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Summary. A numerical study of the steady laminar MHD flow driven by a rotating disk at the top of a 
cylinder filled with a liquid metal is presented. The governing equations in cylindrical coordinates are 
solved by a finite volume method. The effect of an axial magnetic field on the flow is investigated for an 
aspect ratio H/R equal to 1. The magnetic Reynolds number is assumed to be small whereas the inter- 
action parameter, N, is large compared to unity. This allows to derive asymptotic results for the flow 
solution which are found in good agreement with the numerical calculations. The effect of the top, bottom 
and vertical walls conductivity on the flow is studied. Various combinations of these conductivities are 
considered. The results obtained showed that one can control the primary flow through a good choice of 
the electrical conductivity of both the disk and cylinder walls. 

Notation 

B Magnetic field 
H Height of the cylinder 
Ha Hartmann number 
jz Axial electric current 
N Interaction parameter 
P Dimensionless pressure 
R Radius of the cylinder 
Re Reynolds number 
R~ Magnetic Reynolds number 
r Dimensionless radius 
V~. Dimensionless radial velocity 
�89 Dimensionless axial velocity 
V0 Dimensionless azimuthal velocity 
Z Dimensionless height 

Greek symbols 

0 Density of the fluid 
v Kinematic viscosity 
# Dynamic viscosity 
cr Electrical conductivity 
s Angular velocity 

Dimensionless electric potential 
6 Thickness of the Ekman layer 
A Laplacian operator 
A r Increment of the grid in the radial direction 
A Z Increment of the grid in the axial direction 
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1 Introduction 

The flow created by a rotating disk inside a stationary enclosure is a particular case of con- 
fined swirling flows. It is important in many areas of engineering such as rotational viscosi- 
meters, centrifugal machinery, pumping of liquid metals at high melting point, crystal growth 
from molten silicon in Czochralski Crystal pullers, etc. The state-of-the-art in this field has 
been summarized by Granger [1] and recently by Tsitverblit and Kit [2]. 

Concerning the particular case of a disk driven flow in a cylindrical enclosure, literature 
mainly focusses on small aspect ratios (H/R << 1) (Schultz-Grunow [3], Daily and Nece [4], 
etc.), this configuration being more representative of the structure of many hydraulic 
machines (turbines, centrifugal pumps, etc.). The model of Schultz-Grunow, conceived for a 
geometry having a small aspect ratio, predicts that the fluid situated between the rotating disk 
and the stationary cover is in solid rotation. For a geometry having an aspect ratio of 1, such 

as the one considered in this work, the influence of the lateral walls on the flow can no longer 
be neglected, as was done in the study of Schultz-Grunow. 

The only theoretical approaches of the flow when H/R ~ 0 (1) are those of Grohne [5] 
and Thomlan and Hudson [6]. Both studies are concerned with cases where Re is asymptoti- 
cally large. 

The numerical simulations are numerous but are mainly restricted to Reynolds numbers 
comprised between 102 and 103 (see, for example, Bertela and Gori [7], Lang et al. [8], Tsitver- 
blit and Kit [2]). Only the computations of Lang et al. have treated the case of a higher Rey- 
nolds number (105). 

Experimental studies of this flow are few and limited either to the measurement of profiles 
of the azimuthal velocity component (for example Alonso [9] for Re ~ O (104)) or to the 
visualization of the recirculating secondary flow (Escudier [10] for Re _< 3.103) and to some 
measurements of the velocity field (Ronnenberg [11] for Re = 1 580, H/R = 1.59). 

The corresponding M H D  problem has almost never been considered. One paper never- 
theless [12] describes the asymptotic flow solution in a Czochralski crystal puller with an axial 
magnetic field of high intensity. 

The present work addresses the effect of a strong magnetic field on the flow structure. The 
situation can be encountered in the pumping of high melting point metals such as Lithium- 
Lead alloys used in the cooling of future fusion reactors. As a matter of fact, creating a liquid 
metal flow in a closed vessel by rotating one end wall is an easy solution to study the effect of 
a magnetic field on the kinetics of reactions occurring at the interface between the walls and 
the liquid metal. This geometry has been recently proposed by Barbier et al. [13] as a small 
scale laboratory experiment which could provide useful informations on the effect of a strong 
magnetic field on the corrosion rate of stainless steels by liquid lithium-lead Pb-17Li alloys. In 
the present work, the effect of the electrical conductivity of the walls on the flow solution will 
also be studied. 

2 Problem formulation 

2.1 Governing equations 

The geometry of the flow and the coordinate system used are shown in Fig. I. A liquid metal 
with a density 6, a kinematic viscosity v and an electrical conductivity a fills a cylinder of 
radius R and height H submitted to an axial magnetic field B. The top end wall rotates with 



Numerical study of disk driven rotating MHD flow of a liquid metal in a cylindrical enclosure 155 

R o t a t i n g  disk  
wi th  ro t a t i ona l  

speed  

H 

R 

IB 

C o m p u t a t i o n a l  
/ d o m a i n  

~" r 

Fig. 1. Geometry of the flow 

an angular velocity s Using R, f2R, QX?2R 2 and a~RB as typical scales for the lengths, velo- 
cities, pressure and electrical current densities, respectively, the axisymmetric and dimension- 
less continuity and Navier Stokes equations in cylindrical coordinates become: 

1 o (~v~) ovz 
7 o~ + o z  - = ~  (1) 

OV~ Vo 2 _  OP 1 ( - V r ) - N V ~ ,  (2) 
E- + V z  Oz  r Or + ~  AV~ 

v ~  ~-2 ~ - r  - R e  ~ V b - 7  +N ~ - V 0  , (3) 

ov z  o P  1 
v~ + Vz o z - O Z +- ~ee (aVz), (~) 

where ~ is the electrical potential which is scaled by f2R~B and satisfies a Poisson equation: 

a~ v0 + or0 
= r Or (5) 

In Eqs. (1)-(4), N is the interaction parameter, the ratio of the electromagnetic forces to 

inertia forces: 

aB 2 
N -  ~S~' (6) 

Re is the Reynolds number defined by: 

~ R  2 Rc = (7) 
V 

These two dimensionless numbers depend on the speed of rotation f2R. The variables r and Z 
designate the dimensionless radius and height, respectively. The lateral wall is therefore situat- 
ed at r = l, bottom wall at Z = 0 and the rotating disk at Z = H/R. 
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The above equations are only valid for the case of  a constant magnetic field which remains 
unaffected by the flow. This approximation is valid as long as the magnetic Reynolds number 

/ ~  defined by 

R ~  = #0~X?R 2 (8) 

is small, a condition which is always verified in small scale laboratory experiments. As an 

example, a liquid metal having an electrical conductivity • = 2.10 o f~- lm 1 in a cylinder of  

radius R - 5 cm with a disk rotating at 1 Hz provides a value of  R~ equal to 0.04. 

2.2 Numerical procedure 

Equations (1) to (5) have been solved by using a finite volume method coupled to a pressure 
correction equation based on the S IMPLER Algorithm [14]. The solution in the meridional 

plane r - Z  was obtained by solving Eqs. (1), (2) and (4) for P,  V~, and Vz respectively. This is 

then used to obtain V0 from Eq. (3). The ~ field was subsequently computed from (5) using 

the values of  V0 in the meridional plane. 

The increments A r and A Z of  the grid used (Fig. 2) are not regular. The refinement was 

done near the walls where the strong velocity gradients exist, thus requiring a larger number 

of  nodes in order to reduce numerical errors. The grid used has 60 x 140 nodes and was 
chosen after performing grid independency tests. 

3 Results 

3.1 Solution in the absence o f  a magnetic f ie ld ( N  = O) 

In the absence of  the magnetic field, only Eqs. (1)-(4)  need to be solved with N - 0 imposed. 

The boundary conditions for each of  the three velocity components are: 

V~(r = 0) = V,.(r = 1) = V~(Z = 0) = V,.(Z = H / R )  = 0, (9) 

V0(r = 0) : TC~(r : 1) = V0(Z = 0) = 0; Vo(Z - H/t•) = r ,  (10) 

OVz 
Vz(~ = 1) = Vz(Z = O) Vz(Z = H / R )  = 0 ;  O~ (~ 0) = 0 (11)  
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Fig. 3. Azimuthal velocity distribution 
Re = 1000, H/R = 2.2 and N = 0 
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Fig. 4. Pressure field for Re = 1000, H/R = 2.2 
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They  express the no  slip cond i t ion  o f  the fluid at the walls, and the symmet ry  o f  the so lu t ion  

with  respect  to the  axis in r = 0. 

The  results co r r e spond ing  to H/R = 2.2 and  Re  = 1 000 are  presented  in Figs. 3 7. The  

p r imary  f low is represented  using the az imutha l  c o m p o n e n t  o f  the veloci ty  V0, whereas  the 

secondary  f low is represented  via the pressure  field, the s t r eamfunc t ion  con tours  and the 

mer id iona l  c o m p o n e n t s  o f  veloci ty  ~ and Vz. 
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As shown from the results, an Ekman layer takes place under the rotating disk where the 
azimuthal velocity, V0, is higher than everywhere else in the cavity. From Fig. 4 representing 
an elevation view of the pressure field, one can notice a region of high pressure created at the 
point (r = 1, Z = H/R). This high pressure evacuates the fluid in the remaining parts of the 
enclosure, where the pressure is weaker, by pumping the liquid under the disk, a phenomenon 
known as Ekman pumping. 

The secondary flow pattern is show in Fig. 5. The fluid rotates around a point situated 
near the upper right edge where the rotating disk meets the stationary side wall. The radial 
and vertical velocity component distributions along r = 0.50 are shown in Figs. 7 b and 7 c. 
The radial outflow is quite strong near the top disk, giving an intensified boundary layer 
under the disk. There is also a boundary layer inflow on the bottom of the enclosure. 

Because of the absence of literature on experimental values of V~, Vo and Vz in the Ekman 
layer under the disk, our numerical results can at least be compared to order of  magnitude 
obtained from an asymptotic analysis. The leading idea of this analysis consists in writing 
that the outward flux of angular momentum which will flow out of the Ekman layer near the 
region (r = 1, Z = H/R)  has its origin in the viscous friction forces exerted by the disk on the 
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layer between r = 0 and r = 1. This leads to the wellknown result that, in the Ekman layer 

which has a thickness ~5 = O (Re 1/2), the radial velocity, E ,  is of  the same order of  magnitude 

as V0, i.e. V0 = O (1) with our scaling quantities. An order of  magnitude of  the axial velocity 

in this layer is readily obtained from continuity: 

1 
V z -  , / ~  " 

In Fig. 7 where Re = 1 000, one shows that the radial velocity E has a maximum value equal 

to 0.1, i.e. only 5 times less than V0 which has a maximum value of  0.5 at this radius. The verti- 

cal velocity Vz is shown in Fig. 7 c. Its value at the layer exit is 0.03, what compares fairly well 
with Re -U2. Finally, the role of  the boundary layer along the vertical wall in r = 1 can be 

observed in Fig. 6 where strong velocity gradients can be seen. Their origin stems from the 

fact that this vertical layer has to consume the flux of  angular momentum delivered by the 

Ekman layer below the rotating disk. 
In order to add further confidence to the validity of  the computations, another calculation 

was made for a cylinder with an aspect ratio H/R = 1.0 where the fluid rotates at a Reynolds 

number of  1 800. This case has been experimentally investigated by Michelsen [15] using an 

L D A  technique to determine velocity distributions. Figure 8 shows the azimuthal velocity 

component  distribution along lines of  constant radius. The computed values can be seen to be 

in excellent agreement with measurements over the whole flow field at the exception of  the 

region near the bot tom of  the enclosure where slight deviations may be found. This can be 

circumvented by further refinement of  the grid near this boundary. 

3.2 Solution in the presence of a strong axial magnetic fi'eld (N >> 1) 

As discussed above, one of  the aims of  this paper is to provide informations for the study of  

liquid metal flows in fusion reactor technology. This type of  flows is characterized by high 

values of  the interaction parameter, N. Still considering a future Pbl7-Li  lithium-lead experi- 
ment where ~) = 104kg m -3 and v = 2.107m 2 S -~ with R = 5 cm and a disk rotating at 1 Hz, a 

magnetic field B = 1 Tesla gives N = 31. Inertial terms can then be simplified in Eqs. (2) to 

(4). This simplification yields the following modified set of  momentum equations: 

-0~ -  + G  zxv~ E _ N E = 0  (12) 

Av0 - ~- = Ha 2 V0 0~ (la) 

0 P  1 
OZ +-G ~Vz = 0, (14) 

where the Har tmann number Ha is defined by 

Ha = B/R 

and represents the ratio of  the electromagnetic forces to the viscous forces. It is related to the 

Reynolds number and interaction parameter by the expression 

Ha 2 
N - -  

Re 

and is much greater than unity. 
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Equat ion (13) for the azimuthal flow is decoupled in this case f rom those of  the other two 

velocity components.  It is therefore possible to solve the coupled equations for V0 and 
(Eqs. (13) and (5)), then to use the results to obtain a solution for the meridional recirculating 

flow from Eqs. (1), (11) and (14). 
The two particular cases of  electrically insulating or perfectly conducting walls are treated 

first before considering intermediate situations. The calculations were performed for the 
following values of  the Har tmann  number  and of the interaction parameter:  

Ha = 100, 

N = 100. 

3.2.1 Electrically insulating walls 

The fluid is therefore surrounded by a totally insulating medium and the electric current lines 
must close within the fluid (Fig. 9 c). The flow is characterized by two distinct regions: 

�9 the core region where the velocity gradients are weak and produce negligible viscous forces. 
�9 the Ha r tmann  layers situated under the rotating disk and on the bo t tom wall of  the cylin- 
der, in which the electric current lines becomes very close to each other and where azimuthal 
equilibrium is ensured via an equilibrium between the viscous forces and the electromagnetic 

forces. 
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The boundary conditions used for the electrical potential are: 

a~ ( z : 0 ) : ~  ( z : l )  o~ (r:0) o~ (r=l)=0 

and express the cancelling of the normal  component  of the electric current at the boundary  

between the fluid and the insulating walls. The boundary  conditions for the velocities remain 

the same as those given in Eqs. (9)-(11).  

Figure 9 shows the azimuthal velocity field, the electrical potential field and isocurrent 

lines, and Fig. 10 gives profiles at r = 0.50 or Z = H/JR = 0.50 of the electric current, the 

electric potential and the azimuthal velocity. The results shown in Figs. 10 c and 10 d are in 

good agreement with the asymptotic solution: 

1" T @ : _  
2 '  

r 4 Z 

{ - -  4 H a '  



Numerical study of disk driven rotating MHD flow of a liquid metal in a cylindrical enclosure 163 

which satisfies the azimuthal equilibrium in the core of  the flow. The rigid body rotating core 
is crossed by an axial electric current jz = O(Ha 1) which also circulates through the top and 

bot tom Har tmann layers of  thickness Ha -1 as it is shown in Fig. 9 c. The total electric current 

in these Har tmann layers is then of  order of  unity. The global contribution of  the 

electromagnetic forces in the azimuthal direction is zero, what requires that the core will be in 

azimuthal equilibrium between the viscous driving stress from the disk at the top and the 

viscous braking at the bot tom wall. This is another possibility to understand why the core 

rotates at a velocity which is an exact average between that of  the two end walls. 
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3.2.2 Electrically conducting walls 

In this case, the two end walls and the vertical wall are infinitely conducting. The boundary 

conditions on ~ are deduced from the cancelling of  the tangential component  of  the electric 
current at the interface between the fluid and the walls. They are written: 

0%o (r = 0) = 0" 9~(Z = 1) r2 1 
' = 7 ; : l )  : = 0 )  = 

The cancelling of  jT near the walls prevents the existence of  Har tmann layers. This explains 

the more monotonous  structure of  the velocity field which varies linearly as a function o f  r 
and Z through the whole fluid (Fig. 11 a). 

The core solution 

!/'o = r Z ,  

(r 2 - 1) Z + 1 
qo= 

2 

satisfies the azimuthal momentum equation and the boundary conditions. The value of  the 
axial current in the core is now of O(1) and can be easily obtained from this solution: 

0%o _ 1 - r 2 
jz- 

OZ 2 

The numerical results in Fig. 12 are in excellent agreement with these estimations. 

The situation can be interpreted as though the disk generates because of  its rotation, in its 

inside, a radial gradient of  the potential and communicates to the other two walls the value of  

felt at its end situated in r = 1. The bot tom is therefore globally at a higher potential than 

the disk, which is at the origin of  the electric current of  order 1 which circulates from bot tom 
to top. Figures 12 c and 12 d give the distributions of  ~o and ~ along the Z = 0.50 line. As can 

be seen the computed values are in excellent agreement with the asymptotic solution. 

3.2.3 Intermediate cases 

Three different cases of  combination of  insulating and conducting walls are presented in 

Figs. 13 15. Figure 13 shows the case when all the walls are insulating except the bot tom wall 
which is perfectly conducting. Here, the radial component  of  the electric current in Z = 0 is 
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Fig. 15. Both the rotating disk and the bottom of the cylinder are conducting, the vertical wall is 
insulating: electric potential and azimuthal velocity distribution in Z = 0.50. a Electric potential, b Azi- 
muthal velocity 

zero and prevents once more the existence of  a Ha r tmann  layer on the bot tom,  which for this 

reason cannot  be submit ted to any velocity gradient  and  therefore imposes to the core to 

remain at  rest (Vo = O). The matching with the rotat ing disk occurs in the Har tmann  layer in 

Z = I .  

F o r  the case where only the disk is perfectly conducting the solution given in Fig. 14 

shows a non-rota t ing  core and a good  agreement with the asymptot ic  solution. The results 

corresponding to an insulating vertical wall are presented in Figs. 15 a and 15 b and show a 

linear variat ion of  the tangential  velocity throughout  most  of  the chamber.  A perfect agree- 

ment  with the asymptot ic  solution (V0 = rZ ;  ~p = (r2/2) Z) can be noticed in both figures. 

4 C o n c l u s i o n  

A numerical  procedure  to predict  the flow in a cylindrical cavity with a rotat ing end wall has 

been proposed.  In a pure hydrodynamic  situation, the results have been successfully com- 

pared to experimental  da ta  published in the literature. In the presence of  a strong vertical 
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magnetic  field, the computed  flow solution, electric potent ial  and current  dis tr ibut ion have 

been compared  to asymptot ic  solutions which can be obtained when inertial effects are 

neglected. Here also the agreement is good. Finally,  the influence of  the electrical conductivi ty 

of  the walls has been considered. The results indicate that  one can control  the behavior  of  the 

pr imary  flow through a good choice of  the electric conductivities of  the disk and cylinder 

walls. In view of  further l abora to ry  experiments aiming at investigating the effect of  a strong 

magnet ic  field on chemical phenomena occurring at the interface between a solid wall and a 

liquid metal  flow (Barbier et al. [13]) the simple geometry studied in this paper  appears  to be a 

convenient  tool  which offers the possibil i ty to vary velocity gradients by modifying the wall 

conductivities. 
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