of the join operation v .  We split the 
map v up into its restrictions 

v : Mk • Mk ~ ~q~k ~ =LP 

(which is, by the Remark, just the join operation of (Mk, 4 ) )  and 

v �9 M1  x ME ---~ LP~' n ~L#,~ = : ~ 2 .  

The set L~cl2=q/~k is, again by the Remark, open in A D and 
homeomorphic to q/k- Thus, ~12 is a separable metric space [4; 1.9], 
and continuity of v may be proved using sequence arguments. So, let 
Pkn "~Pk be convergent sequences (k----- 1, 2), and consider the lines 
Ln =Pin vp2n = Kn u K f. We have to show that 

L, -"~Pl vP2 -~ K w  K f e  ~12. 

By the Remark, this is equivalent to showing that K, --+ K o r  Kf--+ K f 
Assume that this is not so. By [4; 1.17], we may select a subsequence 
{Lm}m~ such that {Kin} converges to A e s \ {K} and {K:m} conver- 
ges to B ~ Sp2 \ {KU}. For m large, this implies that K m meets K and K f 
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meets K f by stability. In other words, the lines Km w K f and K w  K f 
have two points of  intersection, a contradiction. 

It remains to show that ~ is Hausdorff. This follows from the fact 
that M is Hausdorff, by virtue of  the continuity and stability 
properties of  (M, &o). 
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