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Practical methods are developed to analyze the steady state probability distributions of 
dynamical Fokker-Planck models without manifest detailed balance in the limit of 
small noise. We consider two different models, whose deterministic attractor is a fixed 
point at the origin, and construct the leading terms of systematic expansions in various 
small parameters of the "non-equilibrium potential" and the stationary probability 
distribution of the models. 

1. Introduction 

The dynamical behaviour of macroscopic systems 
can often be successfully modelled by a Fokker- 
Planck process [1, 2, 3]. Such a description is useful 
for systems in thermodynamic equilibrium, where 
the dynamics is constrained by the requirement of 
detailed balance [4] against the microscopically de- 
fined transformation of time reversal [2]. The Fok- 
ker-Planck description is also useful in non-equilib- 
rium systems where detailed balance, in general, 
only holds with respect to some more complicated 
transformation of time reversal, which does not re- 
strict the form of the dynamics [-5] but usually is not 
known explicitely. Sometimes, even in non-equilib- 
rium systems the explicit form of the time reversal 
transformation, with respect to which the dynamics 
is in detailed balance, is apparent from the Fokker- 
Planck equation of the system [41, which is the 
situation that has been called "manifest detailed bal- 
ance" in an earlier paper by one of us [5]. However, 
usually a non-equilibrium system does not have this 
special property, and its detailed balance is "hid- 
den", since the associated time reversal transfor- 
mation is not known explicitely. In this case, it is in 
general not possible to solve the Fokker-Planck 
equation exactly, even for the time independent 
probability distribution. The development of approx- 
imation methods for this case is therefore of great 
practical interest. 
An effective numerical method developed recently 

makes use of matrix continued fractions to solve the 
Fokker-Planck equation using a convenient basis in 
the function space [-6]. However, this method - 
apart from giving little analytical insight - is not 
well suited for the case of weak noise, which is often 
the relevant limit in practical applications, due to 
the macroscopic nature of the systems considered. 
In the present paper, we therefore present an ap- 
proximate but systematic analytical method for find- 
ing the stationary distribution of a Fokker-Planck 
process with hidden detailed balance in the limit of 
weak noise. For clarity the method is presented in 
the framework of two elementary examples of dissi- 
pative systems having a single attracting fixed point 
in the deterministic limit. An application of our 
method to optical bistability has already been given 
in [7, 8]. An extension of the method to dissipative 
systems with limit cycles [9] and an application to 
mode-locking in multi-mode lasers [10] will be pub- 
lished elsewhere. 
The remainder of the paper is organized as follows. 
In Sect. 2 the general method is explained and the 
basic equations are derived. In Sects. 3 and 4 we 
derive approximate expressions for the non-equilib- 
rium potentials of the two specific examples. In Sect. 
5 we obtain approximate analytical results for the 
probability distribution in the limit of weak noise. 
Section 6 contains the discussion of our results and 
our final conclusions. 
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2. The Method 

We start from a general Fokker-Planck model. For 
simplicity we assume that the diffusion matrix of the 
model is constant 

8~ W(q, t) = - K~(q) + 
82 ] 

2 8q ~ 8q ~ Q~' W(q,t). 

(2.1) 

The summation convention is implied, q={q~}, (v 
= 1, 2 .. . .  , n) are the variables of the model, K~(q) is 
the deterministic drift, ~Q~" is the symmetric dif- 
fusion matrix, W(q, t) is the probability density of 
the variables q at time t. We assume natural bound- 
ary conditions for W(q,t) at infinity. We are in- 
terested in the time independent solution W~(q) of 
(2.1) for the case that e is a small parameter, and 
assume that the following expansion in e exists. 

Woo(q)=N.exp[-(~Cl)o(q)+~l(q)+O(~)) 1. (2.2) 

An analysis of this assumption is given elsewhere 
[11]. 
Introducing (2.2) into (2.1) and collecting terms of 
equal orders in e we obtain in order e-1: 

8~6 o 1 ~ 8q~~ 8(/i~ KV(q)~w+xQ " (2.3) 
oq z 8q ~ 8q u 

while the terms in order e ~ lead to 

, (K~(q)+Q~US~q~ Set  
5q ~ ] 8q ~ 

8~o\ - S q  (K~(q)+~QV~.~q ) (2.4) 

In the limit of weak noise it is sufficient to solve 
(2.3), (2.4) which are differential equations of first 
order in the variables q. Because the order of the 
differential equation (2.1) has been lowered by one 
there may occur problems in (2.3) and (2.4) when we 
try to impose the boundary conditions, which have 
to be satisfied by ~b o and ~b 1 in order to qualify as 
solutions of (2.1) via (2.2). In the examples we will 
discuss below, these problems can be overcome in a 
rather simple way. However, in general one must be 
aware of the fact that the expansion in s in (2.2) is a 
singular perturbation theory and it may be necessary 
to use boundary layer methods in order to satisfy all 
boundary conditions for Woo(q). 
The analytical solution of equation (2.3) which is of 
the form of a Hamilton Jacobi equation, in general, 
is only possible if the equations contain an ad- 
ditional small parameter in which the solution can 

be expanded. This small parameter then can also be 
used for solving (2.4). This completes the outline of 
the basic method, which is exemplified for two spe- 
cial cases in the following sections. The solution of 
(2.3) is the non-equilibrium potential of the sys- 
tem. 
The deterministic dynamics 

~=KV(q) (2.5) 

is the superposition of a gradient flow of this poten- 
tial 

1 ~ o  

and a flow rV(q) on equi-potential surfaces 

1 ~q~o K'(q) = - ~  Q~ Oq~+ r~(q) (2.6) 

8 cI) o 
r~(q) .~q =0. (2.7) 

Equations (2.6) and (2.7), clearly, are equivalent to 
(2.3). The non-equilibrium potential can not increase 
in time along the deterministic trajectories. 

d #  o 1 ~?#o 3~o 
Q V , . ~ : .  , -<0 (2.8) 

dt 2 ~q ~q - 

and gives the leading singular term of the probabili- 
ty distribution Woo(q ) in the weak noise limit, ac- 
cording to (2.2). However, the next order correction 
~61 which solves (2.4) is also needed in order to 
obtain a complete expression for Woo(q) in the weak 
noise limit, because only the higher order contri- 
butions become negligibly small when the strength 
of the noise approaches zero. 

3. Non-Equilibrium Potential of the First Model 

The first model we want to discuss is defined on the 
two-dimensional phase space of the variables x, y 
with the drift 

Kx= - x  +c~y 3 
Kr = _y_cSx 3 (3.1) 

and the diagonal constant diffusion matrix 

The deterministic drift contains an attracting fixed 
point - a node - at the origin with the entire (x, y) 
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plane as its stable manifold. In the infinitesimal 
neighbourhood of the origin the deterministic dy- 
namics is on straight lines towards the origin. At 
finite distances there is also a non-linear part to the 
dynamics which encircles the origin. The model de- 
fined by (3.1) and (3.2) does not have manifest de- 
tailed balance. The exact steady state distribution of 
its Fokker-Planck equation is not known. However, 
by a simple rescaling of the variables of the model it 
is easily shown that W~(x,y) is a function of the 

three quantities Q6, x 1 f f, y lf~ only. For. small Q 
the method of Sect. 2 is applicable. The formal small 
parameter e of (2.1) is put equal to one, for con- 
venience, Equation (2.3) for this case reads 

(_x +6y3)~_+(_y_6x3) ~ o  
~y 

+ 2 Q  (~ 3~-x ] \ 0y ] ! =0. (3.3) 

We will now construct approximate solutions of (3.3) 
for two cases: 

i) Expansion in 6 

This expansion is applicable if the frequency 6 can 
be assumed to be small. Since 6 measures the 
strength of the nonlinearity, the expansion represents 
q~o only for small x, y 

~0 = ~ 6n ~0 n, (X 2, y2 .~ 6 -  1). (3.4) 
n=O 

For 6 = 0  we obtain from (3.3) the solution 

�9 o o(X, y) = Q (x ~ + y~). (3.5) 

where F(u) is an arbitrary function of u. Cbot has the 
correct symmetry if F(u)=F(-1/u). In order to de- 
termine F(y/x) we note that it must be proportional 
to 1/Q and to 6 in order to contribute in (3.7) in the 
correct orders of the small parameters. Hence 

6 

However, this form of F(y/x) is not compatible with 

the general scaling property Woo(X,y,Q)=G(lf6x, 
] ~ y ,  6Q) of the model. Therefore we have to take 
F(y/x) equal to zero. The results in first order in 6 
then reads 

~o(x ,y )=~[x2+  2 6 2 2~ y +~xy(x  - y  )]. (3.8) 

The calculation can easily be carried on to higher 
orders in 6, but no new points of principle arise. We 
also note that (3.8) is, indeed, the beginning of an 
expansion in powers of x,y, as expected, and the 
result is reliable only in regions of phase space 
where the term proportional to ~6  is a small cor- 
rection to the leading term. Equation (3.8) makes 
explicit the destruction of rotational invariance of 
~o by the nonlinear parts of the drift in (3.1). 

ii) Expansion in 1/6 

This expansion is complementary to the 6-expansion 
and provides information for large x,y; (x2, y 2 
>> 6-1). Putting 

_•o ~o, (3.9) ~ O Z  n 

we obtain in lowest order 

We note that for 6 = 0  the full Fokker-Planck equa- 
tion of the model has manifest detailed balance, and 
its exact solution is given by (2.2) with ~o=~bo0 
from (3.5), ~ and all corrections of higher order in 
vanish. This remark will be useful for the construc- 
tion of ~l(q) for 6 + 0  in Sect. 5. 
We proceed to calculate the first order correction of 
~o in 6, which satisfies 

~q~ol ~bol 2 xy(xZ_y2)" (3.6) 
X~-x-x +Y ~y - Q  

Equation (3.6) can be solved by the methods of 
characteristics and we obtain the general solution 

6xy 
~bo~(X, y)= - 2 ~ ( x Z -  y2)+ F (Y ) (3.7) 

3 a#oo 3~0oo 
6y ~x 6x 3 ~y =0  (3.10) 

with the general solution 

~boo(X ' y) = f(x  4 + y4) (3.11) 

where F remains an arbitrary function. In order to 
determine F uniquely we have to proceed to the 
next order in 1/6 and have to consider 

y3 ~ (~)01 -- X 3 ~ ~)01 = 4(X 4 q_ y4). F,(x 4 q_ y4) 
~x 0y 

-- 8 Q(x 6 q- y6) (F,(x 4 + y4))2 (3.12) 

where F' is the first derivative of F. A solution for 
~bol exists if and only if the right hand side of (3.12) 
is orthogonal on all solutions of the associated ad- 
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joint homogeneous problem 

c3 +x3 8~ 
( - 9  ~ Uyl G(x,y)=O (3.13) 

which is solved again by the arbitrary function 

a(x, y) = G(x r +y4). (3.14) 

The orthogonality condition then reads explicitly 

~ dx dyG(x 4 + y4). F,(x 4 + y4) 

�9 [4(X 2 q_ y2) _ 8Q(N6 _~_ y6) .  F , ( x 4  + y4)] .  (3.15) 

Changing the variables of integration into x, u 

= ~ g ~ - y 4  and noting that the integration over u 
can be dropped because G(U 4) is arbitrary, we obtain 
a condition of the form 

4 
[. dx(~ ~ _x'*) -~ 
0 

�9 (u'*-2(2x6F'(u4)-2Q(u4-x4)~-.F'(u4)) (3.16) 

which can be reduced to 

F' 4 h(u4) 
( u ) = g - ~  (3.17) 

with 
1 1 

h(u ~) = u 2 _! d ~ (1 - ~4)~ = fi u2 (3.18) 

and 

, ~  +( -~  ) g(u4)= 2Q u4- ! 6 1 4 } 
=-2O  u 

We finally obtain 

f(x 4 + y*) = ~ (x 4 + y*)L (3. 19) 

The numerical constants c~, /3 are defined by the 
definite integrals of (3.18). It is now possible to con- 
tinue and solve (3.12) explicitly for ~ol. This func- 
tion again is determined only up to an arbitrary 
function of the form F~(x4+y 4) which has to be 
fixed by an equivalent orthogonality relation, arising 
in second order in 1/6. In this way the expansion 
can in principle be carried to increasingly higher 
orders in 1/6. 
We remark, parenthetically, that an orthogonality 
condition analogous to (3.15) must also be satisfied 
for (3.6) where the function G is of the form G(x, y) 
= 1 / X  2 G(y/x) with d arbitrary. It turns out that this 
orthogonality condition is automatically satisfied for 
(3.6) due to symmetry, which is the reason why the 
solution (3.6) could be found without explicitly ira- 

posing the orthogonality condition. Symmetry also 
guarantees that the solubility conditions are satisfied 
in higher orders; it is therefore consistent to, de- 
termine the function F in (3.7) by an independent 
argument. 
It is interesting to note that our results for the non- 
equilibrium potential to lowest order in 1/6 has the 
symmetry 

�9 o(X, y)= ~ (x'* + y'*)~ + 0(1/6) (3.20) 

imposed by the form of the reversible part of the 
drift (3.1) but grows only like x2,y 2. The growth of 
4~ o at large amplitudes, however, is not at all de- 
termined by the reversible part of the drift - which 
in this approximation is a drift on equipotential 
surfaces - but by the linear irreversible part alone. 
Thus, equation (3.20) may be understood as arising 
from an optimized compromise between nonlinear 
drift, which imposes the symmetry, and the linear 
drift, which imposes the overall growth rate�9 We also 
note that the result (3.20) ensures the normalizability 
of the probability density (2.2) at large amplitudes 
for e--,O. 

4. Non-Equilibrium Potential of the Second Model 

Some additional points arise from the following 
model 

Kx= - x3 + 6Y (4.1) 
Ky = - y3_  fix 

and 

The origin of the (x, y) plane is still the only attrac- 
tor of the drift (4.1), but the attractor arises only 
from the nonlinear terms, while the linear part of the 
drift describes a conservative flow which encircles 
the origin. Simple scaling arguments show that the 

steady state distribution can only depend on x/V~, 
y/]/~, Q/6 2. Again, we consider the solution of 

(6y_x3)a'G+(_~x y3) 0G 
ax - ~yy 

+2- \\-~-x I + \ c~y I I =0 (4.3) 

as an expansion in powers of 6 and 6-1 

i) Expansion in 6 

This expansion is justified only for large x,y; 
(x2, y 2 ~ ) .  For c~=0, the model (4.1), (4.2) has man- 
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ifest detailed balance and we obtain in the notation 
used in the previous chapter 

~boo = 21Q (x 4 + y+). (4.4) 

The correction to first order in c~ is easily obtained 
along the lines of the first expansion in the preced- 
ing section and we obtain 

2 ~ x 2 + y  2 ~ { x 2 y  2 
~ o l = - ~ 0 X Y x ~ _ y z + r ~ x z  y~y2] (4.5) 

where the function F remains unspecified. We now 
try to determine F in such a way that ~bOl remains 
finite in the limit x2--,y ~ and is invariant under the 
symmetry transformation x--- ,-x,  y ~ - y  and x+y ,  
y ~ - x .  We first consider the solution (4.5) in the 
region x > 0, y > 0 and use 

X 2 __ y2 = Z. (4.6) 

Then we obtain 

x 4 - z x  2 26 - 7 +  (4.7) qs~ z - Q -  - 7 +  2 z . 

In order to avoid a pole for z = 0  we must put F 
into the form 

FCu) = 2~ u + F(u) (4. 8) 

where if(u) is a function which is assumed finite for 
all u including u~oo.  From (4.8) we obtain 

2c5 ( xZy e ] 
~ O l -  Q x . y ( x - y ) + F  \7+~_y2]. (4.9) 

In order to determine P uniquely we first note that 
it must be proportional to cS/Q in order to contrib- 
ute to (4.10). The scaling property of Woo(x,y ) then 
implies 

{ x2 y 2 ~ 6 X2 fl 2 
\ x ~ y 2  ] = 2 Q x2 _ y2 

where 2 is a numerical constant. However, for 2 + 0  
this form of F(u) is not compatible with the require- 
ment that it remains finite for u +  oo. Hence we set 2 
~ 0 .  

The same analysis can be carried through in the 
regions x<0 ,  y > 0 ;  x<0 ,  y < 0 ;  and x > 0 ,  y < 0  with 
the final result 

2a [xl-lyl 
~bol= (4.10) 

Q XYlxl+ly-- I 

We note that (4.10) is free from singularities and has 
the correct symmetries x--+-x,  y - + - y  and x- ,y ,  
y ~  - x .  

ii) Expansion in 6 - ,  

This expansion is adequate for small x,y; x2,y 2 ~6. 
The lowest order in 6 -1 the function ~boo, in the 
notation of (3.9) is obtained as 

~oo(X, y)=F(x 2 +y2) (4.ll) 

where the function F is still arbitrary. The solubility 
condition of the corrections in next order in 6-1 is 
obtained along the lines of the previous example, 
(3.12)-(3.17) and determines the functional depen- 
dence of F in the form 

h(u) 
V'(u) = g(u) 

with 

g ( u ) : u . Q  ! d~ 11/~_~2- 2 Qu 

h(u)=2.uZid~(~4-~2+�89 3 
o 1/F2~2 --8 '~u2" 

(4.12) 

(4.13) 

With these results, the non-equilibrium potential in 
lowest order reads 

r y) = 83Q (x 2 + y2)2. (4.14) 

Again, the result appears as an optimized compro- 
mise between the conservative part of the drift which 
determines the symmetry of (4.4), and the non-linear, 
dissipative part which determines the extension of 
the probability density in phase space. The expan- 
sion, in principle, can be carried to any desired 
order in 6-1. 

5. Steady State Probability Density for Small Noise 

For the two models we have considered we now 
want to determine the probability density in the 
steady state, by extending our results for the non- 
equilibrium potential to next order in Q. We consid- 
er the various cases in succession. 

i) First Model in 6-Expansion 

We expand ~b 1 in powers of 6: 

(5.1) 
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and note that 

~io=O (5.2) 

since the model (3.1), (3.2) for 6 = 0  has manifest 
detailed balance. In first order in 6 it is therefore 
sufficient to replace ~o by ~boo on the left hand side 
of (2.4). The inhomogeneity on the right hand side of 
(2.4) turns out to vanish to first order in 6. We then 
obtain 

~ii O~i~ll 
x - g T + y 7 7 ~ = o  (5.3) 

with the general solution 

~ll(x,y)=Fl(Y/x). (5.4) 

As in the previous solution for ~0 we must take 
F(y/x) equal to zero, since, in order to contribute to 
(5.1) it should be proportional to 6, which violates 
the scaling property of W| Therefore the prob- 
ability density (2.2) to first order in 6 is given by 

where c~ and fl are defined in (3.17), (3.18) and 7 is 
defined by 

1 X 2 + ( l _ x 4 ) ~  
7 = j  d x - -  4 ~ " (5.9) 

o ( 1 - x ) -  

From (5.8) we obtain 

, 4 1 (�88 (5.10) V;o(U ) = ~  

The probability density (2.2) to lowest order in 6-  
is therefore given by 

8a-3y 
Wo~(x,y)=N.(x4+y4) z+ 4p 

This expression is complementary to our result (5.5) 
since it is valid only for large x, y. It shows that the 
normalization integral converges for large x, y. 

W~(x,y)=N'exp [-Q (X2 + 
6 2 62 

y2 

(5.5) 

iii) Second Model in 6-Expansion 

We expand ~1 in the form (5.1). Since for 6 = 0  the 
model (4.1), (4.2) has manifest detailed balance, we 
obtain 

It should be recalled that this result is only valid in 
the region x 2, y2~  1/6. In fact, (5.5) cannot be correct 
for large x,y  since W~o(x,y ) can not be normalized 
due to the divergence at infinity. In this region the 
1/6-expansion can characterize the probability densi- 
ty. 

ii) First Model in the 1~6-Expansion 

The 1/6-expansion of ~b o and ~1 is easily introduced 
in (2.4). To lowest order in 1/6 we obtain 

~io =FI( x4 +y4). (5.6) 

The real problem is to determine F 1 from the solu- 
bility condition for ~b~ t, which satisfies 

ya ~ii 3 ~qill ax x ~fy - [ 4 ( x 4 + y 4 ) - 2  fl]/x~y~]Fix6+y6 ] ' 

~ y 4  2 ( x ~ + ~ : / "  (5.7) 

We now proceed in the same way as in the section 
following (3.12) and obtain 

1 . 3  7 / 4 -  2(~ + fl) 
F't o(U 4 ) (5.8) 

�9 , o(X, y)--0. (5.12) 

In first order in 6 we have to solve the following 
equation 

x 3 ~ll 3 &bll x 3 _y3  
~ - X  -t-Y C~y--= 66 (Xq_ y)3 (5.13t 

for x > 0, y > 0. The form of the corresponding equa- 
tions in the other quadrants of the (x,y)-plane fol- 
lows from the repeated application of the symmetry 
transformation x ~ y ,  y--- , -x  to (5.13). The general 
solution of (5.13) for x > 0, y > 0 is given by 

x2--y2 (x2) (X2--22~ 
~ l l ( x , y ) = 3 6  x ~ - ~ b  f2  + F ~ x ~ -  ] (5.14) 

with 

cb(z) = i du( u~ - 1)(u ~ - 1) 3 ( u -  1) -s  (5.15) 
0 

and arbitrary F. Note the symmetry ~b(z)=~b(1/z) 
which follows from (5.15). The integral defining ~(z) 
is elementary but lengthy, and is not written out 
explicitly, We determine the function F by com- 
pensating the singularity of (/}11 at xZ-y2--+0. For 
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IxZ-y21 <X 2 we obtain from (5.14), (5.15) 

9 _x z-y2 , x 2 yZ 
q~ ll(x, y ) = ~ O ~ - ~ -  (ln 2@4Y- + lnx2 ) 

(X 2 __y2~ (5.16)  

The logarithmic term in ~a~ leads to a logarithmic 
divergence of the first derivatives of ~b 11 at x 2 =yZ 
which we consider as unphysical. It can be com- 
pensated by an appropriate choice of F 

F(u)= - 9 6 .  , .  In lul +F(u) (5.17) 

where *i(u) is differentiable at u=0.  Hence, we ob- 
tain 

X 2 --  2 2 
~11(x,Y) =36  xZyZ 

(~ /x 2', 3 Ixe -ye l  (x2-y 2] 
t))-i ln +*i I . (5.,8) 

In order to fix also *i we invoke the scaling proper- 
ties of the steady state distribution function. The 
correct scaling of the logarithmic term in (5.18) re- 
quires that *i contains a term 

X 2 y2 
9 6~x2___~_ln6. 
16 

The appearance of such contributions shows that the 
expansion in 6 contains logarithmic terms beyond ~ 
the first order in 6 and cannot be extended to higher 
orders without including such terms. In addition to 
the terms already mentioned F can contain also 
terms proportional to 6. Thus 

*i(u) = - 9 ( 6  In 6) u + ~Z. ,5- u (5.19) 

where ). is a numerical constant, which must be 
determined by the solubility condition which arises 
in second order in 6. Leaving 2 undetermined we 
write our final result in order 6 in symmetric form 
as"  

{ 1 ( x4+y'*-4c~xylx[-lyl~ Woo(x, y) = N. exp - ~  [xl + [Yl ] 

1 
- ~ l n  6 x2- y2 

iv) Second Model in the 6-1-Expansion 
Expanding 4~ 1 in 6-1 

4:'1o(x, y) =F,(x 2 + y~) 

we find in lowest order in 6-1.  

(5.2I) 

with arbitrary F 1. In first order in 6-1 we must solve 

~cI)11 xO(Pll=2.F, (x4+y4+Q ( x ~ f f + y ~ _ ) )  
Y - a y 

_3(x2+yz)+Q /~?Z~o ~32~o\ ). t5.22) 

The solubility condition requires that the right hand 
side is orthogonal on an arbitrary function of (x 2 
+y2), when integrated over x,y. Introducing u=x 2 
+ y2 as a new variable of integration we find the 
condition 

o ~ d x ( 4 x 4 - 4 u x 2 - u 2 ) ~  F~(u)=O 

with the solution 

(5.23) 

F 1 (u) = const. (5.24) 

The probability density to lowest order in 6 - 1  is 
therefore given by 

(5.25) 

Woo(x, y)=N.exp ( -  ~--~(x2 + y2)2 + 

The results (5.18) and (5.25) are complementary in 
the sense that they apply to large and to small 
values of x, y respectively. In our results we explicitly 
see the change of symmetry of the distribution from 
small values of x, y to large ones. It is caused by the 
fact that the conservative dynamics with rotational 
symmetry dominates for small amplitudes, while the 
dissipation with a different symmetry dominates at 
large amplitudes. 

6. Conclusions 

We have presented in this paper a practical scheme, 
which allows us to compute the steady state distri- 
bution function of a Fokker-Planck process in the 
absence of manifest detailed balance. This method 
has been derived under the assumption of weak 
noise and the existence of an additional small pa- 
rameter in which the solution can be expanded. The 
latter conditions of course, impose limits on the 
applicability of our method, but the weak noise limit 
is often realized in physical systems and additional 
small parameters can be found by considering limit- 
ing cases. 
Let us briefly compare the advantages and disadvan- 
tages of a number of available alternative, analytical 
methods with the method we have presented here. 



68 R. Graham and A. Schenzle: Dissipative Models Without Manifest Detailed Balance 

i) If a small parameter is available besides the noise 
intensity one may try to solve directly the Fokker- 
Planck equation by perturbative methods. The adz 
vantage would be that the weak noise limit is not 
required. However, the disadvantage of this more 
ambitious procedure is that closed form expressions 
can rarely be obtained even in first order. Rather, 
the perturbation theory of the Fokker-Planck equa- 
tion requires the full knowledge of the eigenvalues 
and of the left and right eigenvectors of the unper- 
turbed Fokker-Planck operator. In addition, the 
matrixelements of the perturbation must be calculat- 
ed, and infinite sums over the spectrum of the un- 
perturbed operator have to be evaluated. For this 
reason, the weak noise limit provides a very essential 
simplification if the physical problem allows it. 

ii) The method we described combines features of 
perturbation theory and WKB-methods familiar 
from the solution of SchrSdinger equations, which 
are separable into problems with a single degree of 
freedom. Of course, a full-fledged WKB approach 
would be preferable to our procedure, since an ad- 
ditional small parameter besides the weak noise 
would not be required. However, such an approach 
is severely hampered by the fact that the equations 
we want to solve are not separable, and it seems 
that practicable and effective WKB-methods for 
such cases are not available. Therefore this am- 
bitious program, in practice, could hardly succeed 
without another small parameter at hand. 

iii) In the weak noise limit, the steady state distribu- 
tion is dominated by the attractors of the system in 
the deterministic limit. A very reasonable approxi- 
mation in this case is the linearisation around the 
attractors, which reduces the problem locally to a 
linear Gaussian process. Approximations of this 
type, also for the time dependent Fokker-Planck 
equation, have been advocated by van Kampen I-3]. 
Our remarks, however, are only concerned with the 
steady state distribution. Indeed, if this procedure 
works, which is not always the case, however, it 
corresponds to the lowest order in the expansion we 
presented in Sects. 3-5. In particular in the first 
model the f-expansion was of this type. However, in 
the second model the full process cannot be reduced 
to a linear Gaussian process in the vicinity of the 
attractor, and the linearisation procedure does not 
work, whereas our procedure still can be applied. 
There are other disadvantages of the linearisation 
method which are avoided by our approach. If the 
system has several attractors it is very difficult to 
match the different linear Gaussian processes in 

their vicinity. Hence, in the linearisation method it is 
not known how to compare the relative probabilities 
of the different attractors in steady state. The meth- 
od presented allows such a comparison to be made, 
provided a small parameter exists common to all 
attractors which are to be compared. An example of 
this kind has been discussed in great detail in [7] in 
the context of optical bistability. After emphasizing 
the advantages, we also want to mention a principle 
disadvantage of our method. It rests squarely on the 
assumption that an expansion of Wo~(q ) of the form 
(2.2) exists, and that ~bo(q), ~bl(q) are single valued 
continuous and differentiable functions. However, in 
general, there may be also non-analytical terms in 
this expansion, and we must assume that they do 
not contribute, at least to order (~)o. This assump- 
tion conceivably may break down, in particular if 
the boundary conditions on the process (2.1) are 
more complicated than the natural boundary con- 
ditions assumed in this work. A similar problem is 
associated with the expansion in the second small 
parameter. In the cS-expansion of the second model 
we encountered an example where logarithmic terms 
in the small parameter appeared explicitly, when we 
went beyond first order. For  these reasons the meth- 
od, for all its advantages, has to be applied with care 
in order to yield meaningful results. 
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