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Summary 

The differential equations for frame-type structures with elastically deformable joints, 
derived recently by A. D. Kerr and A. 1~I. Zarembski [1], are generalized first by including 
the translational inertia terms. The corresponding variational principle is then derived 
formally, and the mechanical meaning of each term is established. The variational principle 
is then generalized by including a geometrical non-linearity, the effect of thermal and 
variable axial forces, and the variation of sectional properties. The corresponding differential 
equations are derived and the admissible boundary and matching conditions are discussed. 
As examples, formulations for two problems are presented. 

1. Introduction 

Frame-type structures, that  are long and repetitive in design, appear in 
various areas of engineering, as railroad tracks, tall buildings, etc. 

The analysis of such structures may be divided into two groups: those that  

determine the "local" response of the individual beams and those that determine 
the "global" response of the entire structure. 

The methods of analysis of the "local" behavior, for long as well as for short 
structures, are well known. They are described in the standard books on structural 
mechanics. The finite element method, which utilizes the results of the "local" 

analysis to piece together the "global" response of the structure, can be used to 
determine numerically the response of such structures for a given set of par- 

ameters. However, this method is less convenient for a general discussion of the 
response of such structures, for a wide range of parameters. 

The analyses of the "global" response of long repetitive structures genera]]y 
use differential equations, which describe the behavior of the structure as one 
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with "continuous" properties. The derivation of these "global" response equations 
are often heuristic and their accuracy is strongly affected by  simplifying assump- 
tions (or unintended omissions) made by  the respective investigator. :For examples 
of this approach refer to [2], [3], [4]. Equations of this type, which may  be easily 
solved analytically, are useful for quick calculations needed for preliminary design 
purposes and as a check of more elaborate and costly computer calculations used 
in the final design. 

A rigorous method for deriving the governing differential equations for long 
repetitive structures consists of first formulating the corresponding di//erence 
equations and then by  a limit and averaging process obtain the corresponding 
di/]erential equations. This approach, which was utilized in the mathematics  
literature a t  various occasions, was demonstrated by  :F. B. Hildebrand [5] for 
deriving the dynamic response equations of a stretched string, l~ecently, this 
approach was utilized by  A. D. Kerr  and A. M. Zarembski [1] for deriving the 
governing equations for a long repetitive f rame-type structure (cross-tie track), 
where the joints have a torsional stiffness, as shown in :Fig. 1. This derivation 
yielded differential equations with well defined coefficients in terms of the geo- 
metrical and mechanical parameters  of the structure. 

The obtained differential equations for the long f lame-type structure shown 
in :Fig. 1, as derived in [1], are 

2EI~ ~v + ( ~  - ~) ~" + (2z/h) 4' = q | 

t - - h E A d "  + (2u/h) 4 - -  z~ - -  0 ! 

2 E A ~ "  = O. | ) 

(]..1) 

In  the above equations ~(x) and ~(x) are respectively the lateral and axial 
displacements of the reference axis x, 4(x) is the axial displacement of the chord 
axes 1 due to lateral bending deformations, ( )' ~ d( )/dx, ~ is a constant axial 
compression force in both chords, q is the distributed lateral load (and/or lateral 
resistance) which acts on the structure, E is Young's  modulus of the chord 
material, I is the moment  of inertia of one chord with respect to its centroidal 
axis that  is normal to the plane of the structure, A is the cross-sectional area of 
one chord, h is the distance between the chord axes, 

12K's* 
= ( : . 2 )  

6K* ~ s* 

K* ~ --'E~176 s* : --.s (1.3) 
an ' a 

1 In a cross-tie railroad track a chord represents a rail. In a tall structure, it represents 
a column. 
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X 

Fig. 1. Analytical model of frame-type structure 
a) undeformed state, b) deformed state of equilibrium 

Eolo is the bending stiffness of each cross-bar in the lateral plane, s is the rotational 
stiffness of a joint connection between chord and cross-bar, and a is the center 
to center cross-bar spacing. 

As shown in [1], the internal forces in the structure may  be expressed in terms 
of the displacements ~(x), ~(x)  and ~(x). Namely,  the axial compression force in 
both  chords is 

.~ = - - 2 E A ~ ' .  (1.4) 

The additional axial force in each chord, caused b y  the lateral bending of the 
entire structure, is 

~ ( x )  = - - E A 4 ' .  (1.5) 

The bending moment  of the long f rame-type structure is 

~ l ( x )  -~ Mb(x)  -4- M ( x )  = - - 2 E I ~ "  - -  h E A ~ '  (1.6) 

and the corresponding shearing force is 

~(x) = - -2EZ~'"  - -  (:~ - -  ~) ~' - -  (2~/h) a .  (1.7) 
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In the expression (1.6) for the bending moment in the structure, the first term 

M b  = - - 2 E I O "  (1 .6 .1)  

represents the bending moment of the two chords and the second term 

: ~  ---- h N  -~ - - h E A d '  (1.6.2) 

is the bending moment absorbed by the axial forces/~, as shown in Fig. 2. 
The method used to derive the governing differential equations for the frame- 

type structure did not  provide a general procedure for choosing the necessary 
boundary or matching conditions. They may be prescribed heuristically as it is 
usually done in classical beam theory. ~owever,  since the theory is new it is 
necessary, in order to avoid improper formulations, to determine these conditions 
using variational calculus [6]. 

, a _ ,  a ~ 

f -  

(o) (b) A 

Fig. 2. Effect of rotational joint stiffness, s, on the cord stresses (note: s* = s/a) 

The purpose of the present paper is to derive the corresponding variational 
formulation for the frame-type structure under consideration, and to generalize 
the obtained results. At first the differential equations obtained by  Kerr  and 
Zarembski [1] are generalized by  including the essential translational inertia term. 
The corresponding variational principle is then derived formally using these 
equations, and the mechanical meaning of each obtained term is established. The 
variational principle is then generalized by including a geometrical non-linearity, 
the effect of thermal and variable axial forces, and the variation of sectional 
properties. The corresponding differential equations of motion are then derived 
and the admissible boundary and matching conditions are discussed. 
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2. Derivation of Hamilton's Principle for the Differential Equations 
in (1.1) Including Inertia 

For the problem under consideration, it is assumed that  the rotational inertia 
effects are negligible. In  the first equation in (1.1), the translational inertia term 
is included by utilizing D'Alemberts principle. The dynamic equivalent of the 
third equation in (1.1) is not included i n  the following derivation, since the 
equations in (1.1) were derived under the a priori assumption that  ~ = con- 
stant 2. 

The resulting equations of motion for O(x, t) and 4(x, t) are: 

2 E I ~ , , ~ ,  + (1~ - -  ~) ~ ,~  + (2u/h) a , ,  + m~,tt = q I 
(2.1) ! 

where ( ),x = 8( )/~x and m = 2me + hmo/a is the mass of the frame-type struc- 
ture per unit  length of axis. 

The corresponding variational principle is obtained formally, using the above 
equations ([5, Sections 2.8 and 2.141I. First, we multiply each of the above equa- 
tions by the corresponding displacement variation (in order to form the so called 
virtual work equations), sum them, integrate the resulting equation over the 
space domain (xl, x~), and then over the time domain (tl, t2). The result is 

t2 X~ 

f f {[2EI~,~x~ -4- (~  -- ~) ~,~ -4- (2~/h) ~,~ + m~,tt - -  q] (~ (2.2) 
tl Xl 

+ [ - -EA4 ,~:  + (2z/h 2) 4 -- (z/h) ~,~] 2~4} dx dt = O. 

Note, that  the second equation in (2.1), being the rotational equation of motion 
of the cross-bars, was multiplied by the variation of the corresponding rotation 
~(2a/h) = (2/h) ~4. 

Next, Eq. (2.2) is transformed using integration by parts. All terms are 
integrated with respect to x, except for the term with ~,tt which is integrated with 
respect to t. To illustrate this procedure note that  

t~ X~ t2 t~ x~ 

f f ~ , ~  ~ ~t = f E~,~]:: ~t - f f ~ , ~ , ~  ~x ~,  (2.3) 
tl xl ti tl x~ 

where 2~,~(~,~ = (3(/~,~/2), and that  

t~ X~ X~ t~ 

f f ~,.~v d~ ~t = f f ~v,,,~v ~t d~ 
t l  '~Cx ~C~ t l  

x l  Xl  tl 

This assumption is dropped in Section 3. 



60 A.D. Kerr and M. L. Accorsi: 

where mot, Oto,t = r Also 

t~ X~ 

tl Xl 

t~ X~ 

f f[ 
1~. X 1 

t= X= t= 

= [. (0,._ 00]::.,, 
t l  Xl t ,  

where the integrand of the double integral m a y  be written as 0[~(~,~ - -  2r 
Performing the other integrations, as indicated above, and noting that  for the 

problem under consideration the variations and integrations are interchangeable, 
Eq. (2.2) may  be written as follows: 

tV~ 

+ ~ + 2 2 qCJ dx dt 
t l  Xl 

t ,  

ta 
X~ 

+ f 1[,~,,1 o~}I ~, & = o. (2.4) 
g:l 

A standard condition imposed on Eq. (2.4) is that  ~(x, t) is specified a t  t = tl 
and t = t2. Thus 

~vJ,~ = ~ l t o  = 0 (2.5)  

and the last integral in Eq. (2.4) vanishes. This condition is equivalent to pre- 
scribing the initial conditions. 

The natural  boundary conditions for the problem are obtained by  equating 
to zero the boundary integrals. They are 

{[2EI~ . . . .  + ~ , ,  - -  ~(~,, - -  24/h)] 0~}~ = 0 / 

t {[2EI~,,~] 0~,,}**: = 0 
I 

{[2EA4,~] (~}~ = 0. ] 

(2.6) 
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Because of Eqs. (1.5) to (1.7), the above conditions may be written as 

{t>~},-: = 0 ] 

{Mb~<.}~: = i} (2.6.1) 

This form gives the boundary terms an obvious physical meaning. Note that  
although the bending moment  in the structure is M ---- Mb ~ ~ ,  as shown in 
Eq. (1.6), Ma and ~r or their corresponding rotations "~,, and 2 4 / h  must be pre- 
scribed separately at  the boundaries. 

l~or any case in which the natural boundary conditions are satisfied, the 
variational problem (2.4) reduces to the form 

tl  X l  

- -  q~ 2 

(2.7) 

This is Hamilton's variational principle for the equations given in (2.1). 
The standard form of Hamilton's principle is 

t ,  

f (I-[ - T) dt = O, (2.8) 
tl 

where 
X2 

T = f m~'~2 dx  (2.9) 
J 2 

is the kinetic energy. Thus, the remaining terms form the total potential energy 

"2 

f{ 
/ / =  (2E ~ 2 ~(~,: __ 24/h)2 __ q~ ,2 

x, (2.10) 

:For the planned generalization of Eq. (2.7) it will be helpful to establish the 
physical meaning of each term i n / / .  In  this connection note that  

/ / =  U -  W, (2.11) 

where U is the stored elastic strain energy and W is the work potential of the 
external forces. The first  term in T/ 

22 "2 

v,** dx  = - - ~  dx  = UM~ (2.12) 
2 .~ 2 2 E I  

*1 *i  
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represents the elastic strain energy in the two chords due to bending. The second 
term 

represents the elastic strain energy in both chords due to the axial force 2~ in 
each chord. The third terra 

f z(~'~ -- 24/h)2 dx ~ U, (2.14) 
2 

is the last strain energy term. I t  contains the stiffness parameters  of the joint 
springs and the cross-bars. Thus, it obviously represents the strain energy in the 
joint springs due to the relative rotation of the cross-bars and chords and the strain 
energy in the cross-bars due to bending. The fourth and fifth terms represent the 
work potential  

x~ 

Xl 

of the distributed lateral load q and the axial force .~. 
All terms in 1-I, except for U~, are known from the theory of beams. The strain 

energy term U~, however, is new. Since it was derived formally, it is necessary to 
validate its physical meaning by  considering the structure. 

Fig. 3 shows the initial and the deformed state of a typical cross-bar and the 
adjoining chords. Each of the joint springs is deformed by  the angle ~b. The cross- 
bar, in addition to experiencing the rigid body translations g, ~ (that do not store 
strain energy in it), is subjected to end displacements 4 and end rotations 

The cross-bar and the joint springs act in series, therefore their strain energy 
has to be calculated using an equivMent rotational stiffness s. This is done next. 

Using the slope-deflection relations ([1, Eq. (2.3)]), the end moments of a 
cross-bar m a y  be expressed as 

M~ i : Mj~ -~ S~Kdp + S~Kd~ - -  (S~ -4- $2) K 2 4 / h .  (2.16) 

Since ~ ~ ~,x - -  ~b, and neglecting the effect of axial forces in the cross-bars on 
the bending moments,  as done in [1] (thus S~ ~ 4, S~ ~--2), above equation 
becomes 

M~j = Mi~ = 6K[(~,~ - -  2~/h)  - -  ~b], (2.16.I) 

a Note that when two linear springs with parameters c and/c are attached in series and 
stretched by a force P, the one spring elongating by wl and the other by w~, the stored 
strain energy is U =/c*(w~-]-w2)2/2, where k* ~ ck/(c ~-~) is the equivalent spring 
parameter. 
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Fig. 3 

where K = Eolo/h. The total  momen t  t ha t  each cross-bar exerts on the chords is 

Mij + Mj~ = 12K[(~,~ - -  24/h) - -  ~O]. (2.17} 

Thus, the averaged torsional stiffness of the cross-bars a t  the joints, per un i t  
length of axis, is 

12K 
= 12K*. (2.18) 

a 

The averaged torsional stiffness o2 the joint  springs, a t  bo th  chords, is 

28 
- -  = 2 8 * .  ( 2 . 1 9 )  
a 

Because the cross-bars and joint  springs ac t  in series, the "equivalent  rotat ion-  
al stiffness" at  the joint  is 

Hence  

1 1 1 6K* -f- s* 

--i- --~ 2s* + - -  = seq 12K* ] 2 s ' K *  

12s 'K*  
* - -  (2.20) 

8eq 6K* + s* " 
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Comparing above expression with Eq. (1.2) it follows that  

* (2 .21)  8eq ~ ~ r  

This establishes the physical meaning of the parameter :~, which appeared in the 
formal derivation presented in [1]. 

V / / I l l / I l I A  ~ / / / / ' / / / / / /~  / / / I / / / / / / / /  

t 
- 

~ig.4 

In  :Fig. 4, the series arrangement of the cross-bars and joint springs is pre- 
sented in a straight line, for the sake of clarity. Noting that  the angle of rotation 
of the "equivalent spring" is (~,~ --  24/h) it follows that  the strain energy stored 
in the cross bar-joint spring system is 

which agrees with the corresponding expression in Eq. (2.10). This completes the 
interpretation of the U~ term. 

The strain energy due to axial extension of the cross-bars does not  appear in 
the expression for H, Eq. (2.10), since the effect of axial forces in the cross-bars 
was suumed to be negligible in [1] and this axial force does not  appear in (1.1). 

3. The Generalized Equations for the Frame-Type Structure 

The differential equations in (1.1) for a long frame-type structure were derived 
under the assumption that  the structural parameters, such as the bending stiff- 
nesses E1 and EoIo, the spring joint stiffness s, and the cross-bar spacing does not 
vary. Also the axial load ~ was assumed to be constant. In  the present section 
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the equations in (1.1) ~II be generalized, by  dropping these assumptions, and by 

including the effect of a uniform temperature increase. 

To obtain a formulation valid for a variable ~(x, t), we include a distributed 
axial load n ( x ,  t ) ,  acting along the reference axis of the structure. We also include 
a non-linearity in the strain-displacement relations, in order to couple the lateral 

and axial displacements in the formulation. 
Referring to ~'ig. 5, the Lagrange strains in the top and bot tom chords are 

defined as 

T --__ lira s ' T - a "  ] exx  - -  - -  s , x  T - -  1 
an-.->O an ! 

( 

B : lim snB - -  an [ exx - -  = s , x  B -  1 .  

J aa--+ 0 a n  

(3.1) 

D n+L 

an 
4 I[  

F ' " - . - . ~ u n  I_~n,  

---_L/ " 
l . . . . . . . . . . . . . . .  ,_ . . . . . .  ~ . a -  . - .q  

I - "  u h i =i:-~ Un ~ 

uff,,l ] I ] Un+, 

Fig. 5 

The lengths of the deformed chord segments, s. r and s .  B, are expressed according 
to Fig. 5 (noting that u.  T == ~. § 4., u. ~ = ~ --  4., etc.), as 

(s.T) ~ (a. § ~ T [ = q~n-~l  - -  u n T )  2 § ( V n + l  - -  wriT) 2 

I B B (8.B) 2 = (an + %+1 - -  u"B)2 § (Vn+I - -  vnB) ~. 
(3.2) 

5 A c t a  Mech. 56/1--2 
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Utilizing the deIinition of the forward difference operator ([1, Sec. 2]), the equa- 
tions in (3.2) may be rewritten as 

( AfVn T t ~ \(s"--~TY:( i ~ - a n  I A~'-----~T) 2 ~  , ~ - ~ x  ] l 

/ + \-271 �9 j 

Performing lim a~ --> 0 on the above equations, we obtain 

s , f f  ---- V(1 § u , J )  2 § (v,=T) ~ I (3.4) 

=,=B = V( 1 + u,=B)2 + (v,=B)2. J 
Substitution of Eq. (3.4) into the definition for strains, as stated in (3.1), yields 

~==T = Ul + 2u,=r + (u,=r)= • (v,=r) = - -  1 ~ (3.5) 

B -~ Ul + 2U,=~ + (u,=B)z -t- (v,=B) = 1. I ~xx 

The resulting strains are highly non-linear. In order to simplify them, the 
right hand sides are expanded in a binomial series of the form 

V Ct 
1 ~- a =: 1 -]- -~ ~- . . . ;  a ~ l  

and higher order terms are neglected. The resulting strains are 

s~=T = 1 + U,= T ~ (u,=r)~"/2 + (v,J)2/2 ~- . . . .  1 / (3.5.1) 

B 1 -~- u,x B --~ (U, xB)2/2 -~- (v,zB)2/2 --~ 1. 

Based on the anticipated geometry of the deformed structure, it is assumed 
that  u,x is of the same order as v,= 2. The expressions in (3.5.1) then reduce to 

e== = u , J  + ~ ( v , J )  = 

(3.6) 
e== = u,= B + ~- (v,=BV. 

Noting that, in accordance with [1] (and Fig. 5) 
u T = 4  §  ] 

u"  : ~ -- 4 (3.7) 

VT_~_ vB z ~; 

the expressions in (3.6) become 

1 
T . i s== = u,= § ~,= § y ~,=2 

B =_ ~,= _ ~,= § "~ ~,~. ~xx l.i I 

(3.8) 
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The axial forces in the top and bottom chords are (Fig. t) 

~12 + _~ = --ZAs~ = --EA(~,~ + 4,~ § ~,~/2) } 

~ / 2  - -  N = - -EAeB~ = - - E A ( a , ~  -- 4,~ -k ~"2/2) / (3.9) 

where ~ > 0 is a compression force. Solving the above equations for ~ and 
yields ( 1)  

.~(x, t) = --2EA a,~ + -g ~,~ 
(3.m) 

N ( x ,  t) = - - E A a , ~ .  

These are the new relations for the axial forces. Comparing them with Eqs. (1.4) 
and (1.5) it follows that /~ remains unchanged, but ~ contains an additional term 
that is non-linear. 

Taking into consideration the effect of thermal ax ia l  forces, the relations in 
(3.10) become 

( 1 ) /  
N(x, t) = --2EA ~,~ + -~ ~,~ -- sT  

(3.10.1) 

N ( x ,  t) = - - E A 4 , ~ .  

These expressions will be used in the following for constructing a more general 
formulation, than the one given in (1.1) and (2.7). 

Hamilton's principle, Eq. (2.8), for the generalized problem, is established by 
assuming that the elastic strain energy U consists of the following parts: 

X~ Xa 

f l Mb 2 / "  (2EI)~,~ 
u~o = ~ (2--E7) ax = j ~ dx (3.11) 

gg2 ~2 

;[ f (  1 ; 1 (N/2) ~] dx  = E A  4 . ,  -t- -~ ~,~2 _ o~T dx  (3.12) 

xz Xl 

x~ ~2 

ggx ;r l  

X~ 

U~ = f ~(r --22a/h)2 dx. (3.14) 
Xl 

The corresponding work potential W is 

X2 

W = f (@ + n~)dx 
Xl 

(3.15) 

5* 
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and the kinetic energy is 
ar I 

T : ~ dx .  (3.16) 

Thus, the generalized Hamilton's variational equation for the frame-type struc- 
ture is 

t~ ~gz 

EI~,~x + E A  ~,~ q- 2 r 2 _ o~T q- E A 4 , ~  ~ q- -~  (~,~ - -  24/h)  2 

ta a~1 

1 ~i ~] 
- -  qr - -  n~  - -  -~ mr -~ mu,  t dx  dt = O. 

(3.17) 

Note the difference between the above equation and the original variational 
equation (2.7), which corresponds to the differential equations in (1.1). Whereas 
Eq. (2.7) implies that  the axis of the frame-type structure is inextensible, this is 
not the case in the generalized equation (3.17). In  (3.17) the strain energy term 
due to the extensibility of the axis, U C, was added. This in turn required a modi- 
fication of the work potential W, as shown in (3.15). Since in Eq. (3.17) the axial 
forces ~ ----/~(x, t), the kinetic energy in the axial direction was also included. 

In Eq. (3.17) the displacements ~(x, t) and 9(x, t) are coupled. The coupling 
term is of higher order than quadratic. Thus, the corresponding differential 
equations will be non-linear. 

Performing the variations in Eq. (3.17), then integrating by  parts, and using 
the Fundamental Lemma, we obtain the corresponding differential equation 
formulation. The resulting equations for ~(x, t), 4(x, t), and 4(x, t) are: 

(2EI~,~) ,~ --  [2EA(d,~ -t- ~,~2/2 --  sT)  ~,~],x --  [~(~,~ --  2~2/h)],~ q- m~,tt = q 

(EAa,=),~ q- ~(~,~ - -  2r = 0 

[2EA(4,= q- ~,~/2 -- ~T)],~ q- n = m~,tt. 

The natural boundary conditions are obtained from the boundary terms 

{[--(2EI~,~),~ -t- 2EA(~ ,~  q- r - -  c~T) r q- ~(~,~ --  2~/h)] 6~}~: ---- 0 

{[2EI~,~] 6~,~}~ = 0; {[2EA4,~] 64}~: = 0 

{[2EA(4,~ - { -  D,~2/2 --  sT)] 6~)~: = 0. 

The initial conditions are deduced from the conditions 

(3.18) 

(3.19) 

{ImP,t] 6~}~: = 0; {[m~,t] &~}tt: = 0. (3.20) 
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4. Interpretation of the Generalized Differential Equation Formulation 

To give the generalized equations in (3.18) a physical interpretation, note that  
according to Eq. (3.10) 

( 1 1/ ~?(x, t) = --2/~A a,~ + -ff ~ , 2 _  o~T (4.1) 

_~(x, t) = - -EAa ,~ .  

Also, from the above presentation it follows that  

Mb(x, t) ~- - - 2 E I g , ~  I (4.2) 

M(x,  t) = h-~ = - -hEAa,~  I 
and 

~ ( x ,  t) = Mb(x, t) § M(x ,  t). (4.2.1) 

Furthermore, according to the presented interpretation of the strain energy 
expression U,, Eq. (2.14), the terra 

z(~,~ - - 2 a / h )  = #  (4.3) 

is the distributed moment per unit length of axis, that  the cross-bars and joint 
springs exert on the two chords. 

With this notation, the differential equations in (3.18) may be written as 

/ - -N,~ § ~/h = 0 

- - ~ , z  § n = m a , t t ,  

(3.18.1) 

where 2~ > 0 is a compression force. Eliminating /z from the first equation in 
(3.18.1) by using the second equation, and noting that  ~ = Mb q-21I and 
_~ = h_~, the equations in (3.18.1) may be rewritten as 

- -~ / ,~  § (~e,~),~ § m~,,  = q | 

J - -~ .~  + ~ = m ~ , .  

§  ----- ~ .  

(3.18.2) 

The general form of the first two equations are the same as in single beam theory. 
The third equation represents the moment equilibrium of the "continuous" filler 
between the chords. I t  is a special feature of the frame-type structure under 
consideration. 
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In accordance with the approach that led to the equations in (2.6.1), it follows, 
from the first condition in (3.19), that  the shearing force expression, that  corre- 
sponds to the generalized formulation, is 

~'(x, t) = --(2EIg,~x),~ ~- 2EA(d,~ + ~,~2/2 --  ~T) ~,~. A- u(~,~ --  24/h). (4.4) 

Thus 

o r  

r 5) --  M~,, - -  2 ~ , ,  + 

?(x ,  t) = ~ , x  --  R ~ , , .  

(4.5) 

(4.6) 

5. Specific Examples 

To demonstrate the use of the derived analysis, we discuss the necessary 
formulations for two problems. 

At first consider the dynamic response of the structure of a tall building shown 
in Fig. 6. The structure is subjected to its own weight n(x), and the wind load 
q(x, l). 

Neglecting the effect of the axial inertia term, it follows from the third equa- 
tion in (3.18), or (3.18.1), that the axial force in the structure is 

L 

= f (5.1) 
x 

Thus, the formulation of the problem under consideration consists of the remaining 
two differential equations in (3.18) 

(2EI~,xx),zx + [(~ -- u) ~,x],x -}- (2gr -~ m~,tt = q(x, t) [ 

! (EA4,~),, ~- ~(~,, -- 24/h)/h = 0 
(5.2) 

the six boundary conditions, chosen from (3.19), 

~(o, t) = o ;  

~ , . (o ,  t) = o;  

4 (o ,  t) = o ;  

(L t) 0 

I ~,~(L, t) = 0 

(5.3) 

and the two initial conditions 

v(z,  o) = f ix)  

! ~,dx, o) = g(x).  
(5.4) 
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Note that  since /~(x) was determined explicitly and is given in Eq. (5.1), the 
obtained formulation for ~ and z~ is linear�9 

When the cross-beams (floors) are "rigidly" connected to the columns (for 
example, by  welding) then s ~- co and, according to Eq. (1.2), 

(~)oo ---- 12K* -- 12E010 
ah 

4- 
i 
t 
I 

I 

- - ~ T  L 

(x,t/_....r ' ~ ~. 

n(xj 

; . .  �9 �9 . . .  

�9 o � 9  
� 9  

�9 �9 o 

�9 �9 � 9 1 7 6  ~ 1 4 9  � 9  �9 " � 9 1 4 9 1 7 6 1 4 9  �9 

Fig. 6. _~alygieal model for a gall building 

In the case of non-rigid elastic connections, the complete ~ given in Eq. (1.2) 
should be used. 

Next, consider a frame-type structure of constant geometric properties, 
clamped at both ends to "rigid" supports, and subjected to a distributed vertical 
load q, as shown in Fig. 7. At first, let us consider the general case when q(x) is of 
such magnitude that  it wil] generate, in addition to the/~'s ,  also the axial force/~. 
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Fig. 7. Analytical model for a Dame-type girder 

The differential equations for this problem are obtained from (3.18) noting 
that  n ~-- 0, toO,, -~-- 0 and m~,** ~ 0. They are: 

2EIf),~,~ --  2EA[(/~,~ ~- ~,~2/2) ~,~],~ - -  ~(~,= - -  24/h),~ : q i 

/ 
2EA(~, ,  + ~,~2/2),~ ----- 0. 

(5.6) 

According to (3.19), the necessary boundary conditions are 

g(0) ~- 0 ;  ~(L)  = 0 

~, . (0)  = 0 ;  ~ , . (L)  = 0 

4(0)  = 0;  ~ (L)  = 0 

fi(0) : 0 ;  ~(L)  = 0 .  

(5.7) 

The resulting formulation is non-linear. However, because of the structure of the 
differential equations they may  be easily solved. 

I f  it is assumed, a priori, tha t  t he /~  generated by  q(x) is negligible, then this 
linearizes the formulation, because then in (5.6) ~,,~ ~ / ~  and is neglected as small 
o~ higher order. This also uncouples the third equation in (5.6). The problem is 
thus reduced to the solution of the first two simultaneous differential equations 
with constant coefficients for ~(x) and ~(x), and the uncoupled third equation 
for ~(x). 

l l l l l l l l l l l l l  | | i l l l l l l l l l l l l l l l  IlilitLllitlll lt.lllltlitliitililllllll  
~ig. 8. Ana~Neal model for the lateral response ~ a railroad t r a ~  
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The  genera l ized  equat ions ,  (3.18) to (3.20), m a y  also be  used  for  the  analys is  

of r a i l road  t r acks  sub jec ted  to  l a t e ra l  mechan ica l  forces, a n d  for  t he  analys is  of 

t he rma l  t r a c k  buck l ing  in the  l a t e r a l  p lane  [7], as  shown in ~ig.  8. 
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