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Summary. The assumption that a liquid adheres to a solid boundary ("no-slip" boundary condition) is 
one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assump- 
tion does not hold. In this paper we investigate the consequences of slip at the wall on the flow of a 
linearly viscous fluid in a channel. Usually, the slip is assumed to depend on the shear stress at the wall. 
However, a number of experiments suggests that the slip velocity also depends on the normal stress. 
Thus, we investigate the flow of a linearly viscous fluid when the slip depends on both the shear stress and 
the normal stress. In regions where the slip velocity depends strongly on the normal stress, the flow field 
in a channel is not fully developed and rectilinear flow is not possible. Also, it is shown that, in general, 
traditional methods such as the Mooney method cannot be used for calculating the slip velocity. 

1 Introduction 

The "no-slip" boundary condition is one of  the cornerstones on which the mechanics of  the 

linearly viscous liquid is built. In his original paper, Navier [1] had proposed a slip boundary 

condition wherein the slip velocity depended linearly on the shear stress. Helmholtz and 

Pitrowski [2] introduced the notion of  the "coefficient of  slip" (Gleitungskoeffizient) for the 
slip occurring adjacent to a wall. Kundt  and Warburg [3] studied the damping of  a vibrating 

disk in a gas and found that the coefficient of  slip was inversely proportional to the pressure. 

They also studied [4] the flow of  air and hydrogen in glass tubes and again found that the 

coefficient of  slip was inversely proportional to the pressure. Later, Maxwell [5] derived an 

expression for the slip of  a gas next to a solid surface. A detailed discussion of  the early work 

in this area can be found in Kennard [6]. 

Soon after formulating the Navier-Stokes equations, Stokes [7] considered the no-slip 
boundary condition but rejected it except possibly for small fluid velocities. However, in the 

following years as experimental evidence mounted in favor of  the no-slip boundary condition 
for a large class of  flows, and it became widely accepted for most liquid flows. An interesting 

account of  the acceptance of  the no-slip boundary condition can be found in the article by 

Day [8]. While this assumption has proved to be highly successful for a great variety of  flow 

conditions, it has been found to be inadequate in certain situations: the mechanics of  thin 
films, problems involving multiple interfaces and the flow of  rarefied fluids are but a few of  
the examples that immediately come to mind. 

The "no-slip" boundary condition is also widely used for flows involving non-Newtonian 
fluids past solid boundaries. However, it has been found that a large class of  polymeric 

materials slip or stick-slip on solid boundaries. For  instance, when polymeric melts flow due 
to an applied pressure gradient, there is a sudden increase in the throughput  at a critical 
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pressure gradient. This phenomenon is referred to as "spurt" (Denn [9], Vinogradov et al. 
[10], Petrie and Denn [11]). The onset of "spurt" has been observed to coincide with the 
occurrence of '"slip", and thus "slip" has been attributed as the cause of spurt. However, other 
rationale such as a non-monotonic relationship between the shear stress and shear rate (see 
Kolkka et al. [12], McLeish and Ball [13], Malkus et al. [14], [15], Rao and Rajagopal [16], 
Rao [17]) has also been advanced towards explaining the phenomenon of spurt. Other pheno- 
mena such as the "'sharkskin" effect observed during oscillatory flows of constant piston 
speed rheometers (Hatzikiriakos and Dealy [18]) might also call into question the appropriate- 
ness of the "no-slip" boundary condition for that problem. 

Considerable amount of exerimental work has been carried out to determine the nature of 
the slip that takes place at solid boundaries. A discussion of previous work concerning this 
issue of slip can be found in Petrie and Denn [11]. A taxidermy of some of the various models 
for slip that have been used is provided in the Appendix. 

One of the early studies of the slip at the wall was undertaken by Mooney [19] who ob- 
served that the flow curves (shear stress versus nominal shear rate) of certain fluids varied 
with the radius of the capillary, when the stress exceeded a certain value. He inferred from 
this that slip was taking place at the wall and introduced an approximate methodology to 
calculate the slip velocity. This technique known as the Mooney technique is still widely used 
to measure the slip velocity. Slip has been inferred using a number of different methods. A 
number of workers (Hatzikiriakos and Dealy [20], [21], Ramamurthy [22]) have used the 
Mooney technique to estimate slip. Hot-film probes have been used (Kraynik and Schowalter 
[23], Lim and Schowalter [24], Atwood and Schowalter [25]) to measure the wall slip. More 
recent experiments (Migler et al. [26], [27]) have measured slip at the interface using an 
evanescent wave fluorescence technique. This technique can measure slip in a zone within 
about 0.1 gm off the solid surface. 

The slip velocity depends strongly on the shear stress, and hence most constitutive equa- 
tions developed for slip assume that it depends only on the shear stress. However, it seems 
plausible, based on our experience from friction problems in classical physics that the mean 
normal stress would have an impact on the slip and this is in fact the case. The effects of 
normal stress on slip have been investigated in the early experiments carried out on capillary 
rheometers by Vinogradov and Ivanova [28]. In these experiments extrudate distortion was 
suppressed at elevated pressures and this was inferred to be due to a decrease in the slip 
velocity with increasing pressure. In more recent experiments, White et al. [29] studied the 
flow of elastomers in a rotational viscometer. They found that the slip velocity decreases with 
pressure and that above a certain pressure the slip velocity became independent of pressure. 
Hatzikiaros and Dealy [21] used a modified Mooney technique to determine the form of the 
slip equation and its dependence on normal stress and shear stress. They observed that the tra- 
ditional Mooney technique for determining the slip velocity works only if the fluid is slipping 
by the same amount at each location in the capillary, i.e. if the flow is fully developed. If the 
slip velocity depends on the normal stress this condition is not satisfied, and hence the 
Mooney technique gives erroneous results. A consequence of this is that the data from capil- 
lary rheometers and sliding plate rheometers for slip velocity obtained using the traditional 
Mooney technique are inconsistent. Person and Denn [30] have carried out a much simplified 
one-dimensional analysis for the flow of power law fluids in a channel with a slip boundary 
condition that includes dependence on the pressure. 

Numerical computations of the full partial differential equations incorporating constitu- 
tive equations for slip have not been fully explored. However, incorporating slip at the wall 
has led to a possible explanation for an interesting class of problems, a few of which are 
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discussed below. Georgiou and Crochet [31] with the aim of modeling the oscillations 
observed in constant piston speed rheometers and other extruding devices carried out 
computations for a compressible viscous fluid flowing through a channel with slip at the wall. 
In this computation the constitutive equation for slip was chosen to have a non-monotone 
relationship with the shear stress. By using a compressible fluid and a non-monotone constitu- 
tive equation for the slip, they were able to model the self-sustaining oscillations observed in 
the experiments. Sillman and Scriven [32] have carried out a computational study of the 
steady discharge of a Navier-Stokes fluid out of a channel. They showed that incorporating 
slip on the solid surface near the exit alleviates the stress singularity at the contact line. Torres 
et al., [33] have modeled the bicomponent coextrusion process in a square channel. In this 
problem the assumption of a no-slip boundary condition gives poor results as the contact line 
cannot move. They use a number of slip boundary conditions which suppose that the slip 
velocity depends on the shear stress. The numerical results of the simulations using the slip 
boundary condition were found to be consistent with experimental observations. Given the 
numerous problems in which slip seems to be critical in determining the characteristics of the 
flow, it seems reasonable to investigate the effect of slip in a systematic manner, and this anal- 
ysis is meant to be a part of such a study. 

Much of the research involving slip presumes that the slip velocity depends on the shear 
stress. In this paper we study the effect of including normal stresses in addition to the shear 
stresses in the description of the slip that occurs during the flow in a channel. We feel that 
before studying complicated non-Newtonian models it is useful to study the incompressible 
Navier-Stokes fluid under more general boundary conditions. Three different equations for 
slip are used here in the computations. The first model for slip depends purely on the shear 
stress, the second model depends only on the normal stress, and the third model reflects the 
dependence of slip on both the shear and normal stresses. It is found that the solutions 
obtained using an equation for slip that accounts for the effect of the normal stress is qualita- 
tively different from the solutions in which the dependence of the slip velocity on the normal 
stress is ignored. 

2 Governing equations 

The Cauchy stress tensor in an incompressible Navier-Stokes fluid is given by 

T = - p I  + 2#D, (1) 

where p I  denotes the indeterminate part of the stress due to the constraint of incompress- 
ibility, D is the symmetric part of the velocity gradient, i.e. 

D=~ I  [L +LT] ,  L = gradv, (2) 

and # is the viscosity. As the fluid is incompressible, it can only undergo isochoric motions 
and therefore 

div  (v) = 0. (3) 

The balance of linear momentum, in the absence of body forces, is 

~) ~ + [grad v] v = -g rad  (p) + #V2v. (4) 
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In deriving (4) we have made use of (1). For the purposes of illustration, we shall consider 
plane flows. We now introduce the following non-dimensionalization: 

v x t p 
x *  = - -  t *  - - ( 5 )  

v* = ~ , W ' W / U  ' P* ~ U  2 ' 

where W denotes the channel width and U denotes a characteristic velocity. In a two dimen- 
sional Cartesian coordinate system, the conservation of mass and balance of linear momen- 

tum in the non-dimensional form reduce to (dropping the '*' for clarity): 

Ou Ov 
Ox ely 

ot ~ ~ ~ + ~ oy o~ + ~ \Ox~ + ~ )  ' (7) 

Ov Ov Or_ 8 p ~ _ 1 / 0 %  0%'~ 
o~ + ~ x  +~ oy o~ Re I , ~ + ~ )  

(8) 

In Eqs. (6)-(8), u is the non-dimensional velocity in the x direction, v is the non-dimen- 
sional velocity in the y direction, p is the indeterminate part of the stress due to the constraint 

of incompressibility (which in the case of a Navier-Stokes fluid is the same as the 

pressure), and Re is the Reynolds number (Re  - L)UW). 

3 Re la t ions  for slip 

We assume that the fluid is capable of slip, and its value depends on the extent of the normal 
and shear stresses at the wall, i.e. the slip velocity is a function of the shear and the normal 
stress at the wall: 

us = f(~-~, c%). (9) 

For the flow of an incompressible Newtonian fluid through a channel, the shear stress at the 
wall is given by 

~-~ = .  + , ( l o )  

and the normal stress at the wall is given by 

o ~  w ( 1 1 )  a ~ = - p + 2 # ~  , 

where the suffix w implies the value at the wall. In a pressure driven flow, as the pressure 
drops along the direction of flow, we can expect the slip to change along the flow direction. 
The experiments indicate (see White et al. [29]) that the slip velocity is independent of the 
pressure at sufficiently high pressures; however, at lower pressures the slip velocity depends 
on the pressure. This presents a problem in specifying the correct boundary conditions for the 
numerical simulation since the exit boundary conditions cannot be accurately prescribed, as 
the flow is not fully developed. In order to know the correct boundary conditions, the down- 
stream conditions after the fluid exits the channel would have to be determined in conjunction 
with the upstream flow. This would significantly complicate the numerical simulation. Here, 
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u~ = f (r~,  cry), v : 0 

C~U 
m =  0 
Ox 

v = 0  
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0u 
- - = 0 ,  v = 0  
Oy 

Fig. 1. Geometry and boundary conditions for the problem 
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we are primarily interested in gleaning a better understanding of  the effect of  slip on the flow 

in a channel, hence we will consider a simplified boundary condition at the exit as shown in 

Fig. 1. 

There are very few experiments that attempt to quantify the pressure dependence of  slip, 

and there is no reliable data available to generate a constitutive equation for the slip velocity 

taking into account both the shear and normal stresses. A number of  researchers have 

developed slip theories (see Appendix). Since there is no agreement in the literature regarding 

the nature of  the constitutive equation, in this study we will try to determine the differences in 

the solutions obtained for three boundary conditions, viz. when the slip velocity depends on 

the shear stress alone, when the slip velocity depends only on the normal stress and when it 

depends on both shear and normal stresses. For  the case when the slip velocity depends solely 

on the shear stress, the solution of  the problem is straightforward, as the flow in a long 

channel can now be assumed to be fully developed. A common form for the slip equation as a 

function of  the shear stress obtained by fitting data is (cf. [20], [22], [37]-[39]): 

us : 0 if Tw < Tc~-, (12) 

Us = a ( T w )  m if T~ > Tc~, 

where a and m are constants, Tw is the shear stress at the wall, and %~ the critical shear stress 

below which the fluid does not slip at the wall. 

For  the case when the slip velocity depends on the normal stress, the constitutive equation 

for slip is chosen so that it has a realistic dependence on the normal stress and can yield solu- 

tions consistent with the exit boundary conditions. Based on experimental evidence (see [29]), 
at high values of  normal stresses the slip velocity is assumed to be independent of  the normal 

stresses. Also at high values of  normal stresses the slip velocity can either be zero or be non- 

zero; i.e. the slip velocity takes on an asymptotic value at high values of  the normal stress. As 

the normal stress decreases it is assumed that the slip velocity increases. This also seems to be 
reasonable from our experience regarding problems involving friction in classical mechanics. 

With these two factors in mind the following slip equation will be used: 

Us =Ul if O" w < O" 0 

_ _ U l  + U h  U l -  ~h Sin (O'w-- O'0 2 )  k, G l - - ~ T r +  _ if cr 0 < ~ 7 ~ < ~ h ,  (13) 
u ~  - -  2 § 2 Go - - 

u ~ = u h  if crw>G1. 
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Here ch is the normal stress above which slip does not depend on the normal stress, or0 is the 

normal stress below which the slip velocity does not depend on the normal stress, us is the slip 

velocity, a~ is the normal stress at the wall, uh and ul are the limiting values of  slip velocity for 

high and low values of  the normal stress, respectively. This equation is qualitatively similar to 

experimental observations (White et al. [29]) for moderate to large values of  the normal stress. 

When the slip velocity depends on both the shear and normal stresses, we use an equation 

for the slip, which depends on the ratio of  the shear stress to the normal stress a = . 

When the value of  ~ is large, the fluid slips and when the value of  a is small the fluid does not 

slip, i.e. for a fixed value of  shear stress larger values of  normal stresses impede slip. The exact 

form of the equation for slip that will be used is: 

u s = u 1  if c~<c~0, 

u s -  2 ~ - ~ s i n  : r +  if c~0_<ct<ch ,  (14) 
\0~ 1 -- O{ 0 

Us : u h  if c~ > cq, where %h > Ul �9 

Here, we assume that for both large and small values of  ~ the slip velocity is independent of  

c~, however the independent values at the large and small limits are different. For  intermediate 

values of  ~, the slip velocity varies with ~ in a manner consistent with the lower and higher 

limits. 
Various other dependencies for the slip velocity on the shear and normal stresses could be 

assumed. We shall not  do so here but rest content with the cases discussed above as they 

between them cover qualitatively some of  the possibilities that we could encounter in a real 

flow situation. 

4 Flow domain and boundary conditions 

The geometry of  the flow domain along with the boundary conditions is provided in Fig. 1. 

The problem is solved only in the top half of  the channel because we seek solutions having 

symmetry about  the centerline. The velocity is assumed to be fully developed at the inlet, and 

pressures are prescribed at the inlet and at the outlet. The velocity gradients in the main flow 

direction are set to zero at the exit. The lower boundary conditions are prescribed according 
to the symmetry of  the problem. At the top (next to the wall) the boundary condition is that 
the vertical velocity is zero (impermeable wall) and the horizontal velocity is determined by 

the equation for slip. All the solutions were obtained on a channel of  length L = 4 and width 

W = I .  

5 Numerical scheme 

The coupled partial differential equations governing the problem (Eqs. (6)-(8))  are solved 
using a finite volume method. The problem was solved on a staggered grid with the velocities 
defined at the boundaries of  each control volume and the pressure at the center o f  the control 

volume. These equations were solved using a modification of  the projection method intro- 
duced by Chorin [34]; the details on this variant of  the projection method can be found in the 
text by Fletcher [35]. In flows involving convective terms, special techniques have to be used 
to discretize the convective terms so as to minimize the error due to '"numerical diffusion". 
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Techniques developed for capturing sharp gradients in the flows of compressible fluids have 
been very effective in the flows of incompressible fluids. A flux corrected transport algorithm 
developed by Van-Leer [36] was used to discretize the convective terms. In the projection 
method at each time step a Poisson equation has to be solved for the pressure. This Poisson 
equation was solved using a multigrid algorithm. The integration in time is done using an 
explicit scheme till a steady state is achieved. As an initial condition the fluid was assumed to 
be stationary. At each step, the boundary conditions on the velocities have to be updated as 
they depend on the flow field. The slip velocity at the boundary was increased incrementally 

to speed up the convergence to the steady state. The results were solved on the largest grid 
for which grid independence of the solution was verified. A 64 x 16 grid was found to be 
sufficient for this problem. 

6 Results 

When the problem is solved using an equation for slip that does not incorporate the normal 
stresses, fully developed flow is observed along the length of the channel. I f  the shear stress at 
the wall is greater than the critical shear stress ~-c~, the flow slips at the wall and conversely 
if the shear stress is not large enough, then the classical Poiseuille solution with no-slip is 
observed. The steady state solution is easily obtained and is shown in Fig. 2. Also, since the 
flow is assumed to be fully developed the pressure gradient is linear along the length of the 
channel, and there is no flow in the vertical direction. However, when the slip velocity is assu- 
med to depend on the normal stress, the slip velocity varies along the length of the channel 
and hence the x and y components of the velocities also vary along the length of the channel. 
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Fig. 2. Velocity profile with slip when the slip velocity depends only on the shear stress Re = 1, O z  = 1, 
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This behavior is very different from the velocity profiles obtained by using equations for the 

slip that imply that slip does not depend on the normal stress. 

For  the case when the slip velocity depends only on the normal stress, the velocity at the 

inlet is assumed to be fully developed and the slip equation is chosen such that the asymptotic 

value of  the slip velocity at high values of  normal stress is zero (i.e. uh = 0 in Eq. (15)). At the 

inlet, the axial velocity is parabolic and the vertical component  of  velocity is zero. As the fluid 

flows down the channel, the pressure drops and consequently the normal stress at the wall 

also drops. When the normal stress drops below the critical value oh, slip is initiated at the 
wall and increases as the normal stresses decrease. The horizontal velocities at the inlet and 

outlet of  the channel are shown in Fig. 3. We notice that the velocity profiles at the inlet and 

outlet are qualitatively different with the outlet velocity being much blunter than the one at 

the inlet, due to which the shear stress at the wall is greater at the inlet than at the outlet. 

When the fluid starts slipping at the wall with different velocities at different axial locations 

the vertical component  o f  the velocity can no longer remain zero if conservation of  mass is to 

be satisfied. Figure 4 shows the vertical component  of  the velocities at different axial locati- 

ons, and we note that it is much smaller than the horizontal component.  As the pressure 

drops further, the normal stress drops below c~0 and the slip velocity becomes independent of  

the normal stress, i.e., the vertical component  of  the velocity again goes to zero and the axial 

velocity tends to a new fully developed state. The pressure at the centertine of  the channel is 

plotted in Fig. 5. The pressure gradient is linear near the inlet and the exit of the channel 

where the flow is fully developed, but with different slopes and near the center where redistri- 

bution of  the velocity profile is taking place the pressure gradient is not linear. The dashed 
lines in Fig. 5 show the pressure gradients at the inlet and outlet, the difference between which 
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is significant. The pressure gradient at the inlet is greater than the pressure gradient at the out- 

let, and this is consistent with the observation that the shear stress at the inlet is greater than 

the shear stress at the outlet. When both the effects of  normal and shear stresses are incorpo- 

rated into the equation governing slip, the solutions obtained are qualitatively similar to the 
case when the slip velocity depends only on the normal stress. When the fluid enters the chan- 

nel, the pressure is high and therefore the value of  ~ is low, and thus at the inlet the fluid is 

assumed to have zero velocity at the wall (i.e., ul = 0 in Eq. (16)). As the fluid flows down the 

channel the pressure drops, and consequently the value of  c~ increases till it is larger than c~0 

and slip takes place at the boundary. As the fluid flows further down the channel the value of  

c~ increases till it exceeds c~1 and the slip velocity becomes constant and independent of  c~. 
Figure 6 shows the inlet and outlet velocity components in the x direction. The velocity profile 

at the inlet is fully developed and parabolic with no-slip while at the exit the velocity profile is 
fully developed and parabolic with slip. When the fluid starts slipping, the velocity in the y 

direction cannot remain zero. The velocity components in the vertical direction are plotted at 

different axial locations in Fig. 7. The vertical velocities at the inlet and outlet are zero. It fol- 
lows once again that the pressure does not vary linearly along the pipe. The value of  c~ along 

the length of  the channel is shown in Fig. 8. 

7 Conclusions 

When the slip at the wall depends on the normal stresses, the velocity field is qualitatively 
different f rom that for the case when it depends purely on the shear stress. When the slip 

velocity depends only on the shear stress, the velocity components depend only on the y coor- 
dinate, and the solution is very similar to a classical Poiseuille solution but with non-zero 
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velocites at the boundaries. However,  if the slip velocity does depend on the normal  stress, the 
velocity field depends both on the x and y co-ordinates, and there are two components  to the 

velocity field. Another  important  difference is that the pressure gradient is no longer linear 
along the channel. Due to these differences in the flow fields, traditional methods like the 
Mooney technique, which presuppose a fully developed flow with a linear pressure gradient 
are ineffective for calculating the slip velocities. 

Appendix 

A number  of  models have been advanced for describing the slip that occurs at solid bounda-  

ries. We shall document  some of them here. The earliest boundary condition for slip was 
proposed by Navier  [1] in his original paper  on linearly viscous fluids. It was a linear relation- 
ship between the slip velocity and the shear stress at the wall, 

u, = --ATe, (A.1) 

where A is a constant. 
Later Mooney [19] suggested that  the slip velocity depended more generally on the shear 

stress at the wall and introduced an experimental technique for evaluating this relationship. 
This condition has been generalized in a variety of  different ways in the subsequent literature 
and it has the form: 

u, = f(~-~). (A.2) 

A number  of  authors (Chauffoureaux et al. [37], Lau and Schowalter [38], Ramamur thy  [22], 
Hatzikiaros and Dealy [20], Cohen and Metzner [39]) have fitted a power-law equation to 
relate the slip velocity to the shear stress at the wall, and the equation has the form: 

us = A[f(7~)] "~ , (A.a) 

where A and m are constants. The idea of a yield stress below which there is no slip is easily 
incorporated into such an equation. 

Georgiou and Crochet [31] use a non-monotone  relationship between the slip velocity and 
shear stress. Their equation for the boundary  condition has the form: 

T w : O~ 1 1 q 1 + u~)2 u~, (A.4) 

where cq, c~2 and a3 constants. 
The equation for describing the slip developed empirically by Hatzikiriakos and Dealy [21] 

to account for the effect of  normal  stresses has the form: 

E + c3 

u s  = ( f l ( T )  1 - c2 tanh  R T  (%) '~ '  (A.5) 

where (, c2, ca and E are constants, R is the universal gas constant, T is the temperature and 
f l  is a function which includes the effects of  temperature.  

Person and Denn [30] use an equation for the slip having the form: 

% = a(T~) "~ exp (-/3~p), (A.6) 

where a, m and ~ are constants and p is the pressure. 
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A number  of  mathemat ic ians  have used various slip boundary  conditions.  We provide a 

few examples below. 

Serrin [40] used the following boundary  condition: 

(A.7) 
I~-~1 > I~1 ~ us = - A ( 1  - k I ~ 1 )  

I ~ , w l / ~ '  

Consiglieri  [41] used the following form for the slip: 

(A.8) 
I~1 = kl~,~l ~ us = - ~ .  

Fuj i ta  [42] used the following slip boundary  condition: 

(A.9) 
us -- 0 or l u s l ~  --  - g u ~  

Note: In the above boundary  condit ions us, ~-~ and aN are the slip velocity, tangential  shear 

stress and the normal  stress respectively, all measured at the wall. All  three are vectors. The 

constants  k, A and g are positive scalars. 
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